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Solutions 1.1-1.4 7

Chapter 1 Pattern Recognition

1.1 Substituting (1.1) into (1.2) and then differentiatinghviespect tav; we obtain

N M
Z (Z wjxfl — tn> J:Zl =0. Q)

j=0
Re-arranging terms then gives the required result.

1.4 We are often interested in finding the most probable valuesfone quantity. In
the case of probability distributions over discrete vagaalthis poses little problem.
However, for continuous variables there is a subtlety mgifiom the nature of prob-
ability densities and the way they transform under nondirehanges of variable.

Consider first the way a functiof{x) behaves when we change to a new variable
where the two variables are related by= g(y). This defines a new function of
given by

Fy) = fla(y)). )

Supposef (z) has a mode (i.e. a maximum)aso thatf’(z) = 0. The correspond-

ing mode off(y) will occur for a valuey obtained by differentiating both sides of
(2) with respect tq,

@)= f9@)g'(y) =0. (©)
Assumingg’(y) # 0 at the mode, therf’(¢(y)) = 0. However, we know that
f'(z) = 0, and so we see that the locations of the mode expressed ia téreach
of the variables: andy are related by = ¢(y), as one would expect. Thus, finding
a mode with respect to the variablds completely equivalent to first transforming
to the variabley, then finding a mode with respectgoand then transforming back
to z.

Now consider the behaviour of a probability dengityz) under the change of vari-
ablesz = g(y), where the density with respect to the new variablg,ig/) and is
given by ((1.27)). Let us write’(y) = s|¢’(y)| wheres € {—1,+1}. Then ((1.27))
can be written

py(y) = p=(9(y))sg'(y).
Differentiating both sides with respectgahen gives

P, () = 0, (g(w){d' W)} + sp=(9(y))g" (v)- (4)

Due to the presence of the second term on the right hand side tife relationship

z = g(y) no longer holds. Thus the value ofobtained by maximizing,.(x) will

not be the value obtained by transformingtdy) then maximizing with respect to

y and then transforming back to This causes modes of densities to be dependent
on the choice of variables. In the case of linear transfaonathe second term on
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Figure 1

Example of the transformation of
the mode of a density under a non-
linear change of variables, illus-
trating the different behaviour com-
pared to a simple function. See the
text for details.

Pz ()

the right hand side of (4) vanishes, and so the location ofrthgimum transforms
according tar = g(y).

This effect can be illustrated with a simple example, as showFigure 1.  We
begin by considering a Gaussian distributjpr{x) overz with meany = 6 and
standard deviatiom = 1, shown by the red curve in Figure 1. Next we draw a
sample of N = 50,000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distribytigm).

Now consider a non-linear change of variables froto y given by
z=g(y) =In(y) —In(1 —y) +5. (5)
The inverse of this function is given by

1

T 1+ exp(—x + b) ©

y=g '(x)

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transfornp,.(z) as a function ofr we obtain the green curye.(g(y))
shown in Figure 1, and we see that the mode of the depsity) is transformed
via the sigmoid function to the mode of this curve. Howevbg tensity ovel
transforms instead according to (1.27) and is shown by thgemia curve on the left
side of the diagram. Note that this has its mode shiftedivelab the mode of the
green curve.

To confirm this result we take our sampleof, 000 values ofz, evaluate the corre-
sponding values aj using (6), and then plot a histogram of their values. We sage th
this histogram matches the magenta curve in Figure 1 andhagjreen curve!

1.7 The transformation from Cartesian to polar coordinategfsed by

= rcosf (7)
= rsinf (8)
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Solution 1.8 9

and hence we have® + y? = r? where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variableasily seen to be

Oor Ox
oz, y) or 06
a(r,0) dy Oy
or 90
cos —rsind
- sin® rcosf |

where again we have used (2.177). Thus the double integfali25) becomes

I’ = /OM/OOOeXp <—;—;>Tdrd9 9)
= 27 /000 exp (—2—1;2> %du (20)
= 7 [exp (—%) (—2(72)}? (12)
— 2702 (12)

where we have used the change of variabfes: u. Thus

1/2

1= (27702)

Finally, using the transformatiopn= x — u, the integral of the Gaussian distribution
becomes

oo 1 ) yg
. 2 . .,
/_ N(:L\%J ) de = (27702)1/2 /_ exp <ﬁ> dy

1

(27702)1/2 a
as required.

From the definition (1.46) of the univariate Gaussian distion, we have

00 1 1/2 1
E[z] —/_OO (2702> cxp{@(ajuf}xdx. (13)
Now change variables using= = — u to give
o /1 N\ V2 1,
E[z] = /_w <2m2> cxp{@y }(y + 1) dy. (14)

We now note that in the factdy + ) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show thisieitly] write the integral
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1.9

1.10

as the sum of two integrals, one froaro to 0 and the other frond to co and then
show that these two integrals cancel). In the second terima constant and pulls
outside the integral, leaving a normalized Gaussian digion which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46)He normal distribution
into the normalization result (1.48) and re-arrange toiobta

> 1 1/2
/OO exp {—rﬂ(l’ — /4)2} dx = (27702) . (15)
We now differentiate both sides of (15) with respecttoand then re-arrange to
obtain
1 e - 1 2 2 2
() [ ew{-sm-w}e-wrar=c o
which directly shows that

E[(x — p)?] = var[z] = o> (17)
Now we expand the square on the left-hand side giving

E[z?] — 2uE[z] + p? = o
Making use of (1.49) then gives (1.50) as required.
Finally, (1.51) follows directly from (1.49) and (1.50)

E2®] — E[z]* = (p* +0°) — p* = 07

For the univariate case, we simply differentiate (1.46hwéspect ta: to obtain

d 2\ 2y T — H
a/\/(xm,a)— N (z|p, 0?) :

0-2
Setting this to zero we obtain= .
Similarly, for the multivariate case we differentiate (2)5vith respect toex to obtain

TNl D) = Nt D) { )5 x )

= N33 (x - p),

where we have used (C.19), (C.20) and the fact ¥iat is symmetric. Setting this
derivative equal t®, and left-multiplying by, leads to the solutior = .

Sincex andz are independent, their joint distribution factorizé€s, z) = p(z)p(z),
and so

Elz + ]

//@%%@Mxm@ﬁhdz (18)

— /:L'p(x) dx+/zp(z) dz (19)
= Ela] +E[z]. (20)
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Similarly for the variances, we first note that
(x4 2z —E[x +2])? = (z — E[z])? + (2 — E[2])* + 2(z — E[z])(z — E[z]) (21)

where the final term will integrate to zero with respect tofdetorized distribution
p(z)p(z). Hence

varjz + z] = //(:L + 2z — B[z + 2))?p(z)p(2) dz dz

= /(T — E[z])?*p(z) