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Chapter 1 Pattern Recognition

1.1 Substituting (1.1) into (1.2) and then differentiating with respect towi we obtain

N∑

n=1

(
M∑

j=0

wjx
j
n − tn

)
xi

n = 0. (1)

Re-arranging terms then gives the required result.

1.4 We are often interested in finding the most probable value forsome quantity. In
the case of probability distributions over discrete variables this poses little problem.
However, for continuous variables there is a subtlety arising from the nature of prob-
ability densities and the way they transform under non-linear changes of variable.

Consider first the way a functionf(x) behaves when we change to a new variabley
where the two variables are related byx = g(y). This defines a new function ofy
given by

f̃(y) = f(g(y)). (2)

Supposef(x) has a mode (i.e. a maximum) atx̂ so thatf ′(x̂) = 0. The correspond-
ing mode off̃(y) will occur for a valuêy obtained by differentiating both sides of
(2) with respect toy

f̃ ′(ŷ) = f ′(g(ŷ))g′(ŷ) = 0. (3)

Assumingg′(ŷ) 6= 0 at the mode, thenf ′(g(ŷ)) = 0. However, we know that
f ′(x̂) = 0, and so we see that the locations of the mode expressed in terms of each
of the variablesx andy are related bŷx = g(ŷ), as one would expect. Thus, finding
a mode with respect to the variablex is completely equivalent to first transforming
to the variabley, then finding a mode with respect toy, and then transforming back
to x.

Now consider the behaviour of a probability densitypx(x) under the change of vari-
ablesx = g(y), where the density with respect to the new variable ispy(y) and is
given by ((1.27)). Let us writeg′(y) = s|g′(y)| wheres ∈ {−1,+1}. Then ((1.27))
can be written

py(y) = px(g(y))sg′(y).

Differentiating both sides with respect toy then gives

p′y(y) = sp′x(g(y)){g′(y)}2 + spx(g(y))g′′(y). (4)

Due to the presence of the second term on the right hand side of(4) the relationship
x̂ = g(ŷ) no longer holds. Thus the value ofx obtained by maximizingpx(x) will
not be the value obtained by transforming topy(y) then maximizing with respect to
y and then transforming back tox. This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformation, the second term on
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Figure 1 Example of the transformation of
the mode of a density under a non-
linear change of variables, illus-
trating the different behaviour com-
pared to a simple function. See the
text for details.
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the right hand side of (4) vanishes, and so the location of themaximum transforms
according tôx = g(ŷ).

This effect can be illustrated with a simple example, as shown in Figure 1. We
begin by considering a Gaussian distributionpx(x) overx with meanµ = 6 and
standard deviationσ = 1, shown by the red curve in Figure 1. Next we draw a
sample ofN = 50, 000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distributionpx(x).

Now consider a non-linear change of variables fromx to y given by

x = g(y) = ln(y) − ln(1 − y) + 5. (5)

The inverse of this function is given by

y = g−1(x) =
1

1 + exp(−x+ 5)
(6)

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transformpx(x) as a function ofx we obtain the green curvepx(g(y))
shown in Figure 1, and we see that the mode of the densitypx(x) is transformed
via the sigmoid function to the mode of this curve. However, the density overy
transforms instead according to (1.27) and is shown by the magenta curve on the left
side of the diagram. Note that this has its mode shifted relative to the mode of the
green curve.

To confirm this result we take our sample of50, 000 values ofx, evaluate the corre-
sponding values ofy using (6), and then plot a histogram of their values. We see that
this histogram matches the magenta curve in Figure 1 and not the green curve!

1.7 The transformation from Cartesian to polar coordinates is defined by

x = r cos θ (7)

y = r sin θ (8)
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and hence we havex2 + y2 = r2 where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variablesis easily seen to be

∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣

=

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

where again we have used (2.177). Thus the double integral in(1.125) becomes

I2 =

∫ 2π

0

∫ ∞

0

exp

(
− r2

2σ2

)
r dr dθ (9)

= 2π

∫ ∞

0

exp
(
− u

2σ2

) 1

2
du (10)

= π
[
exp

(
− u

2σ2

) (
−2σ2

)]∞
0

(11)

= 2πσ2 (12)

where we have used the change of variablesr2 = u. Thus

I =
(
2πσ2

)1/2
.

Finally, using the transformationy = x−µ, the integral of the Gaussian distribution
becomes

∫ ∞

−∞

N
(
x|µ, σ2

)
dx =

1

(2πσ2)
1/2

∫ ∞

−∞

exp

(
− y2

2σ2

)
dy

=
I

(2πσ2)
1/2

= 1

as required.

1.8 From the definition (1.46) of the univariate Gaussian distribution, we have

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}
x dx. (13)

Now change variables usingy = x− µ to give

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
y2

}
(y + µ) dy. (14)

We now note that in the factor(y + µ) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show this explicitly, write the integral
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as the sum of two integrals, one from−∞ to 0 and the other from0 to ∞ and then
show that these two integrals cancel). In the second term,µ is a constant and pulls
outside the integral, leaving a normalized Gaussian distribution which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for the normal distribution
into the normalization result (1.48) and re-arrange to obtain

∫ ∞

−∞

exp

{
− 1

2σ2
(x− µ)2

}
dx =

(
2πσ2

)1/2
. (15)

We now differentiate both sides of (15) with respect toσ2 and then re-arrange to
obtain (

1

2πσ2

)1/2 ∫ ∞

−∞

exp

{
− 1

2σ2
(x− µ)2

}
(x− µ)2 dx = σ2 (16)

which directly shows that

E[(x− µ)2] = var[x] = σ2. (17)

Now we expand the square on the left-hand side giving

E[x2] − 2µE[x] + µ2 = σ2.

Making use of (1.49) then gives (1.50) as required.

Finally, (1.51) follows directly from (1.49) and (1.50)

E[x2] − E[x]2 =
(
µ2 + σ2

)
− µ2 = σ2.

1.9 For the univariate case, we simply differentiate (1.46) with respect tox to obtain

d

dx
N
(
x|µ, σ2

)
= −N

(
x|µ, σ2

) x− µ

σ2
.

Setting this to zero we obtainx = µ.

Similarly, for the multivariate case we differentiate (1.52) with respect tox to obtain

∂

∂x
N (x|µ,Σ) = −1

2
N (x|µ,Σ)∇x

{
(x − µ)TΣ−1(x− µ)

}

= −N (x|µ,Σ)Σ−1(x− µ),

where we have used (C.19), (C.20) and the fact thatΣ−1 is symmetric. Setting this
derivative equal to0, and left-multiplying byΣ, leads to the solutionx = µ.

1.10 Sincex andz are independent, their joint distribution factorizesp(x, z) = p(x)p(z),
and so

E[x+ z] =

∫∫
(x+ z)p(x)p(z) dxdz (18)

=

∫
xp(x) dx+

∫
zp(z) dz (19)

= E[x] + E[z]. (20)
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Similarly for the variances, we first note that

(x+ z − E[x+ z])2 = (x− E[x])2 + (z − E[z])2 + 2(x− E[x])(z − E[z]) (21)

where the final term will integrate to zero with respect to thefactorized distribution
p(x)p(z). Hence

var[x+ z] =

∫∫
(x+ z − E[x+ z])2p(x)p(z) dxdz

=

∫
(x− E[x])2p(x) dx+

∫
(z − E[z])2p(z) dz

= var(x) + var(z). (22)

For discrete variables the integrals are replaced by summations, and the same results
are again obtained.

1.12 If m = n thenxnxm = x2
n and using (1.50) we obtainE[x2

n] = µ2 + σ2, whereas if
n 6= m then the two data pointsxn andxm are independent and henceE[xnxm] =
E[xn]E[xm] = µ2 where we have used (1.49). Combining these two results we
obtain (1.130).

Next we have

E[µML] =
1

N

N∑

n=1

E[xn] = µ (23)

using (1.49).

Finally, considerE[σ2
ML]. From (1.55) and (1.56), and making use of (1.130), we

have

E[σ2
ML] = E


 1

N

N∑

n=1

(
xn − 1

N

N∑

m=1

xm

)2



=
1

N

N∑

n=1

E

[
x2

n − 2

N
xn

N∑

m=1

xm +
1

N 2

N∑

m=1

N∑

l=1

xmxl

]

=

{
µ2 + σ2 − 2

(
µ2 +

1

N
σ2

)
+ µ2 +

1

N
σ2

}

=

(
N − 1

N

)
σ2 (24)

as required.

1.15 The redundancy in the coefficients in (1.133) arises from interchange symmetries
between the indicesik. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one member in each group of
equivalent configurations occurs in the summation.
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To derive (1.135) we note that the number of independent parametersn(D,M )
which appear at orderM can be written as

n(D,M ) =

D∑

i1=1

i1∑

i2=1

· · ·
iM−1∑

iM=1

1 (25)

which hasM terms. This can clearly also be written as

n(D,M ) =

D∑

i1=1

{
i1∑

i2=1

· · ·
iM−1∑

iM=1

1

}
(26)

where the term in braces hasM−1 terms which, from (25), must equaln(i1,M−1).
Thus we can write

n(D,M ) =

D∑

i1=1

n(i1,M − 1) (27)

which is equivalent to (1.135).

To prove (1.136) we first setD = 1 on both sides of the equation, and make use of
0! = 1, which gives the value1 on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimensionality D and
then show that it must be true for dimensionalityD+ 1. Thus consider the left-hand
side of (1.136) evaluated forD + 1 which gives

D+1∑

i=1

(i+M − 2)!

(i− 1)!(M − 1)!
=

(D +M − 1)!

(D − 1)!M !
+

(D +M − 1)!

D!(M − 1)!

=
(D +M − 1)!D + (D +M − 1)!M

D!M !

=
(D +M )!

D!M !
(28)

which equals the right hand side of (1.136) for dimensionality D + 1. Thus, by
induction, (1.136) must hold true for all values ofD.

Finally we use induction to prove (1.137). ForM = 2 we find obtain the standard
resultn(D, 2) = 1

2
D(D + 1), which is also proved in Exercise 1.14. Now assume

that (1.137) is correct for a specific orderM − 1 so that

n(D,M − 1) =
(D +M − 2)!

(D − 1)! (M − 1)!
. (29)

Substituting this into the right hand side of (1.135) we obtain

n(D,M ) =

D∑

i=1

(i+M − 2)!

(i− 1)! (M − 1)!
(30)
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which, making use of (1.136), gives

n(D,M ) =
(D +M − 1)!

(D − 1)!M !
(31)

and hence shows that (1.137) is true for polynomials of orderM . Thus by induction
(1.137) must be true for all values ofM .

1.17 Using integration by parts we have

Γ(x+ 1) =

∫ ∞

0

uxe−u du

=
[
−e−uux

]∞
0

+

∫ ∞

0

xux−1e−u du = 0 + xΓ(x). (32)

Forx = 1 we have

Γ(1) =

∫ ∞

0

e−u du =
[
−e−u

]∞
0

= 1. (33)

If x is an integer we can apply proof by induction to relate the gamma function to
the factorial function. Suppose thatΓ(x+ 1) = x! holds. Then from the result (32)
we haveΓ(x + 2) = (x + 1)Γ(x + 1) = (x + 1)!. Finally, Γ(1) = 1 = 0!, which
completes the proof by induction.

1.18 On the right-hand side of (1.142) we make the change of variablesu = r2 to give

1

2
SD

∫ ∞

0

e−uuD/2−1 du =
1

2
SDΓ(D/2) (34)

where we have used the definition (1.141) of the Gamma function. On the left hand
side of (1.142) we can use (1.126) to obtainπD/2. Equating these we obtain the
desired result (1.143).

The volume of a sphere of radius1 in D-dimensions is obtained by integration

VD = SD

∫ 1

0

rD−1 dr =
SD

D
. (35)

ForD = 2 andD = 3 we obtain the following results

S2 = 2π, S3 = 4π, V2 = πa2, V3 =
4

3
πa3. (36)

1.20 Sincep(x) is radially symmetric it will be roughly constant over the shell of radius
r and thicknessε. This shell has volumeSDr

D−1ε and since‖x‖2 = r2 we have
∫

shell

p(x) dx ' p(r)SDr
D−1ε (37)
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from which we obtain (1.148). We can find the stationary points ofp(r) by differen-
tiation

d

dr
p(r) ∝

[
(D − 1)rD−2 + rD−1

(
− r

σ2

)]
exp

(
− r2

2σ2

)
= 0. (38)

Solving forr, and usingD � 1, we obtain̂r '
√
Dσ.

Next we note that

p(r̂ + ε) ∝ (r̂ + ε)D−1 exp

[
− (r̂ + ε)2

2σ2

]

= exp

[
− (r̂ + ε)2

2σ2
+ (D − 1) ln(r̂ + ε)

]
. (39)

We now expandp(r) around the point̂r. Since this is a stationary point ofp(r)
we must keep terms up to second order. Making use of the expansion ln(1 + x) =
x− x2/2 +O(x3), together withD � 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density atthe origin is given by

p(x = 0) =
1

(2πσ2)1/2

while the density at‖x‖ = r̂ is given from (1.147) by

p(‖x‖ = r̂) =
1

(2πσ2)1/2
exp

(
− r̂2

2σ2

)
=

1

(2πσ2)1/2
exp

(
−D

2

)

where we have used̂r '
√
Dσ. Thus the ratio of densities is given byexp(D/2).

1.22 SubstitutingLkj = 1 − δkj into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for eachx we should choose the classj for which
1 − p(Cj|x) is a minimum, which is equivalent to choosing thej for which the pos-
terior probabilityp(Cj|x) is a maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is correctly classified, and hence
minimizing the expected loss will minimize the misclassification rate.

1.24 A vectorx belongs to classCk with probabilityp(Ck|x). If we decide to assignx to
classCj we will incur an expected loss of

∑
k Lkjp(Ck|x), whereas if we select the

reject option we will incur a loss ofλ. Thus, if

j = arg min
l

∑

k

Lklp(Ck|x) (40)

then we minimize the expected loss if we take the following action

choose

{
class j, if minl

∑
k Lklp(Ck|x) < λ;

reject, otherwise. (41)
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For a loss matrixLkj = 1 − Ikj we have
∑

k Lklp(Ck|x) = 1 − p(Cl|x) and so we
reject unless the smallest value of1 − p(Cl|x) is less thanλ, or equivalently if the
largest value ofp(Cl|x) is less than1 − λ. In the standard reject criterion we reject
if the largest posterior probability is less thanθ. Thus these two criteria for rejection
are equivalent providedθ = 1 − λ.

1.25 The expected squared loss for a vectorial target variable isgiven by

E[L] =

∫∫
‖y(x) − t‖2p(t,x) dxdt.

Our goal is to choosey(x) so as to minimizeE[L]. We can do this formally using
the calculus of variations to give

δE[L]

δy(x)
=

∫
2(y(x)− t)p(t,x) dt = 0.

Solving fory(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(t,x) dt

∫
p(t,x) dt

=

∫
tp(t|x) dt

which is the conditional average oft conditioned onx. For the case of a scalar target
variable we have

y(x) =

∫
tp(t|x) dt

which is equivalent to (1.89).

1.27 Since we can choosey(x) independently for each value ofx, the minimum of the
expectedLq loss can be found by minimizing the integrand given by

∫
|y(x) − t|qp(t|x) dt (42)

for each value ofx. Setting the derivative of (42) with respect toy(x) to zero gives
the stationarity condition
∫
q|y(x) − t|q−1sign(y(x)− t)p(t|x) dt

= q

∫ y(x)

−∞

|y(x) − t|q−1p(t|x) dt− q

∫ ∞

y(x)

|y(x) − t|q−1p(t|x) dt = 0

which can also be obtained directly by setting the functional derivative of (1.91) with
respect toy(x) equal to zero. It follows thaty(x) must satisfy

∫ y(x)

−∞

|y(x) − t|q−1p(t|x) dt =

∫ ∞

y(x)

|y(x) − t|q−1p(t|x) dt. (43)
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For the case ofq = 1 this reduces to
∫ y(x)

−∞

p(t|x) dt =

∫ ∞

y(x)

p(t|x) dt. (44)

which says thaty(x) must be the conditional median oft.

For q → 0 we note that, as a function oft, the quantity|y(x) − t|q is close to 1
everywhere except in a small neighbourhood aroundt = y(x) where it falls to zero.
The value of (42) will therefore be close to 1, since the density p(t) is normalized, but
reduced slightly by the ‘notch’ close tot = y(x). We obtain the biggest reduction in
(42) by choosing the location of the notch to coincide with the largest value ofp(t),
i.e. with the (conditional) mode.

1.29 The entropy of anM -state discrete variablex can be written in the form

H(x) = −
M∑

i=1

p(xi) ln p(xi) =

M∑

i=1

p(xi) ln
1

p(xi)
. (45)

The functionln(x) is concave_ and so we can apply Jensen’s inequality in the form
(1.115) but with the inequality reversed, so that

H(x) 6 ln

(
M∑

i=1

p(xi)
1

p(xi)

)
= lnM. (46)

1.31 We first make use of the relationI(x;y) = H(y) − H(y|x) which we obtained in
(1.121), and note that the mutual information satisfiesI(x;y) > 0 since it is a form
of Kullback-Leibler divergence. Finally we make use of the relation (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient condition for the equality to be
satisfied, we substitutep(x,y) = p(x)p(y) into the definition of the entropy, giving

H(x,y) =

∫∫
p(x,y) ln p(x,y) dxdy

=

∫∫
p(x)p(y) {ln p(x) + ln p(y)} dxdy

=

∫
p(x) ln p(x) dx +

∫
p(y) ln p(y) dy

= H(x) + H(y).

To show that statistical independence is a necessary condition, we combine the equal-
ity condition

H(x,y) = H(x) + H(y)

with the result (1.112) to give

H(y|x) = H(y).
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do indeed satisfy the three constraints.

Note that there is a typographical error in the question, which should read ”Use
calculus of variations to show that the stationary point of the functional shown just
before (1.108) is given by (1.108)”.

For the multivariate version of this derivation, see Exercise 2.14.

1.35 Substituting the right hand side of (1.109) in the argument of the logarithm on the
right hand side of (1.103), we obtain

H[x] = −
∫
p(x) ln p(x) dx

= −
∫
p(x)

(
−1

2
ln(2πσ2) − (x− µ)2

2σ2

)
dx

=
1

2

(
ln(2πσ2) +

1

σ2

∫
p(x)(x− µ)2 dx

)

=
1

2

(
ln(2πσ2) + 1

)
,

where in the last step we used (1.107).

1.38 From (1.114) we know that the result (1.115) holds forM = 1. We now suppose that
it holds for some general valueM and show that it must therefore hold forM + 1.
Consider the left hand side of (1.115)

f

(
M+1∑

i=1

λixi

)
= f

(
λM+1xM+1 +

M∑

i=1

λixi

)
(50)

= f

(
λM+1xM+1 + (1 − λM+1)

M∑

i=1

ηixi

)
(51)

where we have defined

ηi =
λi

1 − λM+1

. (52)

We now apply (1.114) to give

f

(
M+1∑

i=1

λixi

)
6 λM+1f(xM+1) + (1 − λM+1)f

(
M∑

i=1

ηixi

)
. (53)

We now note that the quantitiesλi by definition satisfy

M+1∑

i=1

λi = 1 (54)
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and hence we have
M∑

i=1

λi = 1 − λM+1 (55)

Then using (52) we see that the quantitiesηi satisfy the property

M∑

i=1

ηi =
1

1 − λM+1

M∑

i=1

λi = 1. (56)

Thus we can apply the result (1.115) at orderM and so (53) becomes

f

(
M+1∑

i=1

λixi

)
6 λM+1f(xM+1)+(1−λM+1)

M∑

i=1

ηif(xi) =

M+1∑

i=1

λif(xi) (57)

where we have made use of (52).

1.41 From the product rule we havep(x,y) = p(y|x)p(x), and so (1.120) can be written
as

I(x;y) = −
∫∫

p(x,y) ln p(y) dxdy +

∫∫
p(x,y) ln p(y|x) dx dy

= −
∫
p(y) ln p(y) dy +

∫∫
p(x,y) ln p(y|x) dxdy

= H(y) −H(y|x). (58)

Chapter 2 Density Estimation

2.1 From the definition (2.2) of the Bernoulli distribution we have

∑

x∈{0,1}

p(x|µ) = p(x = 0|µ) + p(x = 1|µ) (59)

= (1 − µ) + µ = 1 (60)∑

x∈{0,1}

xp(x|µ) = 0.p(x = 0|µ) + 1.p(x = 1|µ) = µ (61)

∑

x∈{0,1}

(x− µ)2p(x|µ) = µ2p(x = 0|µ) + (1 − µ)2p(x = 1|µ) (62)

= µ2(1 − µ) + (1 − µ)2µ = µ(1 − µ). (63)
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The entropy is given by

H(x) = −
∑

x∈{0,1}

p(x|µ) ln p(x|µ)

= −
∑

x∈{0,1}

µx(1 − µ)1−x {x lnµ+ (1 − x) ln(1 − µ)}

= −(1 − µ) ln(1 − µ) − µ lnµ. (64)

2.3 Using the definition (2.10) we have
(
N

n

)
+

(
N

n− 1

)
=

N !

n!(N − n)!
+

N !

(n− 1)!(N + 1 − n)!

=
(N + 1 − n)N ! + nN !

n!(N + 1 − n)!
=

(N + 1)!

n!(N + 1 − n)!

=

(
N + 1

n

)
. (65)

To prove the binomial theorem (2.263) we note that the theorem is trivially true
for N = 0. We now assume that it holds for some general valueN and prove its
correctness forN + 1, which can be done as follows

(1 + x)N+1 = (1 + x)

N∑

n=0

(
N

n

)
xn

=

N∑

n=0

(
N

n

)
xn +

N+1∑

n=1

(
N

n− 1

)
xn

=

(
N

0

)
x0 +

N∑

n=1

{(
N

n

)
+

(
N

n− 1

)}
xn +

(
N

N

)
xN+1

=

(
N + 1

0

)
x0 +

N∑

n=1

(
N + 1

n

)
xn +

(
N + 1

N + 1

)
xN+1

=

N+1∑

n=0

(
N + 1

n

)
xn (66)

which completes the inductive proof. Finally, using the binomial theorem, the nor-
malization condition (2.264) for the binomial distribution gives

N∑

n=0

(
N

n

)
µn(1 − µ)N−n = (1 − µ)N

N∑

n=0

(
N

n

)(
µ

1 − µ

)n

= (1 − µ)N

(
1 +

µ

1 − µ

)N

= 1 (67)
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Figure 2 Plot of the region of integration of (68)
in (x, t) space.

t

x

t = x

as required.

2.5 Making the change of variablet = y + x in (2.266) we obtain

Γ(a)Γ(b) =

∫ ∞

0

xa−1

{∫ ∞

x

exp(−t)(t− x)b−1 dt

}
dx. (68)

We now exchange the order of integration, taking care over the limits of integration

Γ(a)Γ(b) =

∫ ∞

0

∫ t

0

xa−1 exp(−t)(t− x)b−1 dx dt. (69)

The change in the limits of integration in going from (68) to (69) can be understood
by reference to Figure 2. Finally we change variables in thex integral usingx = tµ
to give

Γ(a)Γ(b) =

∫ ∞

0

exp(−t)ta−1tb−1tdt

∫ 1

0

µa−1(1 − µ)b−1 dµ

= Γ(a+ b)

∫ 1

0

µa−1(1 − µ)b−1 dµ. (70)

2.9 When we integrate overµM−1 the lower limit of integration is0, while the upper
limit is 1 −∑M−2

j=1 µj since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

pM−1(µ1, . . . , µM−2) =

∫ 1−
∑M−2

j=1
µj

0

pM (µ1, . . . , µM−1) dµM−1

= CM

[
M−2∏

k=1

µαk−1
k

]∫ 1−
∑M−2

j=1
µj

0

µ
αM−1−1
M−1

(
1 −

M−1∑

j=1

µj

)αM−1

dµM−1.
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In order to make the limits of integration equal to0 and1 we change integration
variable fromµM−1 to t using

µM−1 = t

(
1 −

M−2∑

j=1

µj

)
(71)

which gives

pM−1(µ1, . . . , µM−2)

= CM

[
M−2∏

k=1

µαk−1
k

](
1 −

M−2∑

j=1

µj

)αM−1+αM−1 ∫ 1

0

tαM−1−1(1 − t)αM−1 dt

= CM

[
M−2∏

k=1

µαk−1
k

](
1 −

M−2∑

j=1

µj

)αM−1+αM−1

Γ(αM−1)Γ(αM )

Γ(αM−1 + αM )
(72)

where we have used (2.265). The right hand side of (72) is seento be a normalized
Dirichlet distribution overM−1 variables, with coefficientsα1, . . . , αM−2, αM−1+
αM , (note that we have effectively combined the final two categories) and we can
identify its normalization coefficient using (2.38). Thus

CM =
Γ(α1 + . . .+ αM )

Γ(α1) . . .Γ(αM−2)Γ(αM−1 + αM )
· Γ(αM−1 + αM )

Γ(αM−1)Γ(αM )

=
Γ(α1 + . . .+ αM )

Γ(α1) . . .Γ(αM )
(73)

as required.

2.11 We first of all write the Dirichlet distribution (2.38) in theform

Dir(µ|α) = K(α)

M∏

k=1

µαk−1
k

where

K(α) =
Γ(α0)

Γ(α1) · · ·Γ(αM )
.

Next we note the following relation

∂

∂αj

M∏

k=1

µαk−1
k =

∂

∂αj

M∏

k=1

exp ((αk − 1) lnµk)

=

M∏

k=1

lnµj exp {(αk − 1) lnµk}

= lnµj

M∏

k=1

µαk−1
k
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We now note that the right-hand side is independent ofx and hence the left-hand side
must also be constant with respect tox. Using (1.121) it then follows that the mutual
informationI[x,y] = 0. Finally, using (1.120) we see that the mutual information is
a form of KL divergence, and this vanishes only if the two distributions are equal, so
thatp(x,y) = p(x)p(y) as required.

1.34 Obtaining the required functional derivative can be done simply by inspection. How-
ever, if a more formal approach is required we can proceed as follows using the
techniques set out in Appendix D. Consider first the functional

I[p(x)] =

∫
p(x)f(x) dx.

Under a small variationp(x) → p(x) + εη(x) we have

I[p(x) + εη(x)] =

∫
p(x)f(x) dx+ ε

∫
η(x)f(x) dx

and hence from (D.3) we deduce that the functional derivative is given by

δI

δp(x)
= f(x).

Similarly, if we define

J [p(x)] =

∫
p(x) ln p(x) dx

then under a small variationp(x) → p(x) + εη(x) we have

J [p(x) + εη(x)] =

∫
p(x) ln p(x) dx

+ε

{∫
η(x) ln p(x) dx+

∫
p(x)

1

p(x)
η(x) dx

}
+O(ε2)

and hence
δJ

δp(x)
= p(x) + 1.

Using these two results we obtain the following result for the functional derivative

− ln p(x) − 1 + λ1 + λ2x+ λ3(x− µ)2.

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1.108) into each of the three
constraints (1.105), (1.106) and (1.107) in turn. The solution is most easily obtained
by comparison with the standard form of the Gaussian, and noting that the results

λ1 = 1 − 1

2
ln
(
2πσ2

)
(47)

λ2 = 0 (48)

λ3 =
1

2σ2
(49)
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from which we obtain

E[lnµj] = K(α)

∫ 1

0

· · ·
∫ 1

0

lnµj

M∏

k=1

µαk−1
k dµ1 . . . dµM

= K(α)
∂

∂αj

∫ 1

0

· · ·
∫ 1

0

M∏

k=1

µαk−1
k dµ1 . . . dµM

= K(α)
∂

∂µk

1

K(α)

= − ∂

∂µk
lnK(α).

Finally, using the expression forK(α), together with the definition of the digamma
functionψ(·), we have

E[lnµj] = ψ(αk) − ψ(α0).

2.14 As for the univariate Gaussian considered in Section 1.6, wecan make use of La-
grange multipliers to enforce the constraints on the maximum entropy solution. Note
that we need a single Lagrange multiplier for the normalization constraint (2.280),
aD-dimensional vectorm of Lagrange multipliers for theD constraints given by
(2.281), and aD×D matrixL of Lagrange multipliers to enforce theD2 constraints
represented by (2.282). Thus we maximize

H̃[p] = −
∫
p(x) ln p(x) dx + λ

(∫
p(x) dx− 1

)

+mT

(∫
p(x)x dx− µ

)

+Tr

{
L

(∫
p(x)(x− µ)(x− µ)T dx− Σ

)}
. (74)

By functional differentiation (Appendix D) the maximum of this functional with
respect top(x) occurs when

0 = −1 − ln p(x) + λ+ mTx + Tr{L(x− µ)(x− µ)T}. (75)

Solving forp(x) we obtain

p(x) = exp
{
λ− 1 + mTx + (x − µ)TL(x− µ)

}
. (76)

We now find the values of the Lagrange multipliers by applyingthe constraints. First
we complete the square inside the exponential, which becomes

λ− 1 +

(
x− µ+

1

2
L−1m

)T

L

(
x − µ+

1

2
L−1m

)
+ µTm − 1

4
mTL−1m.



24 Solution 2.16

We now make the change of variable

y = x− µ+
1

2
L−1m.

The constraint (2.281) then becomes
∫

exp

{
λ− 1 + yTLy + µTm − 1

4
mTL−1m

}(
y + µ− 1

2
L−1m

)
dy = µ.

In the final parentheses, the term iny vanishes by symmetry, while the term inµ
simply integrates toµ by virtue of the normalization constraint (2.280) which now
takes the form

∫
exp

{
λ− 1 + yTLy + µTm − 1

4
mTL−1m

}
dy = 1.

and hence we have

−1

2
L−1m = 0

where again we have made use of the constraint (2.280). Thusm = 0 and so the
density becomes

p(x) = exp
{
λ− 1 + (x− µ)TL(x− µ)

}
.

Substituting this into the final constraint (2.282), and making the change of variable
x− µ = z we obtain

∫
exp

{
λ− 1 + zTLz

}
zzT dx = Σ.

Applying an analogous argument to that used to derive (2.64)we obtainL = − 1
2
Σ.

Finally, the value ofλ is simply that value needed to ensure that the Gaussian distri-
bution is correctly normalized, as derived in Section 2.3, and hence is given by

λ− 1 = ln

{
1

(2π)D/2

1

|Σ|1/2

}
.

2.16 We havep(x1) = N (x1|µ1, τ
−1
1 ) andp(x2) = N (x2|µ2, τ

−1
2 ). Sincex = x1 + x2

we also havep(x|x2) = N (x|µ1 + x2, τ
−1
1 ). We now evaluate the convolution

integral given by (2.284) which takes the form

p(x) =
( τ1

2π

)1/2 ( τ2
2π

)1/2
∫ ∞

−∞

exp
{
−τ1

2
(x− µ1 − x2)

2 − τ2
2

(x2 − µ2)
2
}

dx2.

(77)
Since the final result will be a Gaussian distribution forp(x) we need only evaluate
its precision, since, from (1.110), the entropy is determined by the variance or equiv-
alently the precision, and is independent of the mean. This allows us to simplify the
calculation by ignoring such things as normalization constants.
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We begin by considering the terms in the exponent of (77) which depend onx2 which
are given by

−1

2
x2

2(τ1 + τ2) + x2 {τ1(x− µ1) + τ2µ2}

= −1

2
(τ1 + τ2)

{
x2 −

τ1(x− µ1) + τ2µ2

τ1 + τ2

}2

+
{τ1(x− µ1) + τ2µ2}2

2(τ1 + τ2)

where we have completed the square overx2. When we integrate outx2, the first
term on the right hand side will simply give rise to a constantfactor independent
of x. The second term, when expanded out, will involve a term inx2. Since the
precision ofx is given directly in terms of the coefficient ofx2 in the exponent, it is
only such terms that we need to consider. There is one other term in x2 arising from
the original exponent in (77). Combining these we have

−τ1
2
x2 +

τ2
1

2(τ1 + τ2)
x2 = −1

2

τ1τ2
τ1 + τ2

x2

from which we see thatx has precisionτ1τ2/(τ1 + τ2).

We can also obtain this result for the precision directly by appealing to the general
result (2.115) for the convolution of two linear-Gaussian distributions.

The entropy ofx is then given, from (1.110), by

H(x) =
1

2
ln

{
2π(τ1 + τ2)

τ1τ2

}
. (78)

2.17 We can use an analogous argument to that used in the solution of Exercise 1.14.
Consider a general square matrixΛ with elementsΛij. Then we can always write
Λ = ΛA + ΛS where

ΛS
ij =

Λij + Λji

2
, ΛA

ij =
Λij − Λji

2
(79)

and it is easily verified thatΛS is symmetric so thatΛS
ij = ΛS

ji, andΛA is antisym-
metric so thatΛA

ij = −ΛS
ji. The quadratic form in the exponent of aD-dimensional

multivariate Gaussian distribution can be written

1

2

D∑

i=1

D∑

j=1

(xi − µi)Λij(xj − µj) (80)

whereΛ = Σ−1 is the precision matrix. When we substituteΛ = ΛA + ΛS into
(80) we see that the term involvingΛA vanishes since for every positive term there
is an equal and opposite negative term. Thus we can always takeΛ to be symmetric.

2.20 Sinceu1, . . . ,uD constitute a basis forRD, we can write

a = â1u1 + â2u2 + . . .+ âDuD,
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whereâ1, . . . , âD are coefficients obtained by projectinga onu1, . . . ,uD. Note that
they typically donot equal the elements ofa.

Using this we can write

aTΣa =
(
â1u

T
1 + . . .+ âDuT

D

)
Σ (â1u1 + . . .+ âDuD)

and combining this result with (2.45) we get
(
â1u

T
1 + . . .+ âDuT

D

)
(â1λ1u1 + . . .+ âDλDuD) .

Now, sinceuT
i uj = 1 only if i = j, and0 otherwise, this becomes

â2
1λ1 + . . .+ â2

DλD

and sincea is real, we see that this expression will be strictly positive for any non-
zeroa, if all eigenvalues are strictly positive. It is also clear that if an eigenvalue,
λi, is zero or negative, there exist a vectora (e.g.a = ui), for which this expression
will be less than or equal to zero. Thus, that a matrix has eigenvectors which are all
strictly positive is a sufficient and necessary condition for the matrix to be positive
definite.

2.22 Consider a matrixM which is symmetric, so thatMT = M. The inverse matrix
M−1 satisfies

MM−1 = I.

Taking the transpose of both sides of this equation, and using the relation (C.1), we
obtain (

M−1
)T

MT = IT = I

since the identity matrix is symmetric. Making use of the symmetry condition for
M we then have (

M−1
)T

M = I

and hence, from the definition of the matrix inverse,
(
M−1

)T
= M−1

and soM−1 is also a symmetric matrix.

2.24 Multiplying the left hand side of (2.76) by the matrix (2.287) trivially gives the iden-
tity matrix. On the right hand side consider the four blocks of the resulting parti-
tioned matrix:

upper left

AM−BD−1CM = (A −BD−1C)(A −BD−1C)−1 = I (81)

upper right

−AMBD−1 + BD−1 + BD−1CMBD−1

= −(A −BD−1C)(A − BD−1C)−1BD−1 + BD−1

= −BD−1 + BD−1 = 0 (82)



Solutions 2.28– 2.32 27

lower left
CM −DD−1CM = CM −CM = 0 (83)

lower right

−CMBD−1 + DD−1 + DD−1CMBD−1 = DD−1 = I. (84)

Thus the right hand side also equals the identity matrix.

2.28 For the marginal distributionp(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simplyµ. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) and is therefore given byΛ−1.

Now consider the conditional distributionp(y|x). Applying the result (2.81) for the
conditional mean we obtain

µy|x = Aµ+ b + AΛ−1Λ(x− µ) = Ax + b.

Similarly applying the result (2.82) for the covariance of the conditional distribution
we have

cov[y|x] = L−1 + AΛ−1AT −AΛ−1ΛΛ−1AT = L−1

as required.

2.32 The quadratic form in the exponential of the joint distribution is given by

−1

2
(x − µ)TΛ(x− µ) − 1

2
(y −Ax− b)TL(y −Ax− b). (85)

We now extract all of those terms involvingx and assemble them into a standard
Gaussian quadratic form by completing the square

= −1

2
xT(Λ + ATLA)x + xT

[
Λµ+ ATL(y − b)

]
+ const

= −1

2
(x−m)T(Λ + ATLA)(x−m)

+
1

2
mT(Λ + ATLA)m + const (86)

where
m = (Λ + ATLA)−1

[
Λµ+ ATL(y − b)

]
.

We can now perform the integration overx which eliminates the first term in (86).
Then we extract the terms iny from the final term in (86) and combine these with
the remaining terms from the quadratic form (85) which depend ony to give

= −1

2
yT
{
L − LA(Λ + ATLA)−1ATL

}
y

+yT
[{

L− LA(Λ + ATLA)−1ATL
}

b

+LA(Λ + ATLA)−1Λµ
]
. (87)
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We can identify the precision of the marginal distributionp(y) from the second order
term iny. To find the corresponding covariance, we take the inverse ofthe precision
and apply the Woodbury inversion formula (2.289) to give

{
L − LA(Λ + ATLA)−1ATL

}−1
= L−1 + AΛ−1AT (88)

which corresponds to (2.110).

Next we identify the meanν of the marginal distribution. To do this we make use of
(88) in (87) and then complete the square to give

−1

2
(y − ν)T

(
L−1 + AΛ−1AT

)−1
(y − ν) + const

where

ν =
(
L−1 + AΛ−1AT

) [
(L−1 + AΛ−1AT)−1b + LA(Λ + ATLA)−1Λµ

]
.

Now consider the two terms in the square brackets, the first one involvingb and the
second involvingµ. The first of these contribution simply givesb, while the term in
µ can be written

=
(
L−1 + AΛ−1AT

)
LA(Λ + ATLA)−1Λµ

= A(I + Λ−1ATLA)(I + Λ−1ATLA)−1Λ−1Λµ = Aµ

where we have used the general result(BC)−1 = C−1B−1. Hence we obtain
(2.109).

2.34 Differentiating (2.118) with respect toΣ we obtain two terms:

−N
2

∂

∂Σ
ln |Σ| − 1

2

∂

∂Σ

N∑

n=1

(xn − µ)TΣ−1(xn − µ).

For the first term, we can apply (C.28) directly to get

−N
2

∂

∂Σ
ln |Σ| = −N

2

(
Σ−1

)T
= −N

2
Σ−1.

For the second term, we first re-write the sum

N∑

n=1

(xn − µ)TΣ−1(xn − µ) = NTr
[
Σ−1S

]
,

where

S =
1

N

N∑

n=1

(xn − µ)(xn − µ)T.
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Using this together with (C.21), in whichx = Σij (element(i, j) in Σ), and proper-
ties of the trace we get

∂

∂Σij

N∑

n=1

(xn − µ)TΣ−1(xn − µ) = N
∂

∂Σij
Tr
[
Σ−1S

]

= NTr

[
∂

∂Σij
Σ−1S

]

= −NTr

[
Σ−1 ∂Σ

∂Σij
Σ−1S

]

= −NTr

[
∂Σ

∂Σij
Σ−1SΣ−1

]

= −N
(
Σ−1SΣ−1

)
ij

where we have used (C.26). Note that in the last step we have ignored the fact that
Σij = Σji, so that∂Σ/∂Σij has a1 in position(i, j) only and0 everywhere else.
Treating this result as valid nevertheless, we get

−1

2

∂

∂Σ

N∑

n=1

(xn − µ)TΣ−1(xn − µ) =
N

2
Σ−1SΣ−1.

Combining the derivatives of the two terms and setting the result to zero, we obtain

N

2
Σ−1 =

N

2
Σ−1SΣ−1.

Re-arrangement then yields
Σ = S

as required.

2.36 Consider the expression forσ2
(N) and separate out the contribution from observation

xN to give

σ2
(N) =

1

N

N∑

n=1

(xn − µ)2

=
1

N

N−1∑

n=1

(xn − µ)2 +
(xN − µ)2

N

=
N − 1

N
σ2

(N−1) +
(xN − µ)2

N

= σ2
(N−1) −

1

N
σ2

(N−1) +
(xN − µ)2

N

= σ2
(N−1) +

1

N

{
(xN − µ)2 − σ2

(N−1)

}
. (89)
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If we substitute the expression for a Gaussian distributioninto the result (2.135) for
the Robbins-Monro procedure applied to maximizing likelihood, we obtain

σ2
(N) = σ2

(N−1) + aN−1
∂

∂σ2
(N−1)

{
−1

2
ln σ2

(N−1) −
(xN − µ)2

2σ2
(N−1)

}

= σ2
(N−1) + aN−1

{
− 1

2σ2
(N−1)

+
(xN − µ)2

2σ4
(N−1)

}

= σ2
(N−1) +

aN−1

2σ4
(N−1)

{
(xN − µ)2 − σ2

(N−1)

}
. (90)

Comparison of (90) with (89) allows us to identify

aN−1 =
2σ4

(N−1)

N
. (91)

Note that the sign in (2.129) is incorrect, and this equationshould read

θ(N) = θ(N−1) − aN−1z(θ
(N−1)).

Also, in order to be consistent with the assumption thatf(θ) > 0 for θ > θ? and
f(θ) < 0 for θ < θ? in Figure 2.10, we should find the root of the expectednegative
log likelihood in (2.133). Finally, the labelsµ andµML in Figure 2.11 should be
interchanged.

2.40 The posterior distribution is proportional to the product of the prior and the likelihood
function

p(µ|X) ∝ p(µ)

N∏

n=1

p(xn|µ,Σ). (92)

Thus the posterior is proportional to an exponential of a quadratic form inµ given
by

−1

2
(µ− µ0)

TΣ−1
0 (µ− µ0) −

1

2

N∑

n=1

(xn − µ)TΣ−1(xn − µ)

= −1

2
µT
(
Σ−1

0 +NΣ−1
)
µ+ µT

(
Σ−1

0 µ0 + Σ−1

N∑

n=1

xn

)
+ const

where ‘const.’ denotes terms independent ofµ. Using the discussion following
(2.71) we see that the mean and covariance of the posterior distribution are given by

µN =
(
Σ−1

0 +NΣ−1
)−1 (

Σ−1
0 µ0 + Σ−1NµML

)
(93)

Σ−1
N = Σ−1

0 +NΣ−1 (94)



Solutions 2.46– 2.47 31

whereµML is the maximum likelihood solution for the mean given by

µML =
1

N

N∑

n=1

xn. (95)

2.46 From (2.158), we have

∫ ∞

0

bae(−bτ)τa−1

Γ(a)

( τ
2π

)1/2

exp
{
−τ

2
(x− µ)2

}
dτ

=
ba

Γ(a)

(
1

2π

)1/2 ∫ ∞

0

τa−1/2 exp

{
−τ
(
b+

(x− µ)2

2

)}
dτ .

We now make the proposed change of variablez = τ∆, where∆ = b+(x−µ)2/2,
yielding

ba

Γ(a)

(
1

2π

)1/2

∆−a−1/2

∫ ∞

0

za−1/2 exp(−z) dz

=
ba

Γ(a)

(
1

2π

)1/2

∆−a−1/2Γ(a+ 1/2)

where we have used the definition of the Gamma function (1.141). Finally, we sub-
stituteb+ (x− µ)2/2 for ∆, ν/2 for a andν/2λ for b:

Γ(−a+ 1/2)

Γ(a)
ba
(

1

2π

)1/2

∆a−1/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2
(

1

2π

)1/2(
ν

2λ
+

(x− µ)2

2

)−(ν+1)/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2
(

1

2π

)1/2 ( ν
2λ

)−(ν+1)/2
(

1 +
λ(x− µ)2

ν

)−(ν+1)/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

(
λ

νπ

)1/2(
1 +

λ(x− µ)2

ν

)−(ν+1)/2

2.47 Ignoring the normalization constant, we write (2.159) as

St(x|µ, λ, ν) ∝
[
1 +

λ(x− µ)2

ν

]−(ν−1)/2

= exp

(
−ν − 1

2
ln

[
1 +

λ(x− µ)2

ν

])
. (96)
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For largeν, we make use of the Taylor expansion for the logarithm in the form

ln(1 + ε) = ε+O(ε2) (97)

to re-write (96) as

exp

(
−ν − 1

2
ln

[
1 +

λ(x− µ)2

ν

])

= exp

(
−ν − 1

2

[
λ(x− µ)2

ν
+O(ν−2)

])

= exp

(
−λ(x− µ)2

2
+O(ν−1)

)
.

We see that in the limitν → ∞ this becomes, up to an overall constant, the same as
a Gaussian distribution with meanµ and precisionλ. Since the Student distribution
is normalized to unity for all values ofν it follows that it must remain normalized in
this limit. The normalization coefficient is given by the standard expression (2.42)
for a univariate Gaussian.

2.51 Using the relation (2.296) we have

1 = exp(iA) exp(−iA) = (cosA+ i sinA)(cosA− i sinA) = cos2A+ sin2A.

Similarly, we have

cos(A−B) = < exp{i(A−B)}
= < exp(iA) exp(−iB)

= <(cosA+ i sinA)(cosB − i sinB)

= cosA cosB + sinA sinB.

Finally

sin(A− B) = = exp{i(A−B)}
= = exp(iA) exp(−iB)

= =(cosA+ i sinA)(cosB − i sinB)

= sinA cosB − cosA sinB.

2.56 We can most conveniently cast distributions into standard exponential family form by
taking the exponential of the logarithm of the distribution. For the Beta distribution
(2.13) we have

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
exp {(a− 1) lnµ+ (b− 1) ln(1 − µ)} (98)
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which we can identify as being in standard exponential form (2.194) with

h(µ) = 1 (99)

g(a, b) =
Γ(a+ b)

Γ(a)Γ(b)
(100)

u(µ) =

(
lnµ

ln(1 − µ)

)
(101)

η(a, b) =

(
a− 1
b− 1

)
. (102)

Applying the same approach to the gamma distribution (2.146) we obtain

Gam(λ|a, b) =
ba

Γ(a)
exp {(a− 1) lnλ− bλ} .

from which it follows that

h(λ) = 1 (103)

g(a, b) =
ba

Γ(a)
(104)

u(λ) =

(
λ

lnλ

)
(105)

η(a, b) =

(
−b
a− 1

)
. (106)

Finally, for the von Mises distribution (2.179) we make use of the identity (2.178) to
give

p(θ|θ0,m) =
1

2πI0(m)
exp {m cos θ cos θ0 +m sin θ sin θ0}

from which we find

h(θ) = 1 (107)

g(θ0,m) =
1

2πI0(m)
(108)

u(θ) =

(
cos θ
sin θ

)
(109)

η(θ0,m) =

(
m cos θ0
m sin θ0

)
. (110)

2.60 The value of the densityp(x) at a pointxn is given byhj(n), where the notationj(n)
denotes that data pointxn falls within regionj. Thus the log likelihood function
takes the form

N∑

n=1

ln p(xn) =

N∑

n=1

lnhj(n).
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We now need to take account of the constraint thatp(x) must integrate to unity. Since
p(x) has the constant valuehi over regioni, which has volume∆i, the normalization
constraint becomes

∑
i hi∆i = 1. Introducing a Lagrange multiplierλ we then

minimize the function

N∑

n=1

lnhj(n) + λ

(
∑

i

hi∆i − 1

)

with respect tohk to give

0 =
nk

hk
+ λ∆k

wherenk denotes the total number of data points falling within regionk. Multiplying
both sides byhk, summing overk and making use of the normalization constraint,
we obtainλ = −N . Eliminating λ then gives our final result for the maximum
likelihood solution forhk in the form

hk =
nk

N

1

∆k
.

Note that, for equal sized bins∆k = ∆ we obtain a bin heighthk which is propor-
tional to the fraction of points falling within that bin, as expected.

Chapter 3 Linear Models for Regression

3.1 Using (3.6), we have

2σ(2a)− 1 =
2

1 + e−2a
− 1

=
2

1 + e−2a
− 1 + e−2a

1 + e−2a

=
1 − e−2a

1 + e−2a

=
ea − e−a

ea + e−a

= tanh(a)
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If we now takeaj = (x− µj)/2s, we can rewrite (3.101) as

y(x,w) = w0 +

M∑

j=1

wjσ(2aj)

= w0 +

M∑

j=1

wj

2
(2σ(2aj) − 1 + 1)

= u0 +

M∑

j=1

uj tanh(aj),

whereuj = wj/2, for j = 1, . . . ,M , andu0 = w0 +
∑M

j=1wj/2. Note that there is
a typographical error in the question: there is a2 missing in the denominator of the
argument to the ‘tanh’ function in equation (3.102).

3.4 Let

ỹn = w0 +

D∑

i=1

wi(xni + εni)

= yn +

D∑

i=1

wiεni

whereyn = y(xn,w) andεni ∼ N (0, σ2) and we have used (3.105). From (3.106)
we then define

Ẽ =
1

2

N∑

n=1

{ỹn − tn}2

=
1

2

N∑

n=1

{
ỹ2

n − 2ỹntn + t2n
}

=
1

2

N∑

n=1



y

2
n + 2yn

D∑

i=1

wiεni +

(
D∑

i=1

wiεni

)2

−2tnyn − 2tn

D∑

i=1

wiεni + t2n



 .

If we take the expectation of̃E under the distribution ofεni, we see that the second
and fifth terms disappear, sinceE[εni] = 0, while for the third term we get

E



(

D∑

i=1

wiεni

)2

 =

D∑

i=1

w2
i σ

2
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since theεni are all independent with varianceσ2.

From this and (3.106) we see that

E

[
Ẽ
]

= ED +
1

2

D∑

i=1

w2
i σ

2,

as required.

3.5 We can rewrite (3.30) as

1

2

(
M∑

j=1

|wj |q − η

)
6 0

where we have incorporated the1/2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can combine this with (3.12)
to obtain the Lagrangian function

L(w, λ) =
1

2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

(
M∑

j=1

|wj |q − η

)

and by comparing this with (3.29) we see immediately that they are identical in their
dependence onw.

Now suppose we choose a specific value ofλ > 0 and minimize (3.29). Denoting
the resulting value ofw by w?(λ), and using the KKT condition (E.11), we see that
the value ofη is given by

η =

M∑

j=1

|w?
j (λ)|q.

3.6 We first write down the log likelihood function which is givenby

lnL(W,Σ) = −N
2

ln |Σ| − 1

2

N∑

n=1

(tn −WTφ(xn))TΣ−1(tn −WTφ(xn)).

First of all we set the derivative with respect toW equal to zero, giving

0 = −
N∑

n=1

Σ−1(tn − WTφ(xn))φ(xn)T.

Multiplying through byΣ and introducing the design matrixΦ and the target data
matrixT we have

ΦTΦW = ΦTT

Solving forW then gives (3.15) as required.
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The maximum likelihood solution forΣ is easily found by appealing to the standard
result from Chapter 2 giving

Σ =
1

N

N∑

n=1

(tn −WT
MLφ(xn))(tn −WT

MLφ(xn))T.

as required. Since we are finding a joint maximum with respectto bothW andΣ

we see that it isWML which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.

3.8 Combining the prior
p(w) = N (w|mN ,SN)

and the likelihood

p(tN+1|xN+1,w) =

(
β

2π

)1/2

exp

(
−β

2
(tN+1 −wTφN+1)

2

)
(111)

whereφN+1 = φ(xN+1), we obtain a posterior of the form

p(w|tN+1,xN+1,mN ,SN)

∝ exp

(
−1

2
(w −mN)TS−1

N (w −mN ) − 1

2
β(tN+1 − wTφN+1)

2

)
.

We can expand the argument of the exponential, omitting the−1/2 factors, as fol-
lows

(w − mN)TS−1
N (w −mN ) + β(tN+1 −wTφN+1)

2

= wTS−1
N w − 2wTS−1

N mN

+ βwTφT
N+1φN+1w − 2βwTφN+1tN+1 + const

= wT(S−1
N + βφN+1φ

T
N+1)w − 2wT(S−1

N mN + βφN+1tN+1) + const,

whereconst denotes remaining terms independent ofw. From this we can read off
the desired result directly,

p(w|tN+1,xN+1,mN ,SN ) = N (w|mN+1,SN+1),

with
S−1

N+1 = S−1
N + βφN+1φ

T
N+1. (112)

and
mN+1 = SN+1(S

−1
N mN + βφN+1tN+1). (113)

3.10 Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

p(t|x, t, α, β) =

∫
N (t|φ(x)Tw, β−1)N (w|mN ,SN ) dw.

By matching the first factor of the integrand with (2.114) andthe second factor with
(2.113), we obtain the desired result directly from (2.115).
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3.15 This is easily shown by substituting the re-estimation formulae (3.92) and (3.95) into
(3.82), giving

E(mN ) =
β

2
‖t −ΦmN‖2

+
α

2
mT

NmN

=
N − γ

2
+
γ

2
=
N

2
.

3.18 We can rewrite (3.79)

β

2
‖t −Φw‖2

+
α

2
wTw

=
β

2

(
tTt − 2tTΦw + wTΦTΦw

)
+
α

2
wTw

=
1

2

(
βtTt − 2βtTΦw + wTAw

)

where, in the last line, we have used (3.81). We now use the tricks of adding0 =
mT

NAmN −mT
NAmN and usingI = A−1A, combined with (3.84), as follows:

1

2

(
βtTt − 2βtTΦw + wTAw

)

=
1

2

(
βtTt − 2βtTΦA−1Aw + wTAw

)

=
1

2

(
βtTt − 2mT

NAw + wTAw + mT
NAmN − mT

NAmN

)

=
1

2

(
βtTt −mT

NAmN

)
+

1

2
(w −mN )TA(w −mN ).

Here the last term equals term the last term of (3.80) and so itremains to show that
the first term equals the r.h.s. of (3.82). To do this, we use the same tricks again:

1

2

(
βtTt −mT

NAmN

)
=

1

2

(
βtTt − 2mT

NAmN + mT
NAmN

)

=
1

2

(
βtTt − 2mT

NAA−1ΦTtβ + mT
N

(
αI + βΦTΦ

)
mN

)

=
1

2

(
βtTt − 2mT

NΦTtβ + βmT
NΦTΦmN + αmT

NmN

)

=
1

2

(
β(t −ΦmN)T(t −ΦmN) + αmT

NmN

)

=
β

2
‖t −ΦmN‖2

+
α

2
mT

NmN

as required.

3.20 We only need to consider the terms of (3.86) that depend onα, which are the first,
third and fourth terms.
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Following the sequence of steps in Section 3.5.2, we start with the last of these terms,

−1

2
ln |A|.

From (3.81), (3.87) and the fact that that eigenvectorsui are orthonormal (see also
Appendix C), we find that the eigenvectors ofA to beα+λi. We can then use (C.47)
and the properties of the logarithm to take us from the left tothe right side of (3.88).

The derivatives for the first and third term of (3.86) are moreeasily obtained using
standard derivatives and (3.82), yielding

1

2

(
M

α
+ mT

NmN

)
.

We combine these results into (3.89), from which we get (3.92) via (3.90). The
expression forγ in (3.91) is obtained from (3.90) by substituting

M∑

i

λi + α

λi + α

for M and re-arranging.

3.23 From (3.10), (3.112) and the properties of the Gaussian and Gamma distributions
(see Appendix B), we get
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p(t) =

∫∫
p(t|w, β)p(w|β) dwp(β) dβ

=

∫∫ (
β

2π

)N/2

exp

{
−β

2
(t −Φw)T(t −Φw)

}

(
β

2π

)M/2

|S0|−1/2 exp

{
−β

2
(w −m0)

TS−1
0 (w −m0)

}
dw

Γ(a0)
−1ba0

0 β
a0−1 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(t − Φw)T(t − Φw)

}

exp

{
−β

2
(w − m0)

TS−1
0 (w − m0)

}
dw

βa0−1βN/2βM/2 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(w −mN )TS−1

N (w −mN)

}
dw

exp

{
−β

2

(
tTt + mT

0 S−1
0 m0 − mT

NS−1
N mN

)}

βaN−1βM/2 exp(−b0β) dβ

where we have completed the square for the quadratic form inw, using

mN = SN

[
S−1

0 m0 + ΦTt
]

S−1
N = β

(
S−1

0 + ΦTΦ
)

aN = a0 +
N

2

bN = b0 +
1

2

(
mT

0 S−1
0 m0 −mT

NS−1
N mN +

N∑

n=1

t2n

)
.

Now we are ready to do the integration, first overw and thenβ, and re-arrange the
terms to obtain the desired result

p(t) =
ba0

0

((2π)M+N |S0|)1/2
(2π)M/2|SN |1/2

∫
βaN−1 exp(−bNβ) dβ

=
1

(2π)N/2

|SN |1/2

|S0|1/2

ba0

0

baN

N

Γ(aN )

Γ(a0)
.
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Chapter 4 Linear Models for Classification

4.2 For the purpose of this exercise, we make the contribution ofthe bias weights explicit
in (4.15), giving

ED(W̃) =
1

2
Tr
{
(XW + 1wT

0 −T)T(XW + 1wT
0 −T)

}
, (114)

wherew0 is the column vector of bias weights (the top row of̃W transposed) and1
is a column vector of N ones.

We can take the derivative of (114) w.r.t.w0, giving

2Nw0 + 2(XW − T)T1.

Setting this to zero, and solving forw0, we obtain

w0 = t̄−WTx̄ (115)

where

t̄ =
1

N
TT1 and x̄ =

1

N
XT1.

If we subsitute (115) into (114), we get

ED(W) =
1

2
Tr
{
(XW + T −XW −T)T(XW + T −XW −T)

}
,

where
T = 1t̄T and X = 1x̄T.

Setting the derivative of this w.r.t.W to zero we get

W = (X̂TX̂)−1X̂TT̂ = X̂†T̂,

where we have defined̂X = X −X andT̂ = T − T.

Now consider the prediction for a new input vectorx?,

y(x?) = WTx? + w0

= WTx? + t̄ −WTx̄

= t̄− T̂T
(
X̂†
)T

(x? − x̄). (116)

If we apply (4.157) tōt, we get

aTt̄ =
1

N
aTTT1 = −b.
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Therefore, applying (4.157) to (116), we obtain

aTy(x?) = aTt̄ + aTT̂T
(
X̂†
)T

(x? − x̄)

= aTt̄ = −b,

sinceaTT̂T = aT(T −T)T = b(1 − 1)T = 0T.

4.4 From (4.22) we can construct the Lagrangian function

L = wT(m2 −m1) + λ
(
wTw − 1

)
.

Taking the gradient ofL we obtain

∇L = m2 −m1 + 2λw (117)

and setting this gradient to zero gives

w = − 1

2λ
(m2 −m1)

form which it follows thatw ∝ m2 −m1.

4.7 From (4.59) we have

1 − σ(a) = 1 − 1

1 + e−a
=

1 + e−a − 1

1 + e−a

=
e−a

1 + e−a
=

1

ea + 1
= σ(−a).

The inverse of the logistic sigmoid is easily found as follows

y = σ(a) =
1

1 + e−a

⇒ 1

y
− 1 = e−a

⇒ ln

{
1 − y

y

}
= −a

⇒ ln

{
y

1 − y

}
= a = σ−1(y).

4.9 The likelihood function is given by

p ({φn, tn}|{πk}) =

N∏

n=1

K∏

k=1

{p(φn|Ck)πk}tnk
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and taking the logarithm, we obtain

ln p ({φn, tn}|{πk}) =

N∑

n=1

K∑

k=1

tnk {ln p(φn|Ck) + lnπk} . (118)

In order to maximize the log likelihood with respect toπk we need to preserve the
constraint

∑
k πk = 1. This can be done by introducing a Lagrange multiplierλ and

maximizing

ln p ({φn, tn}|{πk}) + λ

(
K∑

k=1

πk − 1

)
.

Setting the derivative with respect toπk equal to zero, we obtain

N∑

n=1

tnk

πk
+ λ = 0.

Re-arranging then gives

−πkλ =

N∑

n

tnk = Nk. (119)

Summing both sides overk we find thatλ = −N , and using this to eliminateλ we
obtain (4.159).

4.12 Differentiating (4.59) we obtain

dσ

da
=

e−a

(1 + e−a)
2

= σ(a)

{
e−a

1 + e−a

}

= σ(a)

{
1 + e−a

1 + e−a
− 1

1 + e−a

}

= σ(a)(1 − σ(a)).

4.13 We start by computing the derivative of (4.90) w.r.t.yn

∂E

∂yn
=

1 − tn
1 − yn

− tn
yn

(120)

=
yn(1 − tn) − tn(1 − yn)

yn(1 − yn)

=
yn − yntn − tn + yntn

yn(1 − yn)
(121)

=
yn − tn

yn(1 − yn)
. (122)
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From (4.88), we see that

∂yn

∂an
=
∂σ(an)

∂an
= σ(an) (1 − σ(an)) = yn(1 − yn). (123)

Finally, we have
∇an = φn (124)

where∇ denotes the gradient with respect tow. Combining (122), (123) and (124)
using the chain rule, we obtain

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an

=

N∑

n=1

(yn − tn)φn

as required.

4.17 From (4.104) we have

∂yk

∂ak
=

eak

∑
i e

ai
−
(

eak

∑
i e

ai

)2

= yk(1 − yk),

∂yk

∂aj
= − eakeaj

(∑
i e

ai

)2 = −ykyj , j 6= k.

Combining these results we obtain (4.106).

4.19 Using the cross-entropy error function (4.90), and following Exercise 4.13, we have

∂E

∂yn
=

yn − tn
yn(1 − yn)

. (125)

Also
∇an = φn. (126)

From (4.115) and (4.116) we have

∂yn

∂an
=
∂Φ(an)

∂an
=

1√
2π
e−a2

n . (127)

Combining (125), (126) and (127), we get

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an =

N∑

n=1

yn − tn
yn(1 − yn)

1√
2π
e−a2

nφn. (128)
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In order to find the expression for the Hessian, it is is convenient to first determine

∂

∂yn

yn − tn
yn(1 − yn)

=
yn(1 − yn)

y2
n(1 − yn)2

− (yn − tn)(1 − 2yn)

y2
n(1 − yn)2

=
y2

n + tn − 2yntn
y2

n(1 − yn)2
. (129)

Then using (126)–(129) we have

∇∇E =

N∑

n=1

{
∂

∂yn

[
yn − tn

yn(1 − yn)

]
1√
2π
e−a2

nφn∇yn

+
yn − tn

yn(1 − yn)

1√
2π
e−a2

n(−2an)φn∇an

}

=

N∑

n=1

(
y2

n + tn − 2yntn
yn(1 − yn)

1√
2π
e−a2

n − 2an(yn − tn)

)
e−2a2

nφnφ
T
n√

2πyn(1 − yn)
.

4.23 The BIC approximation can be viewed as a largeN approximation to the log model
evidence. From (4.138), we have

A = −∇∇ ln p(D|θMAP)p(θMAP)

= H −∇∇ ln p(θMAP)

and ifp(θ) = N (θ|m,V0), this becomes

A = H + V−1
0 .

If we assume that the prior is broad, or equivalently that thenumber of data points
is large, we can neglect the termV−1

0 compared toH. Using this result, (4.137) can
be rewritten in the form

ln p(D) ' ln p(D|θMAP) − 1

2
(θMAP −m)V−1

0 (θMAP −m) − 1

2
ln |H| + const

(130)
as required. Note that the phrasing of the question is misleading, since the assump-
tion of a broad prior, or of largeN , is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing us to neglect the second
term on the right hand side of (130) relative to the first term.

Since we assume i.i.d. data,H = −∇∇ ln p(D|θMAP) consists of a sum of terms,
one term for each datum, and we can consider the following approximation:

H =

N∑

n=1

Hn = NĤ
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whereHn is the contribution from thenth data point and

Ĥ =
1

N

N∑

n=1

Hn.

Combining this with the properties of the determinant, we have

ln |H| = ln |NĤ| = ln
(
NM |Ĥ|

)
= M lnN + ln |Ĥ|

whereM is the dimensionality ofθ. Note that we are assuming thatĤ has full rank
M . Finally, using this result together (130), we obtain (4.139) by dropping theln |Ĥ|
since thisO(1) compared tolnN .

Chapter 5 Neural Networks

5.2 The likelihood function for an i.i.d. data set,{(x1, t1), . . . , (xN , tN )}, under the
conditional distribution (5.16) is given by

N∏

n=1

N
(
tn|y(xn,w), β−1I

)
.

If we take the logarithm of this, using (2.43), we get

N∑

n=1

lnN
(
tn|y(xn,w), β−1I

)

= −1

2

N∑

n=1

(tn − y(xn,w))
T

(βI) (tn − y(xn,w)) + const

= −β
2

N∑

n=1

‖tn − y(xn,w)‖2 + const,

where ‘const’ comprises terms which are independent ofw. The first term on the
right hand side is proportional to the negative of (5.11) andhence maximizing the
log-likelihood is equivalent to minimizing the sum-of-squares error.

5.5 For the given interpretation ofyk(x,w), the conditional distribution of the target
vector for a multiclass neural network is

p(t|w1, . . . ,wK) =

K∏

k=1

ytk

k .
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Thus, for a data set ofN points, the likelihood function will be

p(T|w1, . . . ,wK) =

N∏

n=1

K∏

k=1

ytnk

nk .

Taking the negative logarithm in order to derive an error function we obtain (5.24)
as required. Note that this is the same result as for the multiclass logistic regression
model, given by (4.108) .

5.6 Differentiating (5.21) with respect to the activationan corresponding to a particular
data pointn, we obtain

∂E

∂an
= −tn

1

yn

∂yn

∂an
+ (1 − tn)

1

1 − yn

∂yn

∂an
. (131)

From (4.88), we have
∂yn

∂an
= yn(1 − yn). (132)

Substituting (132) into (131), we get

∂E

∂an
= −tn

yn(1 − yn)

yn
+ (1 − tn)

yn(1 − yn)

(1 − yn)
= yn − tn

as required.

5.9 This simply corresponds to a scaling and shifting of the binary outputs, which di-
rectly gives the activation function, using the notation from (5.19), in the form

y = 2σ(a) − 1.

The corresponding error function can be constructed from (5.21) by applying the
inverse transform toyn andtn, yielding

E(w) = −
N∑

n

1 + tn
2

ln
1 + yn

2
+

(
1 − 1 + tn

2

)
ln

(
1 − 1 + yn

2

)

= −1

2

N∑

n

{(1 + tn) ln(1 + yn) + (1 − tn) ln(1 − yn)} +N ln 2

where the last term can be dropped, since it is independent ofw.

To find the corresponding activation function we simply apply the linear transforma-
tion to the logistic sigmoid given by (5.19), which gives

y(a) = 2σ(a) − 1 =
2

1 + e−a
− 1

=
1 − e−a

1 + e−a
=
ea/2 − e−a/2

ea/2 + e−a/2

= tanh(a/2).
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5.10 From (5.33) and (5.35) we have

uT
i Hui = uT

i λiui = λi.

Assume thatH is positive definite, so that (5.37) holds. Then by settingv = ui it
follows that

λi = uT
i Hui > 0 (133)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (133) holds. Then, for any vector,v, we can make use of
(5.38) to give

vTHv =

(
∑

i

ciui

)T

H

(
∑

j

cjuj

)

=

(
∑

i

ciui

)T(∑

j

λjcjuj

)

=
∑

i

λic
2
i > 0

where we have used (5.33) and (5.34) along with (133). Thus, if all of the eigenvalues
are positive, the Hessian matrix will be positive definite.

5.11 We start by making the change of variable given by (5.35) which allows the error
function to be written in the form (5.36). Setting the value of the error function
E(w) to a constant valueC we obtain

E(w?) +
1

2

∑

i

λiα
2
i = C.

Re-arranging gives ∑

i

λiα
2
i = 2C − 2E(w?) = C̃

whereC̃ is also a constant. This is the equation for an ellipse whose axes are aligned
with the coordinates described by the variables{αi}. The length of axisj is found
by settingαi = 0 for all i 6= j, and solving forαj giving

αj =

(
C̃

λj

)1/2

which is inversely proportional to the square root of the corresponding eigenvalue.



Solutions 5.12– 5.25 49

5.12 From (5.37) we see that, ifH is positive definite, then the second term in (5.32) will
be positive whenever(w − w?) is non-zero. Thus the smallest value whichE(w)
can take isE(w?), and sow? is the minimum ofE(w).

Conversely, ifw? is the minimum ofE(w), then, for any vectorw 6= w?, E(w) >
E(w?). This will only be the case if the second term of (5.32) is positive for all
values ofw 6= w? (since the first term is independent ofw). Sincew − w? can be
set to any vector of real numbers, it follows from the definition (5.37) thatH must
be positive definite.

5.19 If we take the gradient of (5.21) with respect tow, we obtain

∇E(w) =

N∑

n=1

∂E

∂an
∇an =

N∑

n=1

(yn − tn)∇an,

where we have used the result proved earlier in the solution to Exercise 5.6. Taking
the second derivatives we have

∇∇E(w) =

N∑

n=1

{
∂yn

∂an
∇an∇an + (yn − tn)∇∇an

}
.

Dropping the last term and using the result (4.88) for the derivative of the logistic
sigmoid function, proved in the solution to Exercise 4.12, we finally get

∇∇E(w) '
N∑

n=1

yn(1 − yn)∇an∇an =

N∑

n=1

yn(1 − yn)bnbT
n

wherebn ≡ ∇an.

5.25 The gradient of (5.195) is given

∇E = H(w −w?)

and hence update formula (5.196) becomes

w(τ) = w(τ−1) − ρH(w(τ−1) −w?).

Pre-multiplying both sides withuT
j we get

w
(τ)
j = uT

j w(τ) (134)

= uT
j w(τ−1) − ρuT

j H(w(τ−1) − w?)

= w
(τ−1)
j − ρηju

T
j (w −w?)

= w
(τ−1)
j − ρηj(w

(τ−1)
j − w?

j ), (135)

where we have used (5.198). To show that

w
(τ)
j = {1 − (1 − ρηj)

τ}w?
j
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for τ = 1, 2, . . ., we can use proof by induction. Forτ = 1, we recall thatw(0) = 0

and insert this into (135), giving

w
(1)
j = w

(0)
j − ρηj(w

(0)
j − w?

j )

= ρηjw
?
j

= {1 − (1 − ρηj)}w?
j .

Now we assume that the result holds forτ = N − 1 and then make use of (135)

w
(N)
j = w

(N−1)
j − ρηj(w

(N−1)
j − w?

j )

= w
(N−1)
j (1 − ρηj) + ρηjw

?
j

=
{
1 − (1 − ρηj)

N−1
}
w?

j (1 − ρηj) + ρηjw
?
j

=
{
(1 − ρηj) − (1 − ρηj)

N
}
w?

j + ρηjw
?
j

=
{
1 − (1 − ρηj)

N
}
w?

j

as required.

Provided that|1 − ρηj | < 1 then we have(1 − ρηj)
τ → 0 asτ → ∞, and hence{

1 − (1 − ρηj)
N
}
→ 1 andw(τ) → w?.

If τ is finite butηj � (ρτ)−1, τ must still be large, sinceηjρτ � 1, even though

|1 − ρηj | < 1. If τ is large, it follows from the argument above thatw
(τ)
j ' w?

j .

If, on the other hand,ηj � (ρτ)−1, this means thatρηj must be small, sinceρηjτ �
1 andτ is an integer greater than or equal to one. If we expand,

(1 − ρηj)
τ = 1 − τρηj + O(ρη2

j )

and insert this into (5.197), we get

|w(τ)
j | = | {1 − (1 − ρηj)

τ}w?
j |

= |
{
1 − (1 − τρηj +O(ρη2

j ))
}
w?

j |
' τρηj |w?

j | � |w?
j |

Recall that in Section 3.5.3 we showed that when the regularization parameter (called
α in that section) is much larger than one of the eigenvalues (calledλj in that section)
then the corresponding parameter valuewi will be close to zero. Conversely, when
α is much smaller thanλi thenwi will be close to its maximum likelihood value.
Thusα is playing an analogous role toρτ .

5.27 If s(x, ξ) = x + ξ, then
∂sk

∂ξi
= Iki, i.e.,

∂s

∂ξ
= I,
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and since the first order derivative is constant, there are nohigher order derivatives.
We now make use of this result to obtain the derivatives ofy w.r.t. ξi:

∂y

∂ξi
=
∑

k

∂y

∂sk

∂sk

∂ξi
=

∂y

∂si
= bi

∂y

∂ξi∂ξj
=
∂bi
∂ξj

=
∑

k

∂bi
∂sk

∂sk

∂ξj
=
∂bi
∂sj

= Bij

Using these results, we can write the expansion ofẼ as follows:

Ẽ =
1

2

∫∫∫
{y(x)− t}2p(t|x)p(x)p(ξ) dξ dx dt

+

∫∫∫
{y(x)− t}bTξp(ξ)p(t|x)p(x) dξ dx dt

+
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dx dt.

The middle term will again disappear, sinceE[ξ] = 0 and thus we can writẽE on
the form of (5.131) with

Ω =
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dx dt.

Again the first term within the parenthesis vanishes to leading order inξ and we are
left with

Ω ' 1

2

∫∫
ξT
(
bbT

)
ξp(ξ)p(x) dξ dx

=
1

2

∫∫
Trace

[(
ξξT

) (
bbT

)]
p(ξ)p(x) dξ dx

=
1

2

∫
Trace

[
I
(
bbT

)]
p(x) dx

=
1

2

∫
bTbp(x) dx =

1

2

∫
‖∇y(x)‖2p(x) dx,

where we used the fact thatE[ξξT] = I.

5.28 The modifications only affect derivatives with respect to weights in the convolutional
layer. The units within a feature map (indexedm) have different inputs, but all share
a common weight vector,w(m). Thus, errorsδ(m) from all units within a feature
map will contribute to the derivatives of the correspondingweight vector. In this
situation, (5.50) becomes

∂En

∂w
(m)
i

=
∑

j

∂En

∂a
(m)
j

∂a
(m)
j

∂w
(m)
i

=
∑

j

δ
(m)
j z

(m)
ji .



52 Solutions 5.29– 5.34

Herea(m)
j denotes the activation of thejth unit in themth feature map, whereas

w
(m)
i denotes theith element of the corresponding feature vector and, finally,z

(m)
ji

denotes theith input for thejth unit in themth feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatδ(m)
j = ∂En/∂a

(m)
j will typically be computed recursively from theδs

of the units in the following layer, using (5.55). If there are layer(s) preceding the
convolutional layer, the standard backward propagation equations will apply; the
weights in the convolutional layer can be treated as if they were independent param-
eters, for the purpose of computing theδs for the preceding layer’s units.

5.29 This is easily verified by taking the derivative of (5.138), using (1.46) and standard
derivatives, yielding

∂Ω

∂wi
=

1∑
k πkN (wi|µk, σ2

k)

∑

j

πjN (wi|µj, σ
2
j )

(wi − µj)

σ2
.

Combining this with (5.139) and (5.140), we immediately obtain the second term of
(5.141).

5.34 We start by using the chain rule to write

∂En

∂aπ
k

=

K∑

j=1

∂En

∂πj

∂πj

∂aπ
k

. (136)

Note that because of the coupling between outputs caused by the softmax activation
function, the dependence on the activation of a single output unit involves all the
output units.

For the first factor inside the sum on the r.h.s. of (136), standard derivatives applied
to thenth term of (5.153) gives

∂En

∂πj
= − Nnj∑K

l=1 πlNnl

= −γnj

πj
. (137)

For the for the second factor, we have from (4.106) that

∂πj

∂aπ
k

= πj(Ijk − πk). (138)

Combining (136), (137) and (138), we get

∂En

∂aπ
k

= −
K∑

j=1

γnj

πj
πj(Ijk − πk)

= −
K∑

j=1

γnj(Ijk − πk) = −γnk +

K∑

j=1

γnjπk = πk − γnk,

where we have used the fact that, by (5.154),
∑K

j=1 γnj = 1 for all n.
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5.39 Using (4.135), we can approximate (5.174) as

p(D|α, β) ' p(D|wMAP, β)p(wMAP|α)∫
exp

{
−1

2
(w −wMAP)

T
A (w − wMAP)

}
dw,

whereA is given by (5.166), sincep(D|w, β)p(w|α) is proportional top(w|D, α, β).

Using (4.135), (5.162) and (5.163), we can rewrite this as

p(D|α, β) '
N∏

n

N (tn|y(xn,wMAP), β−1)N (wMAP|0, α−1I)
(2π)W/2

|A|1/2
.

Taking the logarithm of both sides and then using (2.42) and (2.43), we obtain the
desired result.

5.40 For aK-class neural network, the likelihood function is given by

N∏

n

K∏

k

yk(xn,w)tnk

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posteriordistribution over the
weights, but the corresponding Hessian matrix,H, in (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entropy error term in
the regularized error function (5.184).

The predictive distribution for a new pattern would again have to be approximated,
since the resulting marginalization cannot be done analytically. However, in con-
trast to the two-class problem, there is no obvious candidate for this approximation,
although Gibbs (1997) discusses various alternatives.

Chapter 6 Kernel Methods

6.1 We first of all note thatJ(a) depends ona only through the formKa. Since typically
the numberN of data points is greater than the numberM of basis functions, the
matrix K = ΦΦT will be rank deficient. There will then beM eigenvectors ofK
having non-zero eigenvalues, andN−M eigenvectors with eigenvalue zero. We can
then decomposea = a‖ + a⊥ whereaT

‖ a⊥ = 0 andKa⊥ = 0. Thus the value of
a⊥ is not determined byJ(a). We can remove the ambiguity by settinga⊥ = 0, or
equivalently by adding a regularizer term

ε

2
aT
⊥a⊥
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to J(a) whereε is a small positive constant. Thena = a‖ wherea‖ lies in the span
of K = ΦΦT and hence can be written as a linear combination of the columns of
Φ, so that in component notation

an =

M∑

i=1

uiφi(xn)

or equivalently in vector notation

a = Φu. (139)

Substituting (139) into (6.7) we obtain

J(u) =
1

2
(KΦu − t)

T
(KΦu − t) +

λ

2
uTΦTKΦu

=
1

2

(
ΦΦTΦu − t

)T (
ΦΦTΦu − t

)
+
λ

2
uTΦTΦΦTΦu (140)

Since the matrixΦTΦ has full rank we can define an equivalent parametrization
given by

w = ΦTΦu

and substituting this into (140) we recover the original regularized error function
(6.2).

6.5 The results (6.13) and (6.14) are easily proved by using (6.1) which defines the kernel
in terms of the scalar product between the feature vectors for two input vectors. If
k1(x,x

′) is a valid kernel then there must exist a feature vectorφ(x) such that

k1(x,x
′) = φ(x)Tφ(x′).

It follows that
ck1(x,x

′) = u(x)Tu(x′)

where
u(x) = c1/2φ(x)

and sock1(x,x
′) can be expressed as the scalar product of feature vectors, and hence

is a valid kernel.

Similarly, for (6.14) we can write

f(x)k1(x,x
′)f(x′) = v(x)Tv(x′)

where we have defined
v(x) = f(x)φ(x).

Again, we see thatf(x)k1(x,x
′)f(x′) can be expressed as the scalar product of

feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealing to the general result that
the Gram matrix,K, whose elements are given byk(xn,xm), should be positive
semidefinite for all possible choices of the set{xn}, by following a similar argu-
ment to Solution 6.7 below.
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6.7 (6.17) is most easily proved by making use of the result, discussed on page 295, that
a necessary and sufficient condition for a functionk(x,x′) to be a valid kernel is
that the Gram matrixK, whose elements are given byk(xn,xm), should be positive
semidefinite for all possible choices of the set{xn}. A matrix K is positive semi-
definite if, and only if,

aTKa > 0

for any choice of the vectora. Let K1 be the Gram matrix fork1(x,x
′) and letK2

be the Gram matrix fork2(x,x
′). Then

aT(K1 + K2)a = aTK1a + aTK2a > 0

where we have used the fact thatK1 andK2 are positive semi-definite matrices,
together with the fact that the sum of two non-negative numbers will itself be non-
negative. Thus, (6.17) defines a valid kernel.

To prove (6.18), we take the approach adopted in Solution 6.5. Since we know that
k1(x,x

′) andk2(x,x
′) are valid kernels, we know that there exist mappingsφ(x)

andψ(x) such that

k1(x,x
′) = φ(x)Tφ(x′) and k2(x,x

′) = ψ(x)Tψ(x′).

Hence

k(x,x′) = k1(x,x
′)k2(x,x

′)

= φ(x)Tφ(x′)ψ(x)Tψ(x′)

=

M∑

m=1

φm(x)φm(x′)

N∑

n=1

ψn(x)ψn(x′)

=

M∑

m=1

N∑

n=1

φm(x)φm(x′)ψn(x)ψn(x′)

=

K∑

k=1

ϕk(x)ϕk(x′)

= ϕ(x)Tϕ(x′),

whereK = MN and

ϕk(x) = φ((k−1)�N)+1(x)ψ((k−1)�N)+1(x),

where in turn� and� denote integer division and remainder, respectively.

6.12 NOTE: In the first printing of PRML, there is an error in the text relating to this
exercise. Immediately following (6.27), it says:|A| denotes the number ofsubsets
in A; it should have said:|A| denotes the number ofelements in A.

SinceA may be equal toD (the subset relation was not defined to be strict),φ(D)
must be defined. This will map to a vector of2|D| 1s, one for each possible subset
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of D, includingD itself as well as the empty set. ForA ⊂ D, φ(A) will have 1s in
all positions that correspond to subsets ofA and 0s in all other positions. Therefore,
φ(A1)

Tφ(A2) will count the number of subsets shared byA1 andA2. However, this
can just as well be obtained by counting the number of elements in the intersection
of A1 andA2, and then raising 2 to this number, which is exactly what (6.27) does.

6.14 In order to evaluate the Fisher kernel for the Gaussian we first note that the covari-
ance is assumed to be fixed, and hence the parameters compriseonly the elements of
the meanµ. The first step is to evaluate the Fisher score defined by (6.32). From the
definition (2.43) of the Gaussian we have

g(µ,x) = ∇µ lnN (x|µ,S) = S−1(x− µ).

Next we evaluate the Fisher information matrix using the definition (6.34), giving

F = Ex

[
g(µ,x)g(µ,x)T

]
= S−1

Ex

[
(x− µ)(x− µ)T

]
S−1.

Here the expectation is with respect to the original Gaussian distribution, and so we
can use the standard result

Ex

[
(x− µ)(x− µ)T

]
= S

from which we obtain
F = S−1.

Thus the Fisher kernel is given by

k(x,x′) = (x− µ)TS−1(x′ − µ),

which we note is just the squared Mahalanobis distance.

6.17 NOTE: In the first printing of PRML, there are typographical errors in the text relat-
ing to this exercise. In the sentence following immediatelyafter (6.39),f(x) should
be replaced byy(x). Also, on the l.h.s. of (6.40),y(xn) should be replaced byy(x).
There were also errors in Appendix D, which might cause confusion; please consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-principles derivation of the
solution. First consider a variation in the functiony(x) of the form

y(x) → y(x) + εη(x).

Substituting into (6.39) we obtain

E[y + εη] =
1

2

N∑

n=1

∫
{y(xn + ξ) + εη(xn + ξ) − tn}2

ν(ξ) dξ.

Now we expand in powers ofε and set the coefficient ofε, which corresponds to the
functional first derivative, equal to zero, giving

N∑

n=1

∫
{y(xn + ξ) − tn} η(xn + ξ)ν(ξ) dξ = 0. (141)
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This must hold for every choice of the variation functionη(x). Thus we can choose

η(x) = δ(x− z)

whereδ( · ) is the Dirac delta function. This allows us to evaluate the integral overξ
giving

N∑

n=1

∫
{y(xn + ξ) − tn} δ(xn + ξ − z)ν(ξ) dξ =

N∑

n=1

{y(z) − tn} ν(z− xn).

Substing this back into (141) and rearranging we then obtainthe required result
(6.40).

6.20 Given the joint distribution (6.64), we can identifytN+1 with xa and t with xb in
(2.65). Note that this means that we are prepending rather than appendingtN+1 to t
andCN+1 therefore gets redefined as

CN+1 =

(
c kT

k CN

)
.

It then follows that

µa = 0 µb = 0 xb = t

Σaa = c Σbb = CN Σab =ΣT
ba = kT

in (2.81) and (2.82), from which (6.66) and (6.67) follows directly.

6.21 Both the Gaussian process and the linear regression model give rise to Gaussian
predictive distributionsp(tN+1|xN+1) so we simply need to show that these have
the same mean and variance. To do this we make use of the expression (6.54) for the
kernel function defined in terms of the basis functions. Using (6.62) the covariance
matrixCN then takes the form

CN =
1

α
ΦΦT + β−1IN (142)

whereΦ is the design matrix with elementsΦnk = φk(xn), andIN denotes the
N × N unit matrix. Consider first the mean of the Gaussian process predictive
distribution, which from (142), (6.54), (6.66) and the definitions in the text preceding
(6.66) is given by

mN+1 = α−1φ(xN+1)
TΦT

(
α−1ΦΦT + β−1IN

)−1
t.

We now make use of the matrix identity (C.6) to give

ΦT
(
α−1ΦΦT + β−1IN

)−1
= αβ

(
βΦTΦ + αIM

)−1
ΦT = αβSNΦT.

Thus the mean becomes

mN+1 = βφ(xN+1)
TSNΦTt
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which we recognize as the mean of the predictive distribution for the linear regression
model given by (3.58) withmN defined by (3.53) andSN defined by (3.54).

For the variance we similarly substitute the expression (142) for the kernel func-
tion into the Gaussian process variance given by (6.67) and then use (6.54) and the
definitions in the text preceding (6.66) to obtain

σ2
N+1(xN+1) = α−1φ(xN+1)

Tφ(xN+1) + β−1

−α−2φ(xN+1)
TΦT

(
α−1ΦΦT + β−1IN

)−1
Φφ(xN+1)

= β−1 + φ(xN+1)
T
(
α−1IM

−α−2ΦT
(
α−1ΦΦT + β−1IN

)−1
Φ
)
φ(xN+1). (143)

We now make use of the matrix identity (C.7) to give

α−1IM − α−1IMΦT
(
Φ(α−1IM )ΦT + β−1IN

)−1
Φα−1IM

=
(
αI + βΦTΦ

)−1
= SN ,

where we have also used (3.54). Substituting this in (143), we obtain

σ2
N (xN+1) =

1

β
+ φ(xN+1)

TSNφ(xN+1)

as derived for the linear regression model in Section 3.3.2.

6.23 If we assume that the target variables,t1, . . . , tD, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,

p(tN+1|T) = N (tN+1|m(xN+1), σ(xN+1)I),

whereT is aN ×D matrix with the vectorstT
1 , . . . , t

T
N as its rows,

m(xN+1)
T = kTCNT

andσ(xN+1) is given by (6.67). Note thatCN , which only depend on the input
vectors, is the same in the uni- and multivariate models.

6.25 Substituting the gradient and the Hessian into the Newton-Raphson formula we ob-
tain

anew
N = aN + (C−1

N + WN)−1
[
tN − σN −C−1

N aN

]

= (C−1
N + WN)−1 [tN − σN + WNaN ]

= CN (I + WNCN )−1 [tN − σN + WNaN ]
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Chapter 7 Sparse Kernel Machines

7.1 From Bayes’ theorem we have

p(t|x) ∝ p(x|t)p(t)

where, from (2.249),

p(x|t) =
1

Nt

N∑

n=1

1

Zk
k(x,xn)δ(t, tn).

HereNt is the number of input vectors with labelt (+1 or−1) andN = N+1+N−1.
δ(t, tn) equals1 if t = tn and0 otherwise.Zk is the normalisation constant for
the kernel. The minimum misclassification-rate is achievedif, for each new input
vector,x̃, we chosẽt to maximisep(̃t|x̃). With equal class priors, this is equivalent
to maximizingp(x̃|̃t) and thus

t̃ =





+1 iff
1

N+1

∑

i:ti=+1

k(x̃,xi) >
1

N−1

∑

j:tj=−1

k(x̃,xj)

−1 otherwise.

Here we have dropped the factor1/Zk since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classificationrule can be written in the
more compact form

t̃ = sign

(
N∑

n=1

tn
Ntn

k(x̃,xn)

)
.

Now we takek(x,xn) = xTxn, which results in the kernel density

p(x|t = +1) =
1

N+1

∑

n:tn=+1

xTxn = xTx̄+.

Here, the sum in the middle experssion runs over all vectorsxn for which tn = +1
andx̄+ denotes the mean of these vectors, with the corresponding definition for the
negative class. Note that this density is improper, since itcannot be normalized.
However, we can still compare likelihoods under this density, resulting in the classi-
fication rule

t̃ =

{
+1 if x̃Tx̄+ > x̃Tx̄−,
−1 otherwise.

The same argument would of course also apply in the feature spaceφ(x).

7.4 From Figure 4.1 and (7.4), we see that the value of the margin

ρ =
1

‖w‖ and so
1

ρ2
= ‖w‖2.
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From (7.16) we see that, for the maximum margin solution, thesecond term of (7.7)
vanishes and so we have

L(w, b, a) =
1

2
‖w‖2.

Using this together with (7.8), the dual (7.10) can be written as

1

2
‖w‖2 =

N∑

n

an − 1

2
‖w‖2,

from which the desired result follows.

7.8 This follows from (7.67) and (7.68), which in turn follow from the KKT conditions,
(E.9)–(E.11), forµn, ξn, µ̂n andξ̂n, and the results obtained in (7.59) and (7.60).

For example, forµn andξn, the KKT conditions are

ξn > 0

µn > 0

µnξn = 0 (144)

and from (7.59) we have that
µn = C − an. (145)

Combining (144) and (145), we get (7.67); similar reasoningfor µ̂n and ξ̂n lead to
(7.68).

7.10 We first note that this result is given immediately from (2.113)–(2.115), but the task
set in the exercise was to practice the technique of completing the square. In this
solution and that of Exercise 7.12, we broadly follow the presentation in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form similar to (3.78)

p(t|X,α, β) =

(
β

2π

)N/2
1

(2π)N/2

M∏

i=1

αi

∫
exp {−E(w)} dw (146)

where

E(w) =
β

2
‖t −Φw‖2 +

1

2
wTAw

andA = diag(α).

Completing the square overw, we get

E(w) =
1

2
(w −m)TΣ−1(w −m) +E(t) (147)

wherem andΣ are given by (7.82) and (7.83), respectively, and

E(t) =
1

2

(
βtTt −mTΣ−1m

)
. (148)
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Using (147), we can evaluate the integral in (146) to obtain
∫

exp {−E(w)} dw = exp {−E(t)} (2π)M/2|Σ|1/2. (149)

Considering this as a function oft we see from (7.83), that we only need to deal
with the factorexp {−E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
(148) as follows

E(t) =
1

2

(
βtTt −mTΣ−1m

)

=
1

2

(
βtTt − βtTΦΣΣ−1ΣΦTtβ

)

=
1

2
tT
(
βI − βΦΣΦTβ

)
t

=
1

2
tT
(
βI − βΦ(A + βΦTΦ)−1ΦTβ

)
t

=
1

2
tT
(
β−1I + ΦA−1ΦT

)−1
t

=
1

2
tTC−1t.

This gives us the last term on the r.h.s. of (7.85); the two preceding terms are given
implicitly, as they form the normalization constant for theposterior Gaussian distri-
butionp(t|X,α, β).

7.12 Using the results (146)–(149) from Solution 7.10, we can write (7.85) in the form
of (3.86):

ln p(t|X,α, β) =
N

2
lnβ +

1

2

N∑

i

lnαi − E(t) − 1

2
ln |Σ| − N

2
ln(2π). (150)

By making use of (148) and (7.83) together with (C.22), we cantake the derivatives
of this w.r.tαi, yielding

∂

∂αi
ln p(t|X,α, β) =

1

2αi
− 1

2
Σii −

1

2
m2

i . (151)

Setting this to zero and re-arranging, we obtain

αi =
1 − αiΣii

m2
i

=
γi

m2
i

,

where we have used (7.89). Similarly, forβ we see that

∂

∂β
ln p(t|X,α, β) =

1

2

(
N

β
− ‖t −Φm‖2 − Tr

[
ΣΦTΦ

])
. (152)
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Using (7.83), we can rewrite the argument of the trace operator as

ΣΦTΦ = ΣΦTΦ + β−1ΣA− β−1ΣA

= Σ(ΦTΦβ + A)β−1 − β−1ΣA

= (A + βΦTΦ)−1(ΦTΦβ + A)β−1 − β−1ΣA

= (I −AΣ)β−1. (153)

Here the first factor on the r.h.s. of the last line equals (7.89) written in matrix form.
We can use this to set (152) equal to zero and then re-arrange to obtain (7.88).

7.15 Using (7.94), (7.95) and (7.97)–(7.99), we can rewrite (7.85) as follows

ln p(t|X,α, β) = −1

2

{
N ln(2π) + ln |C−i||1 + α−1

i ϕT
i C−1

−iϕi|

+tT
(

C−1
−i −

C−1
−iϕiϕ

T
i C−1

−i

αi +ϕT
i C−1

−iϕi

)
t
}

= −1

2

{
N ln(2π) + ln |C−i| + tTC−1

−i t
}

+
1

2

[
− ln |1 + α−1

i ϕT
i C−1

−iϕi| + tT
C−1

−iϕiϕ
T
i C−1

−i

αi +ϕT
i C−1

−iϕi

t
]

= L(α−i) +
1

2

[
lnαi − ln(αi + si) +

q2i
αi + si

]

= L(α−i) + λ(αi)

7.18 As the RVM can be regarded as a regularized logistic regression model, we can
follow the sequence of steps used to derive (4.91) in Exercise 4.13 to derive the first
term of the r.h.s. of (7.110), whereas the second term follows from standard matrix
derivatives (see Appendix C). Note however, that in Exercise 4.13 we are dealing
with thenegative log-likelhood.

To derive (7.111), we make use of (123) and (124) from Exercise 4.13. If we write
the first term of the r.h.s. of (7.110) in component form we get

∂

∂wj

N∑

n=1

(tn − yn)φni = −
N∑

n=1

∂yn

∂an

∂an

∂wj
φni

= −
N∑

n=1

yn(1 − yn)φnjφni,

which, written in matrix form, equals the first term inside the parenthesis on the r.h.s.
of (7.111). The second term again follows from standard matrix derivatives.
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Chapter 8 Probabilistic Graphical Models

CHECK! 8.1 We want to show that, for (8.5),

∑

x1

. . .
∑

xK

p(x) =
∑

x1

. . .
∑

xK

K∏

k=1

p(xk|pak) = 1.

We assume that the nodes in the graph has been numbered such that x1 is the root
node and no arrows lead from a higher numbered node to a lower numbered node.
We can then marginalize over the nodes in reverse order, starting with xK

∑

x1

. . .
∑

xK

p(x) =
∑

x1

. . .
∑

xK

p(xK |paK)

K−1∏

k=1

p(xk|pak)

=
∑

x1

. . .
∑

xK−1

K−1∏

k=1

p(xk|pak),

since each of the conditional distributions is assumed to becorrectly normalized and
none of the other variables depend onxK . Repeating this processK − 2 times we
are left with ∑

x1

p(x1|∅) = 1.

8.2 Consider a directed graph in which the nodes of the graph are numbered such that
are no edges going from a node to a lower numbered node. If there exists a directed
cycle in the graph then the subset of nodes belonging to this directed cycle must also
satisfy the same numbering property. If we traverse the cycle in the direction of the
edges the node numbers cannot be monotonically increasing since we must end up
back at the starting node. It follows that the cycle cannot bea directed cycle.

8.5 The solution is given in Figure 3.

Figure 3 The graphical representation of the relevance
vector machine (RVM); Solution 8.5.

tn

xn

N

wiβ

αi

M

8.8 a ⊥⊥ b, c | d can be written as

p(a, b, c|d) = p(a|d)p(b, c|d).
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Summing (or integrating) both sides with respect toc, we obtain

p(a, b|d) = p(a|d)p(b|d) or a ⊥⊥ b | d,

as desired.

8.9 Consider Figure 8.26. In order to apply the d-separation criterion we need to con-
sider all possible paths from the central nodexi to all possible nodes external to the
Markov blanket. There are three possible categories of suchpaths. First, consider
paths via the parent nodes. Since the link from the parent node to the nodexi has its
tail connected to the parent node, it follows that for any such path the parent node
must be either tail-to-tail or head-to-tail with respect tothe path. Thus the observa-
tion of the parent node will block any such path. Second consider paths via one of
the child nodes of nodexi which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child node and hence will be
head-to-tail with respect to the child node and so will be blocked. The third and
final category of path passes via a child node ofxi and then a co-parent node. This
path will be head-to-head with respect to the observed childnode and hence will
not be blocked by the observed child node. However, this pathwill either tail-to-
tail or head-to-tail with respect to the co-parent node and hence observation of the
co-parent will block this path. We therefore see that all possible paths leaving node
xi will be blocked and so the distribution ofxi, conditioned on the variables in the
Markov blanket, will be independent of all of the remaining variables in the graph.

8.12 In an undirected graph ofM nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raised to the power of the
number of potential links. To evaluate the number of distinct links, note that there
areM nodes each of which could have a link to any of the otherM − 1 nodes,
making a total ofM (M − 1) links. However, each link is counted twice since, in
an undirected graph, a link from nodea to nodeb is equivalent to a link from node
b to nodea. The number of distinct potential links is thereforeM (M − 1)/2 and so
the number of distinct graphs is2M(M−1)/2. The set of 8 possible graphs over three
nodes is shown in Figure 4.

Figure 4 The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.
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8.15 The marginal distributionp(xn−1, xn) is obtained by marginalizing the joint distri-
butionp(x) over all variables exceptxn−1 andxn,

p(xn−1, xn) =
∑

x1

. . .
∑

xn−2

∑

xn+1

. . .
∑

xN

p(x).

This is analogous to the marginal distribution for a single variable, given by (8.50).

Following the same steps as in the single variable case described in Section 8.4.1,
we arrive at a modified form of (8.52),

p(xn) =
1

Z
∑

xn−2

ψn−2,n−1(xn−2, xn−1) · · ·
[
∑

x1

ψ1,2(x1, x2)

]
· · ·




︸ ︷︷ ︸
µα(xn−1)

ψn−1,n(xn−1, xn)


∑

xn+1

ψn,n+1(xn, xn+1) · · ·
[
∑

xN

ψN−1,N(xN−1, xN)

]
· · ·




︸ ︷︷ ︸
µβ(xn)

,

from which (8.58) immediately follows.

8.18 The joint probability distribution over the variables in a general directed graphical
model is given by (8.5). In the particular case of a tree, eachnode has a single parent,
sopak will be a singleton for each node,k, except for the root node for which it will
empty. Thus, the joint probability distribution for a tree will be similar to the joint
probability distribution over a chain, (8.44), with the difference that the same vari-
able may occur to the right of the conditioning bar in severalconditional probability
distributions, rather than just one (in other words, although each node can only have
one parent, it can have several children). Hence, the argument in Section 8.3.4, by
which (8.44) is re-written as (8.45), can also be applied to probability distributions
over trees. The result is a Markov random field model where each potential function
corresponds to one conditional probability distribution in the directed tree. The prior
for the root node, e.g.p(x1) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, alternatively, can be incorporated as a
single node potential.

This transformation can also be applied in the other direction. Given an undirected
tree, we pick a node arbitrarily as the root. Since the graph is a tree, there is a
unique path between every pair of nodes, so, starting at rootand working outwards,
we can direct all the edges in the graph to point from the root to the leaf nodes.
An example is given in Figure 5. Since every edge in the tree correspond to a two-
node potential function, by normalizing this appropriately, we obtain a conditional
probability distribution for the child given the parent.
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Figure 5 The graph on the left is an
undirected tree. If we pick
x4 to be the root node and
direct all the edges in the
graph to point from the root
to the leaf nodes (x1, x2 and
x5), we obtain the directed
tree shown on the right.

x1 x2

x3

x4 x5

x1 x2

x3

x4 x5

Since there is a unique path beween every pair of nodes in an undirected tree, once
we have chosen the root node, the remainder of the resulting directed tree is given.
Hence, from an undirected tree withN nodes, we can constructN different directed
trees, one for each choice of root node.

8.20 We do the induction over the size of the tree and we grow the tree one node at a time
while, at the same time, we update the message passing schedule. Note that we can
build up any tree this way.

For a single root node, the required condition holds trivially true, since there are no
messages to be passed. We then assume that it holds for a tree with N nodes. In the
induction step we add a new leaf node to such a tree. This new leaf node need not
to wait for any messages from other nodes in order to send its outgoing message and
so it can be scheduled to send it first, before any other messages are sent. Its parent
node will receive this message, whereafter the message propagation will follow the
schedule for the original tree withN nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the root back to the leaves, we
first follow the propagation schedule for the original tree with N nodes, for which
the condition is assumed to hold. When this has completed, the parent of the new
leaf node will be ready to send its outgoing message to the newleaf node, thereby
completing the propagation for the tree withN + 1 nodes.

8.21 To computep(xs), we marginalizep(x) over all other variables, analogously to
(8.61),

p(xs) =
∑

x\xs

p(x).

Using (8.59) and the defintion ofFs(x,Xs) that followed (8.62), we can write this
as

p(xs) =
∑

x\xs

fs(xs)
∏

i∈ne(fs)

∏

j∈ne(xi)\fs

Fj(xi, Xij)

= fs(xs)
∏

i∈ne(fs)

∑

x\xs

∏

j∈ne(xi)\fs

Fj(xi, Xij)

= fs(xs)
∏

i∈ne(fs)

µxi→fs
(xi),
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where in the last step, we used (8.67) and (8.68). Note that the marginalization over
the different sub-trees rooted in the neighbours offs would only run over variables
in the respective sub-trees.

8.23 This follows from the fact that the message that a node,xi, will send to a factorfs,
consists of the product of all other messages received byxi. From (8.63) and (8.69),
we have

p(xi) =
∏

s∈ne(xi)

µfs→xi
(xi)

= µfs→xi
(xi)

∏

t∈ne(xi)\fs

µft→xi
(xi)

= µfs→xi
(xi)µxi→fs

(xi).

8.28 If a graph has one or more cycles, there exists at least one setof nodes and edges
such that, starting from an arbitrary node in the set, we can visit all the nodes in the
set and return to the starting node, without traversing any edge more than once.

Consider one particular such cycle. When one of the nodesn1 in the cycle sends a
message to one of its neighboursn2 in the cycle, this causes a pending messages on
the edge to the next noden3 in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on the next edge in that cycle.
Since this is true for every node in the cycle it follows that there will always exist at
least one pending message in the graph.

8.29 We show this by induction over the number of nodes in the tree-structured factor
graph.

First consider a graph with two nodes, in which case only two messages will be sent
across the single edge, one in each direction. None of these messages will induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withN nodes, there will be no pending
messages after a finite number of messages have been sent. Given such a graph, we
can construct a new graph withN + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graphmust remain a tree)
and so if this new node receives a message on this edge, it willinduce no pending
messages. A message sent from the new node will trigger propagation of messages
in the original graph withN nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messages and the algorithm will
terminate.
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Chapter 9 Mixture Models

9.1 Since both the E- and the M-step minimise the distortion measure (9.1), the algorithm
will never change from a particular assignment of data points to prototypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, each with a corresponding
unique minimum of (9.1) w.r.t. the prototypes,{µk}, the K-means algorithm will
converge after a finite number of steps, when no re-assignment of data points to
prototypes will result in a decrease of (9.1). When no-reassignment takes place,
there also will not be any change in{µk}.

9.3 From (9.10) and (9.11), we have

p (x) =
∑

z

p(x|z)p(z) =
∑

z

K∏

k=1

(πkN (x|µk,Σk))
zk .

Exploiting the 1-of-K representation forz, we can re-write the r.h.s. as

K∑

j=1

K∏

k=1

(πkN (x|µk,Σk))Ikj =

K∑

j=1

πjN (x|µj ,Σj)

whereIkj = 1 if k = j and 0 otherwise.

9.7 Consider first the optimization with respect to the parameters{µk,Σk}. For this we
can ignore the terms in (9.36) which depend onlnπk. We note that, for each data
pointn, the quantitiesznk are all zero except for a particular element which equals
one. We can therefore partition the data set intoK groups, denotedXk, such that all
the data pointsxn assigned to componentk are in groupXk. The complete-data log
likelihood function can then be written

ln p (X,Z | µ,Σ,π) =

K∑

k=1

{
∑

n∈Xk

lnN (xn|µk,Σk)

}
.

This represents the sum ofK independent terms, one for each component in the
mixture. When we maximize this term with respect toµk andΣk we will simply
be fitting thekth component to the data setXk, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discussed in Chapter 2.

For the mixing coefficients we need only consider the terms inln πk in (9.36), but
we must introduce a Lagrange multiplier to handle the constraint

∑
k πk = 1. Thus

we maximize
N∑

n=1

K∑

k=1

znk lnπk + λ

(
K∑

k=1

πk − 1

)
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which gives

0 =

N∑

n=1

znk

πk
+ λ.

Multiplying through byπk and summing overk we obtainλ = −N , from which we
have

πk =
1

N

N∑

n=1

znk =
Nk

N

whereNk is the number of data points in groupXk.

9.8 Using (2.43), we can write the r.h.s. of (9.40) as

−1

2

N∑

n=1

K∑

j=1

γ(znj)(xn − µj)
TΣ−1(xn − µj) + const.,

where ‘const.’ summarizes terms independent ofµj (for all j). Taking the derivative
of this w.r.t.µk, we get

−
N∑

n=1

γ(znk)
(
Σ−1µk −Σ−1xn

)
,

and setting this to zero and rearranging, we obtain (9.17).

9.12 Since the expectation of a sum is the sum of the expectations we have

E[x] =

K∑

k=1

πkEk[x] =

K∑

k=1

πkµk

whereEk[x] denotes the expectation ofx under the distributionp(x|k). To find the
covariance we use the general relation

cov[x] = E[xxT] − E[x]E[x]T

to give

cov[x] = E[xxT] − E[x]E[x]T

=

K∑

k=1

πkEk[xxT] − E[x]E[x]T

=

K∑

k=1

πk

{
Σk + µkµ

T
k

}
− E[x]E[x]T.



70 Solutions 9.15– 9.23

9.15 This is easily shown by calculating the derivatives of (9.55), setting them to zero and
solve forµki. Using standard derivatives, we get

∂

∂µki
EZ[ln p(X,Z|µ,π)] =

N∑

n=1

γ(znk)

(
xni

µki
− 1 − xni

1 − µki

)

=

∑
n γ(znk)xni −

∑
n γ(znk)µki

µki(1 − µki)
.

Setting this to zero and solving forµki, we get

µki =

∑
n γ(znk)xni∑

n γ(znk)
,

which equals (9.59) when written in vector form.

9.17 This follows directly from the equation for the incomplete log-likelihood, (9.51).
The largest value that the argument to the logarithm on the r.h.s. of (9.51) can have
is 1, since∀n, k : 0 6 p(xn|µk) 6 1, 0 6 πk 6 1 and

∑K
k πk = 1. Therefore, the

maximum value forln p(X|µ,π) equals 0.

9.20 If we take the derivatives of (9.62) w.r.t.α, we get

∂

∂α
E [ln p(t,w|α, β)] =

M

2

1

α
− 1

2
E
[
wTw

]
.

Setting this equal to zero and re-arranging, we obtain (9.63).

9.23 NOTE: In the first printing of PRML, the task set in this exercise isto show that
the two sets of re-estimation equations are formally equivalent, without any restric-
tion. However, it really should be restricted to the case when the optimization has
converged.

Considering the case when the optimization has converged, we can start withαi, as
defined by (7.87), and use (7.89) to re-write this as

α?
i =

1 − α?
i Σii

m2
N

,

whereα?
i = αnew

i = αi is the value reached at convergence. We can re-write this as

α?
i (m

2
i + Σii) = 1

which is easily re-written as (9.67).

Forβ, we start from (9.68), which we re-write as

1

β?
=

‖t − ΦmN‖2

N
+

∑
i γi

β?N
.
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As in theα-case,β? = βnew = β is the value reached at convergence. We can
re-write this as

1

β?

(
N −

∑

i

γi

)
= ‖t − ΦmN‖2,

which can easily be re-written as (7.88).

9.25 This follows from the fact that the Kullback-Leibler divergence,KL(q‖p), is at its
minimum, 0, whenq andp are identical. This means that

∂

∂θ
KL(q‖p) = 0,

sincep(Z|X, θ) depends onθ. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.θ, the contribution from the second term on the r.h.s. will be0, and
so the gradient of the first term must equal that of the l.h.s.

9.26 From (9.18) we get

N old
k =

∑

n

γold(znk). (154)

We getNnew
k by recomputing the responsibilities,γ(zmk), for a specific data point,

xm, yielding
Nnew

k =
∑

n6=m

γold(znk) + γnew(zmk).

Combining this with (154), we get (9.79).

Similarly, from (9.17) we have

µold
k =

1

N old
k

∑

n

γold(znk)xn

and recomputing the responsibilities,γ(zmk), we get

µnew
k =

1

Nnew
k

(
∑

n6=m

γold(znk)xn + γnew(zmk)xm

)

=
1

Nnew
k

(
N old

k µold
k − γold(zmk)xm + γnew(zmk)xm

)

=
1

Nnew
k

((
Nnew

k − γnew(zmk) + γold(zmk)
)
µold

k

−γold(zmk)xm + γnew(zmk)xm

)

= µold
k +

(
γnew(zmk) − γold(zmk)

Nnew
k

)
(xm − µold

k ),

where we have used (9.79).
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Chapter 10 Variational Inference and EM

10.1 Starting from (10.3), we use the product rule together with (10.4) to get

L(q) =

∫
q (Z) ln

{
p (X,Z)

q (Z)

}
dZ

=

∫
q (Z) ln

{
p (X | Z) p (X)

q (Z)

}
dZ

=

∫
q (Z)

(
ln

{
p (X | Z)

q (Z)

}
+ ln p (X)

)
dZ

= −KL( q ‖ p ) + ln p (X) .

Rearranging this, we immediately get (10.2).

10.3 Starting from (10.16) and optimizing w.r.t.qj (Zj), we get

KL( p ‖ q ) = −
∫
p (Z)

[
M∑

i=1

ln qi (Zi)

]
dZ + const.

= −
∫ (

p (Z) ln qj (Zj) + p (Z)
∑

i 6=j

ln qi (Zi)

)
dZ + const.

= −
∫
p (Z) ln qj (Zj) dZ + const.

= −
∫

ln qj (Zj)

[∫
p (Z)

∏

i 6=j

dZi

]
dZj + const.

= −
∫
Fj(Zj) ln qj (Zj) dZj + const.,

where terms independent ofqj (Zj) have been absorbed into the constant term and
we have defined

Fj(Zj) =

∫
p (Z)

∏

i 6=j

dZi.

We use a Lagrange multiplier to ensure thatqj (Zj) integrates to one, yielding

−
∫
Fj(Zj) ln qj (Zj) dZj + λ

(∫
qj (Zj) dZj − 1

)
.

Using the results from Appendix D, we then take the functional derivative of this
w.r.t. qj and set this to zero, to obtain

−Fj(Zj)

qj (Zj)
+ λ = 0.
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From this, we see that
λqj (Zj) = Fj(Zj).

Integrating both sides overZj , we see that, sinceqj (Zj) must intgrate to one,

λ =

∫
Fj(Zj) dZj =

∫ [∫
p (Z)

∏

i 6=j

dZi

]
dZj = 1,

and thus

qj (Zj) = Fj(Zj) =

∫
p (Z)

∏

i 6=j

dZi.

10.5 We assume thatq(Z) = q(z)q(θ) and so we can optimize w.r.t.q(z) andq(θ) inde-
pendently.

For q(z), this is equivalent to minimizing the Kullback-Leibler divergence, (10.4),
which here becomes

KL( q ‖ p ) = −
∫∫

q (θ) q (z) ln
p (z, θ | X)

q (z) q (θ)
dzdθ.

For the particular chosen form ofq(θ), this is equivalent to

KL( q ‖ p ) = −
∫
q (z) ln

p (z, θ0 | X)

q (z)
dz + const.

= −
∫
q (z) ln

p (z | θ0,X) p (θ0 | X)

q (z)
dz + const.

= −
∫
q (z) ln

p (z | θ0,X)

q (z)
dz + const.,

where const accumulates all terms independent ofq(z). This KL divergence is min-
imized whenq(z) = p(z|θ0,X), which corresponds exactly to the E-step of the EM
algorithm.

To determineq(θ), we consider
∫
q (θ)

∫
q (z) ln

p (X, θ, z)

q (θ) q (z)
dzdθ

=

∫
q (θ) Eq(z) [ln p (X, θ, z)] dθ −

∫
q (θ) ln q (θ) dθ + const.

where the last term summarizes terms independent ofq (θ). Sinceq(θ) is con-
strained to be a point density, the contribution from the entropy term (which formally
diverges) will be constant and independent ofθ0. Thus, the optimization problem is
reduced to maximizing expected complete log posterior distribution

Eq(z) [ln p (X, θ0, z)] ,

w.r.t. θ0, which is equivalent to the M-step of the EM algorithm.
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10.10 NOTE: The first printing of PRML contains errors that affect this exercise.Lm used
in (10.34) and (10.35) should really beL, whereasLm used in (10.36) is given in
Solution 10.11 below.

This completely analogous to Solution 10.1. Starting from (10.35), we can use the
product rule to get,

L =
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,X,m)

q(Z|m) q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,m|X) p(X)

q(Z|m) q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,m|X)

q(Z|m) q(m)

}
+ ln p(X).

Rearranging this, we obtain (10.34).

10.11 NOTE: Consult note preceding Solution 10.10 for some relevant corrections.

We start by rewriting the lower bound as follows

L =
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,X,m)

q(Z|m)q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) {ln p(Z,X|m) + ln p(m)− ln q(Z|m) − ln q(m)}

=
∑

m

q(m)

(
ln p(m)− ln q(m)

+
∑

Z

q(Z|m){ln p(Z,X|m)− ln q(Z|m)}
)

=
∑

m

q(m) {ln (p(m) exp{Lm}) − ln q(m)} , (155)

where

Lm =
∑

Z

q(Z|m) ln

{
p(Z,X|m)

q(Z|m)

}
.

We recognize (155) as the negative KL divergence betweenq(m) and the (not nec-
essarily normalized) distributionp(m) exp{Lm}. This will be maximized when the
KL divergence is minimized, which will be the case when

q(m) ∝ p(m) exp{Lm}.
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10.13 In order to derive the optimal solution forq(µk,Λk) we start with the result (10.54)
and keep only those term which depend onµk or Λk to give

ln q?(µk,Λk) = lnN (µk|m0, β0Λk) + lnW(Λk|W0, ν0)

+

N∑

n=1

E[znk] lnN (xn|µk,Λk) + const.

= −β0

2
(µk − m0)

TΛk(µk −m0) +
1

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
0

)

+
(ν0 −D − 1)

2
ln |Λk| −

1

2

N∑

n=1

E[znk](xn − µk)TΛk(xn − µk)

+
1

2

(
N∑

n=1

E[znk]

)
ln |Λk| + const. (156)

Using the product rule of probability, we can expressln q?(µk,Λk) asln q?(µk|Λk)
+ ln q?(Λk). Let us first of all identify the distribution forµk. To do this we need
only consider terms on the right hand side of (156) which depend onµk, giving

ln q?(µk|Λk)

= −1

2
µT

k

[
β0 +

N∑

n=1

E[znk]

]
Λkµk + µT

k Λk

[
β0m0 +

N∑

n=1

E[znk]xn

]

+const.

= −1

2
µT

k [β0 +Nk]Λkµk + µT
k Λk [β0m0 +Nkxk] + const.

where we have made use of (10.51) and (10.52). Thus we see thatln q?(µk|Λk)
depends quadratically onµk and henceq?(µk|Λk) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determine themean and precision of
this Gaussian, giving

q?(µk|Λk) = N (µk|mk, βkΛk) (157)

where

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxk) .

Next we determine the form ofq?(Λk) by making use of the relation

ln q?(Λk) = ln q?(µk,Λk) − ln q?(µk|Λk).

On the right hand side of this relation we substitute forln q?(µk,Λk) using (156),
and we substitute forln q?(µk|Λk) using the result (157). Keeping only those terms
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which depend onΛk we obtain

ln q?(Λk) = −β0

2
(µk −m0)

TΛk(µk −m0) +
1

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
0

)

+
(ν0 −D − 1)

2
ln |Λk| −

1

2

N∑

n=1

E[znk](xn − µk)TΛk(xn − µk)

+
1

2

(
N∑

n=1

E[znk]

)
ln |Λk| +

βk

2
(µk −mk)TΛk(µ−mk)

−1

2
ln |Λk| + const.

=
(νk −D − 1)

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
k

)
+ const.

Note that the terms involvingµk have cancelled out as we expect sinceq?(Λk) is
independent ofµk. Here we have defined

W−1
k = W−1

0 + β0(µk −m0)(µk − m0)
T +

N∑

n=1

E[znk](xn − µk)(xn − µk)T

−βk(µk −mk)(µk −mk)T

= W−1
0 +NkSk +

β0Nk

β0 +Nk
(xk −m0)(xk −m0)

T

νk = ν0 +

N∑

n=1

E[znk]

= ν0 +Nk,

where we have made use of the result

N∑

n=1

E[znk]xnxT
n =

N∑

n=1

E[znk](xn − xk)(xn − xk)T +Nkxkx
T
k

= NkSk +Nkxkx
T
k (158)

and we have made use of (10.53). Thus we see thatq?(Λk) is a Wishart distribution
of the form

q?(Λk) = W(Λk|Wk, νk).

10.16 To derive (10.71) we make use of (10.38) to give

E[ln p(D|z,µ,Λ)]

=
1

2

N∑

n=1

K∑

k=1

E[znk] {E[ln |Λk|] − E[(xn − µk)Λk(xn − µk)] −D ln(2π)} .
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We now useE[znk] = rnk together with (10.64) and the definition ofΛ̃k given by
(10.65) to give

E[ln p(D|z,µ,Λ)] =
1

2

N∑

n=1

K∑

k=1

rnk

{
ln Λ̃k

−Dβ−1
k − νk(xn − mk)TWk(xn −mk) −D ln(2π)

}
.

Now we use the definitions (10.51) to (10.53) together with the result (158) to give
(10.71).

We can derive (10.72) simply by taking the logarithm ofp(z|π) given by (10.37)

E[ln p(z|π)] =

N∑

n=1

K∑

k=1

E[znk]E[ln πk]

and then making use ofE[znk] = rnk together with the definition of̃πk given by
(10.65).

10.20 Consider first the posterior distribution over the precision of componentk given by

q?(Λk) = W(Λk|Wk, νk).

From (10.63) we see that for largeN we haveνk → Nk, and similarly from (10.62)
we see thatWk → N−1

k S−1
k . Thus the mean of the distribution overΛk, given by

E[Λk] = νkWk → S−1
k which is the maximum likelihood value (this assumes that

the quantitiesrnk reduce to the corresponding EM values, which is indeed the case
as we shall show shortly). In order to show that this posterior is also sharply peaked,
we consider the differential entropy,H[Λk] given by (B.82), and show that, asNk →
∞, H[Λk] → 0, corresponding to the density collapsing to a spike. First consider
the normalizing constantB(Wk, νk) given by (B.79). SinceWk → N−1

k S−1
k and

νk → Nk,

− lnB(Wk, νk) → −Nk

2
(D lnNk + ln |Sk| −D ln 2)+

D∑

i=1

ln Γ

(
Nk + 1 − i

2

)
.

We then make use of Stirling’s approximation (1.146) to obtain

ln Γ

(
Nk + 1 − i

2

)
' Nk

2
(lnNk − ln 2 − 1)

which leads to the approximate limit

− lnB(Wk, νk) → −NkD

2
(lnNk − ln 2 − lnNk + ln 2 + 1) − Nk

2
ln |Sk|

= −Nk

2
(ln |Sk| +D) . (159)
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Next, we use (10.241) and (B.81) in combination withWk → N−1
k S−1

k andνk →
Nk to obtain the limit

E [ln |Λ|] → D ln
Nk

2
+D ln 2 −D lnNk − ln |Sk|

= − ln |Sk|,

where we approximated the argument to the digamma function by Nk/2. Substitut-
ing this and (159) into (B.82), we get

H[Λ] → 0

whenNk → ∞.

Next consider the posterior distribution over the meanµk of thekth component given
by

q?(µk|Λk) = N (µk|mk, βkΛk).

From (10.61) we see that for largeN the meanmk of this distribution reduces to
xk which is the corresponding maximum likelihood value. From (10.60) we see that
βk → Nk and Thus the precisionβkΛk → βkνkWk → NkS

−1
k which is large for

largeN and hence this distribution is sharply peaked around its mean.

Now consider the posterior distributionq?(π) given by (10.57). For largeN we
haveαk → Nk and so from (B.17) and (B.19) we see that the posterior distribution
becomes sharply peaked around its meanE[πk] = αk/α → Nk/N which is the
maximum likelihood solution.

For the distributionq?(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic result for the digamma function,
we again obtain the maximum likelihood expression for the responsibilities for large
N .

Finally, for the predictive distribution we first perform the integration overπ, as in
the solution to Exercise 10.19, to give

p(x̂|D) =

K∑

k=1

αk

α

∫∫
N (x̂|µk,Λk)q(µk,Λk) dµk dΛk.

The integrations overµk andΛk are then trivial for largeN since these are sharply
peaked and hence approximate delta functions. We thereforeobtain

p(x̂|D) =

K∑

k=1

Nk

N
N (x̂|xk,Wk)

which is a mixture of Gaussians, with mixing coefficients given byNk/N .

10.23 When we are treatingπ as a parameter, there is neither a prior, nor a variational
posterior distribution, overπ. Therefore, the only term remaining from the lower
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bound, (10.70), that involvesπ is the second term, (10.72). Note however, that
(10.72) involves theexpectations of ln πk underq(π), whereas here, we operate
directly withπk, yielding

Eq(Z)[ln p(Z|π)] =

N∑

n=1

K∑

k=1

rnk lnπk.

Adding a Langrange term, as in (9.20), taking the derivativew.r.t. πk and setting the
result to zero we get

Nk

πk
+ λ = 0, (160)

where we have used (10.51). By re-arranging this to

Nk = −λπk

and summing both sides overk, we see that−λ =
∑

k Nk = N , which we can use
to eliminateλ from (160) to get (10.83).

10.24 The singularities that may arise in maximum likelihood estimation are caused by a
mixture component,k, collapsing on a data point,xn, i.e.,rkn = 1, µk = xn and
|Λk| → ∞.

However, the prior distributionp(µ,Λ) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Consider the product of the expected
complete log-likelihood andp(µ,Λ) as a function ofΛk:

Eq(Z) [ln p(X|Z,µ,Λ)p(µ,Λ)]

=
1

2

N∑

n=1

rkn

(
ln |Λk| − (xn − µk)TΛk(xn − µk)

)

+ ln |Λk| − β0(µk −m0)
TΛk(µk − m0)

+(ν0 −D − 1) ln |Λk| − Tr
[
W−1

0 Λk

]
+ const.

where we have used (10.38), (10.40) and (10.50), together with the definitions for
the Gaussian and Wishart distributions; the last term summarizes terms independent
of Λk. Using (10.51)–(10.53), we can rewrite this as

(ν0 +Nk −D) ln |Λk| − Tr
[
(W−1

0 + β0(µk −m0)(µk −m0)
T +NkSk)Λk

]
,

where we have dropped the constant term. Using (C.24) and (C.28), we can compute
the derivative of this w.r.t.Λk and setting the result equal to zero, we find the MAP
estimate forΛk to be

Λ−1
k =

1

ν0 +Nk −D
(W−1

0 + β0(µk −m0)(µk −m0)
T +NkSk).

From this we see that|Λ−1
k | can never become 0, because of the presence ofW−1

0

(which we must chose to be positive definite) in the expression on the r.h.s.
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10.29 Stardard rules of differentiation give

d ln(x)

dx
=

1

x

d2 ln(x)

dx2
= − 1

x2
.

Since its second derivative is negative for all value ofx, ln(x) is concave for0 <
x <∞.

From (10.133) we have

g(λ) = min
x

{λx− f(x)}
= min

x
{λx− ln(x)} .

We can minimize this w.r.t.x by setting the corresponding derivative to zero and
solving forx:

dg

dx
= λ− 1

x
= 0 =⇒ x =

1

λ
.

Substituting this in (10.133), we see that

g(λ) = 1 − ln

(
1

λ

)
.

If we substitute this into (10.132), we get

f(x) = min
λ

{
λx− 1 + ln

(
1

λ

)}
.

Again, we can minimize this w.r.t.λ by setting the corresponding derivative to zero
and solving forλ:

df

dλ
= x− 1

λ
= 0 =⇒ λ =

1

x
,

and substituting this into (10.132), we find that

f(x) =
1

x
x− 1 + ln

(
1

1/x

)
= ln(x).

10.32 We can see this from the lower bound (10.154), which is simplya sum of the prior
and indepedent contributions from the data points, all of which are quadratic inw. A
new data point would simply add another term to this sum and wecan regard terms
from the previously arrived data points and the original prior collectively as a revised
prior, which should be combined with the contributions fromthe new data point.
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The corresponding sufficient statistics, (10.157) and (10.158), can be rewritten di-
rectly in the corresponding sequential form,

mN = SN

(
S−1

0 m0 +

N∑

n=1

(tn − 1/2)φn

)

= SN

(
S−1

0 m0 +

N−1∑

n=1

(tn − 1/2)φn + (tN − 1/2)φN

)

= SN

(
S−1

N−1SN−1

(
S−1

0 m0 +

N−1∑

n=1

(tn − 1/2)φn

)
+ (tN − 1/2)φN

)

= SN

(
S−1

N−1mN−1 + (tN − 1/2)φN

)

and

S−1
N = S−1

0 + 2

N∑

n=1

λ(ξn)φnφ
T
n

= S−1
0 + 2

N−1∑

n=1

λ(ξn)φnφ
T
n + 2λ(ξN)φNφ

T
N

= S−1
N−1 + 2λ(ξN)φNφ

T
N .

The update formula for the variational parameters, (10.163), remain the same, but
each parameter is updated only once, although this update will be part of an iterative
scheme, alternating between updatingmN andSN with ξN kept fixed, and updating
ξN with mN andSN kept fixed. Note that updatingξN will not affect mN−1 and
SN−1. Note also that this updating policy differs from that of thebatch learning
scheme, where all variational parameters are updated usingstatistics based on all
data points.

10.37 Here we use the general expectation-propagation equations(10.204)–(10.207). The
initial q(θ) takes the form

qinit(θ) = f̃0(θ)
∏

i 6=0

f̃i(θ)

wheref̃0(θ) = f0(θ). Thus

q\0(θ) ∝
∏

i 6=0

f̃i(θ)

andqnew(θ) is determined by matching moments (sufficient statistics) against

q\0(θ)f0(θ) = qinit(θ).
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Snce by definition this belongs to the same exponential family form asqnew(θ) it
follows that

qnew(θ) = qinit(θ) = q\0(θ)f0(θ).

Thus

f̃0(θ) =
Z0 q

new(θ)

q\0(θ)
= Z0f0(θ)

where

Z0 =

∫
q\0(θ)f0(θ) dθ =

∫
qnew(θ) dθ = 1.

Chapter 11 Sampling Methods

11.1 Since the samples are independent, for the mean, we have

E

[
f̂
]

=
1

L

L∑

l=1

∫
f(z(l))p(z(l)) dz(l) =

1

L

L∑

l=1

E [f ] = E [f ] .

Using this together with (1.38) and (1.39), for the variance, we have

var
[
f̂
]

= E

[(
f̂ − E

[
f̂
])2
]

= E

[
f̂2
]
− E [f ]

2
.

Now note

E
[
f(z(k)), f(z(m))

]
=

{
var[f ] + E[f2] if n = k,
E[f2] otherwise,

= E[f2] + δmkvar[f ],

where we again exploited the fact that the samples are independent.

Hence

var
[
f̂
]

= E

[
1

L

L∑

m=1

f(z(m))
1

L

L∑

k=1

f(z(k))

]
− E[f ]2

=
1

L2

L∑

m=1

L∑

k=1

{
E[f2] + δmkvar[f ]

}
− E[f ]2

=
1

L
var[f ]

=
1

L
E
[
(f − E [f ])

2]
.
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11.5 SinceE [z] = 0,
E [y] = E [µ+ Lz] = µ.

Similarly, sinceE
[
zzT
]

= I,

cov [y] = E
[
yyT

]
− E [y] E

[
yT
]

= E

[
(µ+ Lz) (µ+ Lz)

T
]
− µµT

= LLT

= Σ.

11.6 The probability of acceptance follows trivially from the mechanism used to accept or
reject the sample. The probability of a sampleu drawn uniformly from the interval
[0, kq(z)] being less than or equal to a valuep̃(z) 6 kq(z) is simply

p(acceptance|z) =

∫ p̃(z)

0

1

kq(z)
du =

p̃(z)

kq(z)
.

Therefore, the probability density for drawing a sample,z, is

q(z)p(acceptance|z) = q(z)
p̃(z)

kq(z)
=
p̃(z)

k
. (161)

Sincep̃(z) is proportional top(x),

p(z) =
1

Zp̃
p̃(z),

where

Zp̃ =

∫
p̃(z) dz.

As the l.h.s. of (161) is a probability density that integrates to 1, it follows that
∫

p̃(z)

k
dz = 1

and sok = Zp̃, and
p̃(z)

k
= p(z),

as required.

11.11 This follows from the fact that in Gibbs sampling, we sample asingle variable,zk,
at the time, while all other variables,{zi}i 6=k, remain unchanged. Thus,{z′i}i 6=k =
{zi}i 6=k and we get

p?(z)T (z, z′) = p?(zk, {zi}i 6=k)p?(z′k|{zi}i 6=k)

= p?(zk|{zi}i 6=k)p?({zi}i 6=k)p?(z′k|{zi}i 6=k)

= p?(zk|{z′i}i 6=k)p?({z′i}i 6=k)p?(z′k|{z′i}i 6=k)

= p?(zk|{z′i}i 6=k)p?(z′k, {z′i}i 6=k)

= p?(z′)T (z′, z),
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where we have used the product rule together withT (z, z′) = p?(z′k|{zi}i 6=k).

11.15 Using (11.56), we can differentiate (11.57), yielding

∂H

∂ri
=
∂K

∂ri
= ri

and thus (11.53) and (11.58) are equivalent.

Similarly, differentiating (11.57) w.r.t.zi we get

∂H

∂zi
=
∂E

∂ri
,

and from this, it is immediately clear that (11.55) and (11.59) are equivalent.

11.17 NOTE: In the first printing of PRML, there were sign errors in equations (11.68)
and (11.69). In both cases, the sign of the argument to the exponential forming the
second argument to themin-function should be changed.

First we note that, ifH(R) = H(R′), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either haveH(R) > H(R′) or H(R) < H(R′). We consider the
former case, for which (11.68) becomes

1

ZH
exp(−H(R))δV

1

2
,

since themin-function will return1. (11.69) in this case becomes

1

ZH
exp(−H(R′))δV

1

2
exp(H(R′) −H(R)) =

1

ZH
exp(−H(R))δV

1

2
.

In the same way it can be shown that both (11.68) and (11.69) equal

1

ZH
exp(−H(R′))δV

1

2

whenH(R) < H(R′).

Chapter 12 Latent Variables

12.1 Suppose that the result holds for projection spaces of dimensionalityM . TheM +
1 dimensional principal subspace will be defined by theM principal eigenvectors
u1, . . . ,uM together with an additional direction vectoruM+1 whose value we wish
to determine. We must constrainuM+1 such that it cannot be linearly related to
u1, . . . ,uM (otherwise it will lie in theM -dimensional projection space instead of
defining anM + 1 independent direction). This can easily be achieved by requiring
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thatuM+1 be orthogonal tou1, . . . ,uM , and these constraints can be enforced using
Lagrange multipliersη1, . . . , ηM .

Following the argument given in section 12.1.1 foru1 we see that the variance in the
directionuM+1 is given byuT

M+1SuM+1. We now maximize this using a Lagrange
multiplier λM+1 to enforce the normalization constraintuT

M+1uM+1 = 1. Thus we
seek a maximum of the function

uT
M+1SuM+1 + λM+1

(
1 − uT

M+1uM+1

)
+

M∑

i=1

ηiu
T
M+1ui.

with respect touM+1. The stationary points occur when

0 = 2SuM+1 − 2λM+1uM+1 +

M∑

i=1

ηiui.

Left multiplying withuT
j , and using the orthogonality constraints, we see thatηj = 0

for j = 1, . . . ,M . We therefore obtain

SuM+1 = λM+1uM+1

and souM+1 must be an eigenvector ofS with eigenvalueuM+1. The variance
in the directionuM+1 is given byuT

M+1SuM+1 = λM+1 and so is maximized by
choosinguM+1 to be the eigenvector having the largest eigenvalue amongstthose
not previously selected. Thus the result holds also for projection spaces of dimen-
sionalityM + 1, which completes the inductive step. Since we have already shown
this result explicitly forM = 1 if follows that the result must hold for anyM 6 D.

12.4 Using the results of Section 8.1.4, the marginal distribution for this modified proba-
bilistic PCA model can be written

p(x) = N (x|Wm + µ, σ2I + WTΣ−1W).

If we now define new parameters

W̃ = Σ1/2W

µ̃ = Wm + µ

then we obtain a marginal distribution having the form

p(x) = N (x|µ̃, σ2I + W̃TW̃).

Thus any Gaussian form for the latent distribution therefore gives rise to a predictive
distribution having the same functional form, and so for convenience we choose the
simplest form, namely one with zero mean and unit covariance.

12.6 Omitting the parameters,W, µ andσ, leaving only the stochastic variablesz and
x, the graphical model for probabilistic PCA is identical with the the ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these two models exhibit the
same independence structure.
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12.8 By matching (12.31) with (2.113) and (12.32) with (2.114), we have from (2.116)
and (2.117) that

p(z|x) = N
(
z|(I + σ−2WTW)−1WTσ−2I(x− µ), (I + σ−2WTW)−1

)

= N
(
z|M−1WT(x− µ), σ2M−1

)
,

where we have also used (12.41).

12.11 Takingσ2 → 0 in (12.41) and substituting into (12.48) we obtain the posterior mean
for probabilistic PCA in the form

(WT
MLWML)−1WT

ML(x− x).

Now substitute forWML using (12.45) in which we takeR = I for compatibility
with conventional PCA. Using the orthogonality propertyUT

MUM = I and setting
σ2 = 0, this reduces to

L−1/2UT
M (x− x)

which is the orthogonal projection is given by the conventional PCA result (12.24).

12.15 Using standard derivatives together with the rules for matrix differentiation from
Appendix C, we can compute the derivatives of (12.53) w.r.t.W andσ2:

∂

∂W
E[ln p

(
X,Z|µ,W, σ2

)
] =

N∑

n=1

{
1

σ2
(xn − x)E[zn]T − 1

σ2
WE[znzT

n ]

}

and

∂

∂σ2
E[ln p

(
X,Z|µ,W, σ2

)
] =

N∑

n=1

{
1

2σ4
E[znzT

n ]WTW

+
1

2σ4
‖xn − x‖2 − 1

σ4
E[zn]TWT(xn − x) − D

2σ2

}

Setting these equal to zero and re-arranging we obtain (12.56) and (12.57), respec-
tively.

12.17 Setting the derivative ofJ with respect toµ to zero gives

0 = −
N∑

n=1

(xn − µ−Wzn)

from which we obtain

µ =
1

N

N∑

n=1

xn − 1

N

N∑

n=1

Wzn = x−Wz.
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Figure 6 The left plot shows the
graphical model correspond-
ing to the general mixture of
probabilistic PCA. The right
plot shows the correspond-
ing model were the param-
eter of all probabilist PCA
models (µ, W and σ2) are
shared across components.
In both plots, s denotes
the K-nomial latent variable
that selects mixture compo-
nents; it is governed by the
parameter, π.

zk

Wk

µk

σ2
k

K

x

s

π

zk

K

W

µ

σ2

x

s

π

Back-substituting intoJ we obtain

J =

N∑

n=1

‖(xn − x−W(zn − z)‖2.

We now defineX to be a matrix of sizeN ×D whosenth row is given by the vector
xn − x and similarly we defineZ to be a matrix of sizeD ×M whosenth row is
given by the vectorzn − z. We can then writeJ in the form

J = Tr
{
(X − ZWT)(X − ZWT)T

}
.

Differentiating with respect toZ keepingW fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative ofJ with respect toW to zero with{zn}
fixed gives rise to the PCA M-step (12.59).

12.19 To see this we define a rotated latent space vectorz̃ = Rz whereR is anM ×M or-
thogonal matrix, and similarly defining a modified factor loading matrixW̃ = WR.
Then we note that the latent space distributionp(z) depends only onzTz = z̃Tz̃,
where we have usedRTR = I. Similarly, the conditional distribution of the ob-
served variablep(x|z) depends only onWz = W̃z̃. Thus the joint distribution
takes the same form for any choice ofR. This is reflected in the predictive distri-
butionp(x) which depends onW only through the quantityWWT = W̃W̃T and
hence is also invariant to different choices ofR.

12.23 The solution is given in figure 6. The model in which all parameters are shared (left)
is not particularly useful, since all mixture components will have identical param-
eters and the resulting density model will not be any different to one offered by a
single PPCA model. Different models would have arisen if only some of the param-
eters, e.g. the meanµ, would have been shared.

12.25 Following the discussion of section 12.2, the log likelihood function for this model
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can be written as

L(µ,W,Φ) = −ND
2

ln(2π)− N

2
ln |WWT + Φ|

−1

2

N∑

n=1

{
(xn − µ)T(WWT + Φ)−1(xn − µ)

}
,

where we have used (12.43).

If we consider the log likelihood function for the transformed data set we obtain

LA(µ,W,Φ) = −ND
2

ln(2π) − N

2
ln |WWT + Φ|

−1

2

N∑

n=1

{
(Axn − µ)T(WWT + Φ)−1(Axn − µ)

}
.

Solving for the maximum likelihood estimator forµ in the usual way we obtain

µA =
1

N

N∑

n=1

Axn = Ax = AµML.

Back-substituting into the log likelihood function, and using the definition of the
sample covariance matrix (12.3), we obtain

LA(µ,W,Φ) = −ND
2

ln(2π)− N

2
ln |WWT + Φ|

−1

2

N∑

n=1

Tr
{
(WWT + Φ)−1ASAT

}
.

We can cast the final term into the same form as the corresponding term in the origi-
nal log likelihood function if we first define

ΦA = AΦ−1AT, WA = AW.

With these definitions the log likelihood function for the transformed data set takes
the form

LA(µA,WA,ΦA) = −ND
2

ln(2π)− N

2
ln |WAWT

A + ΦA|

−1

2

N∑

n=1

{
(xn − µA)T(WAWT

A + ΦA)−1(xn − µA)
}
−N ln |A|.

This takes the same form as the original log likelihood function apart from an addi-
tive constant− ln |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in the old variables.
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We now ask whether specific constraints onΦ will be preserved by this re-scaling. In
the case of probabilistic PCA the noise covarianceΦ is proportional to the unit ma-
trix and takes the formσ2I. For this constraint to be preserved we requireAAT = I

so thatA is an orthogonal matrix. This corresponds to a rotation of the coordinate
system. For factor analysisΦ is a diagonal matrix, and this property will be pre-
served ifA is also diagonal since the product of diagonal matrices is again diagonal.
This corresponds to an independent re-scaling of the coordinate system. Note that in
general probabilistic PCA is not invariant under component-wise re-scaling and fac-
tor analysis is not invariant under rotation. These resultsare illustrated in Figure 7.

12.28 If we assume that the functiony = f(x) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite density inp(y), we are guaranteed that
the inverse functionx = f−1(y) exists. We can then use (1.27) to write

p(y) = q(f−1(y))

∣∣∣∣
df−1

dy

∣∣∣∣ . (162)

Since the only restriction onf is that it is monotonic, it can distribute the probability
mass overx arbitrarily overy. This is illustrated in Figure 1 on page 8, as a part of
Solution 1.4. From (162) we see directly that

|f ′(x)| =
q(x)

p(f(x))
.

12.29 If z1 andz2 are independent, then

cov[z1, z2] =

∫∫
(z1 − z̄1)(z2 − z̄2)p(z1, z2) dz1 dz2

=

∫∫
(z1 − z̄1)(z2 − z̄2)p(z1)p(z2) dz1 dz2

=

∫
(z1 − z̄1)p(z1) dz1

∫
(z2 − z̄2)p(z2) dz2

= 0,

where

z̄i = E[zi] =

∫
zip(zi) dzi.

NOTE: In the first printing of PRML, this exercise contained two mistakes. In the
second half of the exercise, we require thaty1 is symmetrically distributed around0,
not just that−1 6 y1 6 1. Moreover,y2 = y2

1 (noty2 = y2
2).

Then we have
p(y2|y1) = δ(y2 − y2

1),
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Figure 7 Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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i.e., a spike of probability mass one aty2
1 , which is clearly dependent ony1. With ȳi

defined analogously tōzi above, we get

cov[y1, y2] =

∫∫
(y1 − ȳ1)(y2 − ȳ2)p(y1, y2) dy1 dy2

=

∫∫
y1(y2 − ȳ2)p(y2|y1)p(y1) dy1 dy2

=

∫
(y3

1 − y1ȳ2)p(y1) dy1

= 0,

where we have used the fact that all odd moments ofy1 will be zero, since it is
symmetric around zero and henceȳ1.

Chapter 13 Sequential Data

13.1 Since the arrows on the path fromxm to xn, withm < n− 1, will meet head-to-tail
at xn−1, which is in the conditioning set, all such paths are blockedby xn−1 and
hence (13.3) holds.

The same argument applies in the case depicted in Figure 13.4, with the modification
thatm < n− 2 and that paths are blocked byxn−1 or xn−2.

13.4 The learning ofw would follow the scheme for maximum learning described in
Section 13.2.1, withw replacingφ. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of regression model used and
how it is being used.

The most obvious situation where this would occur is in a HMM similar to that
depicted in Figure 13.18, where the emmission densities notonly depends on the
latent variablez, but also on some input variableu. The regression model could
then be used to mapu to x, depending on the state of the latent variablez.

Note that when a nonlinear regression model, such as a neuralnetwork, is used, the
M-step forw may not have closed form.

13.8 Only the final term ofQ(θ, θold given by (13.17) depends on the parameters of the
emission model. For the multinomial variablex, whoseD components are all zero
except for a single entry of 1,

N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk) =

N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

xni lnµki.

Now when we maximize with respect toµki we have to take account of the con-
straints that, for each value ofk the components ofµki must sum to one. We there-
fore introduce Lagrange multipliers{λk} and maximize the modified function given
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by
N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

xni lnµki +

K∑

k=1

λk

(
D∑

i=1

µki − 1

)
.

Setting the derivative with respect toµki to zero we obtain

0 =

N∑

n=1

γ(znk)
xni

µki
+ λk.

Multiplying through byµki, summing overi, and making use of the constraint on
µki together with the result

∑
i xni = 1 we have

λk = −
N∑

n=1

γ(znk).

Finally, back-substituting forλk and solving forµki we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli observed variablex whoseD com-
ponents independently take the value 0 or 1, using the standard expression for the
multivariate Bernoulli distribution we have

N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk)

=

N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

{xni lnµki + (1 − xni) ln(1 − µki)} .

Maximizing with respect toµki we obtain

µki =

N∑

n=1

γ(znk)xni

N∑

n=1

γ(znk)

which is equivalent to (13.23).

13.9 We can verify all these independence properties using d-separation by refering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from any ofx1, . . . ,xn to any of
xn+1, . . . ,xN meet head-to-tail or tail-to-tail atzn, which is in the conditioning set.

(13.25) follows from the fact that arrows on paths from any ofx1, . . . ,xn−1 to xn

meet head-to-tail atzn, which is in the conditioning set.
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(13.26) follows from the fact that arrows on paths from any ofx1, . . . ,xn−1 to zn

meet head-to-tail or tail-to-tail atzn−1, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths fromzn to any ofxn+1, . . . ,xN

meet head-to-tail atzn+1, which is in the conditioning set.

(13.28) follows from the fact that arrows on paths fromxn+1 to any ofxn+2, . . . ,xN

to meet tail-to-tail atzn+1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on paths from any ofx1, . . . ,
xn−1 to xn meet head-to-tail or tail-to-tail atzn−1, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from any ofx1, . . . ,xN to xN+1

meet head-to-tail atzN+1, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from any ofx1, . . . ,xN to zN+1

meet head-to-tail or tail-to-tail atzN , which is in the conditioning set.

13.13 Using (8.64), we can rewrite (13.50) as

α(zn) =
∑

z1,...,zn−1

Fn(zn, {z1, . . . , zn−1}), (163)

whereFn(·) is the product of all factors connected tozn via fn, includingfn itself
(see Figure 13.15), so that

Fn(zn, {z1, . . . , zn−1}) = h(z1)

n∏

i=2

fi(zi, zi−1), (164)

where we have introducedh(z1) andfi(zi, zi−1) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and repeatedly applying the product
rule, we can rewrite (164) as

Fn(zn, {z1, . . . , zn−1}) = p(x1, . . . ,xn, z1, . . . , z2).

Applying the sum rule, summing overz1, . . . , zn−1 as on the r.h.s. of (163), we
obtain (13.34).

13.17 The emission probabilities over observed variablesxn are absorbed into the corre-
sponding factors,fn, analogously to the way in which Figure 13.14 was transformed
into Figure 13.15. The factors then take the form

h(z1) = p(z1|u1)p(x1|z1,u1)

fn(zn−1, zn) = p(zn|zn−1,un)p(xn|zn,un).

13.19 Since the joint distribution over all variables, latent andobserved, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In particular, we can maximize
w.r.t. all the latent variables jointly or maximize each of the marginal distributions
separately. However, from (2.98), we see that the resultingmeans will be the same in
both cases and since the mean and the mode coincide for the Gaussian, maximizing
w.r.t. to latent variables jointly and individually will yield the same result.
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13.20 Making the following substitions from the l.h.s. of (13.87),

x ⇒ zn−1 µ⇒ µn−1 Λ−1 ⇒ Vn−1

y ⇒ zn A ⇒ A b ⇒ 0 L−1 ⇒ Γ,

in (2.113) and (2.114), (2.115) becomes

p(zn) = N (zn|Aµn−1,Γ + AVn−1A
T),

as desired.

13.22 Using (13.76), (13.77) and (13.84), we can write (13.93), for the casen = 1, as

c1N (z1|µ1,V1) = N (z1|µ0,V0)N (x1|Cz1,Σ).

The r.h.s. define the joint probability distribution overx1 andz1 in terms of a con-
ditional distribution overx1 given z1 and a distribution overz1, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewrite this into a con-
ditional distribution overz1 givenx1 and a distribution overx1, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions

x ⇒ z1 µ⇒ µ0 Λ−1 ⇒ V0

y ⇒ x1 A ⇒ C b ⇒ 0 L−1 ⇒ Σ,

in (2.113) and (2.114), (2.115) directly gives us the r.h.s.of (13.96).

13.24 This extension can be embedded in the existing framework by adopting the following
modifications:

µ′
0 =

[
µ0

1

]
V′

0 =

[
V0 0

0 0

]
Γ′ =

[
Γ 0

0 0

]

A′ =

[
A a

0 1

]
C′ =

[
C c

]
.

This will ensure that the constant termsa andc are included in the corresponding
Gaussian means forzn andxn for n = 1, . . . , N .

Note that the resulting covariances forzn, Vn, will be singular, as will the corre-
sponding prior covariances,Pn−1. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102). These cases must be handled
separately, using the ‘inversion’ formula

(P′
n−1)

−1 =

[
P−1

n−1 0

0 0

]
,

nullifying the contribution from the (non-existent) variance of the element inzn that
accounts for the constant termsa andc.
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13.27 NOTE: In the first printing of PRML, this exercise should have madeexplicit the
assumption thatC = I in (13.86).

From (13.86), it is easily seen that ifΣ goes to0, the posterior overzn will become
completely determined byxn, since the first factor on the r.h.s. of (13.86), and hence
also the l.h.s., will collapse to a spike atxn = Czn.

13.32 We can write the expected complete log-likelihood, given bythe equation after
(13.109), as a function ofµ0 andV0, as follows:

Q(θ, θold) = −1

2
ln |V0|

−1

2
EZ|θold

[
zT

1 V−1
0 z1 − zT

1 V−1
0 µ0 − µT

0 V−1
0 z1 + µT

0 V−1
0 µ0

]
(165)

=
1

2

(
ln |V−1

0 | − Tr

[
V−1

0 EZ|θold
[
z1z

T
1 − z1µ

T
0 − µ0z

T
1 + µ0µ

T
0

]])
, (166)

where we have used (C.13) and omitted terms independent ofµ0 andV0.

From (165), we can calculate the derivative w.r.t.µ0 using (C.19), to get

∂Q

∂µ0

= 2V−1
0 µ0 − 2V−1

0 E[z1].

Setting this to zero and rearranging, we immediately obtain(13.110).

Using (166), (C.24) and (C.28), we can evaluate the derivatives w.r.t.V−1
0 ,

∂Q

∂V−1
0

=
1

2

(
V0 − E[z1z

T
1 ] − E[z1]µ

T
0 − µ0E[zT

1 ] + µ0µ
T
0

)
.

Setting this to zero, rearrangning and making use of (13.110), we get (13.111).

Chapter 14 Combining Models

14.1 The required predictive distribution is given by

p(t|x,X,T) =
∑

h

p(h)
∑

zh

p(zh)

∫
p(t|x, θh, zh, h)p(θh|X,T, h) dθh, (167)



96 Solutions 14.3– 14.5

where

p(θh|X,T, h) =
p(T|X, θh, h)p(θh|h)

p(T|X, h)

∝ p(θ|h)
N∏

n=1

p(tn|xn, θ, h)

= p(θ|h)
N∏

n=1

(
∑

znh

p(tn, znh|xn, θ, h)

)
(168)

The integrals and summations in (167) are examples of Bayesian averaging, account-
ing for the uncertainty about which model,h, is the correct one, the value of the cor-
responding parameters,θh, and the state of the latent variable,zh. The summation
in (168), on the other hand, is an example of the use of latent variables, where dif-
ferent data points correspond to different latent variablestates, although all the data
are assumed to have been generated by a single model,h.

14.3 We start by rearranging the r.h.s. of (14.10), by moving the factor1/M inside the
sum and the expectation operator outside the sum, yielding

Ex

[
M∑

m=1

1

M
εm(x)2

]
.

If we then identifyεm(x) and1/M with xi andλi in (1.115), respectively, and take
f(x) = x2, we see from (1.115) that

(
M∑

m=1

1

M
εm(x)

)2

6

M∑

m=1

1

M
εm(x)2.

Since this holds for all values ofx, it must also hold for the expectation overx,
proving (14.54).

14.5 To prove that (14.57) is a sufficient condition for (14.56) wehave to show that (14.56)
follows from (14.57). To do this, consider a fixed set ofym(x) and imagine varying
theαm over all possible values allowed by (14.57) and consider thevalues taken by
yCOM(x) as a result. The maximum value ofyCOM(x) occurs whenαk = 1 where
yk(x) > ym(x) for m 6= k, and hence allαm = 0 for m 6= k. An analogous result
holds for the minimum value. For other settings ofα,

ymin(x) < yCOM(x) < ymax(x),

sinceyCOM(x) is a convex combination of points,ym(x), such that

∀m : ymin(x) 6 ym(x) 6 ymax(x).

Thus, (14.57) is a sufficient condition for (14.56).
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Showing that (14.57) is a necessary condition for (14.56) isequivalent to show-
ing that (14.56) is a sufficient condition for (14.57). The implication here is that
if (14.56) holds for any choice of values of the committee members{ym(x)} then
(14.57) will be satisfied. Suppose, without loss of generality, thatαk is the smallest
of theα values, i.e.αk 6 αm for k 6= m. Then consideryk(x) = 1, together with
ym(x) = 0 for all m 6= k. Thenymin(x) = 0 while yCOM(x) = αk and hence
from (14.56) we obtainαk > 0. Sinceαk is the smallest of theα values it follows
that all of the coefficients must satisfyαk > 0. Similarly, consider the case in which
ym(x) = 1 for all m. Thenymin(x) = ymax(x) = 1, while yCOM(x) =

∑
m αm.

From (14.56) it then follows that
∑

m αm = 1, as required.

14.6 If we differentiate (14.23) w.r.t.αm we obtain

∂E

∂αm
=

1

2

(
(eαm/2 + e−αm/2)

N∑

n=1

w(m)
n I(ym(xn) 6= tn) − e−αm/2

N∑

n=1

w(m)
n

)
.

Setting this equal to zero and rearranging, we get

∑
nw

(m)
n I(ym(xn) 6= tn)
∑

n w
(m)
n

=
e−αm/2

eαm/2 + e−αm/2
=

1

eαm + 1
.

Using (14.16), we can rewrite this as

1

eαm + 1
= εm,

which can be further rewritten as

eαm =
1 − εm
εm

,

from which (14.17) follows directly.

14.9 The sum-of-squares error for the additive model of (14.21) is defined as

E =
1

2

N∑

n=1

(tn − fm(xn))2.

Using (14.21), we can rewrite this as

1

2

N∑

n=1

(tn − fm−1(xn) − 1

2
αmym(x))2,

where we recognize the two first terms inside the square as theresidual from the
(m − 1)-th model. Minimizing this error w.r.t.ym(x) will be equivalent to fitting
ym(x) to the (scaled) residuals.
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14.13 Starting from the mixture distribution in (14.34), we follow the same steps as for
mixtures of Gaussians, presented in Section 9.2. We introduce aK-nomial latent
variable,z, such that the joint distribution overz andt equals

p(t, z) = p(t|z)p(z) =

K∏

k=1

(
N
(
t | wT

kφ, β
−1
)
πk

)zk
.

Given a set of observations,{(tn,φn)}N
n=1, we can write the complete likelihood

over these observations and the correspondingz1, . . . , zN , as

N∏

n=1

K∏

k=1

(
πkN (tn|wT

kφn, β
−1)
)znk

.

Taking the logarithm, we obtain (14.36).

14.15 The predictive distribution from the mixture of linear regression models for a new
input feature vector,̂φ, is obtained from (14.34), withφ replaced bŷφ. Calculating
the expectation oft under this distribution, we obtain

E[t|φ̂, θ] =

K∑

k=1

πkE[t|φ̂,wk, β].

Depending on the parameters, this expectation is potentially K-modal, with one
mode for each mixture component. However, the weighted combination of these
modes output by the mixture model may not be close to any single mode. For exam-
ple, the combination of the two modes in the left panel of Figure 14.9 will end up in
between the two modes, a region with no signicant probability mass.

14.17 If we defineψk(t|x) in (14.58) as

ψk(t|x) =

M∑

m=1

λmkφmk(t|x),

we can rewrite (14.58) as

p(t|x) =

K∑

k=1

πk

M∑

m=1

λmkφmk(t|x)

=

K∑

k=1

M∑

m=1

πkλmkφmk(t|x).

By changing the indexation, we can write this as

p(t|x) =

L∑

l=1

ηlφl(t|x),
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Figure 8 Left: an illustration of a
hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input
space into regions where
different mixing coefficients
dominate, under the model
illustrated left.

σ(vT
1 x)

σ(vT
2 x)

ψ1(t|x)

ψ2(t|x) ψ3(t|x)

π1

π2

π3

whereL = KM , l = (k − 1)M + m, ηl = πkλmk andφl(·) = φmk(·). By
construction,ηl > 0 and

∑L
l=1 ηl = 1.

Note that this would work just as well ifπk andλmk were to be dependent onx, as
long as they both respect the constraints of being non-negative and summing to1 for
every possible value ofx.

Finally, consider a tree-structured, hierarchical mixture model, as illustrated in the
left panel of Figure 8. On the top (root) level, this is a mixture with two components.
The mixing coefficients are given by a linear logistic regression model and hence are
input dependent. The left sub-tree correspond to a local conditional density model,
ψ1(t|x). In the right sub-tree, the structure from the root is replicated, with the
difference that both sub-trees contain local conditional density models,ψ2(t|x) and
ψ3(t|x).

We can write the resulting mixture model on the form (14.58) with mixing coeffi-
cients

π1(x) = σ(vT
1 x)

π2(x) = (1 − σ(vT
1 x))σ(vT

2 x)

π3(x) = (1 − σ(vT
1 x))(1 − σ(vT

2 x)),

whereσ(·) is defined in (4.59) andv1 andv2 are the parameter vectors of the logistic
regression models. Note thatπ1(x) is independent of the value ofv2. This would
not be the case if the mixing coefficients were modelled usinga single level softmax
model,

πk(x) =
eu

T
k x

∑3

j e
uT

j
x
,

where the parametersuk, corresponding toπk(x), will also affect the other mixing
coeffiecients,πj 6=k(x), through the denominator. This gives the hierarchical model
different properties in the modelling of the mixture coefficients over the input space,
as compared to a linear softmax model. An example is shown in the right panel of
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Figure 8, where the red lines represent borders of equal mixing coefficients in the
input space. These borders are formed from two straight lines, corresponding to
the two logistic units in the left panel of 8. A correspondingdivision of the input
space by a softmax model would involve three straight lines joined at a single point,
looking, e.g., something like the red lines in Figure 4.3 in PRML; note that a linear
three-class softmax model could not implement the borders show in right panel of
Figure 8.




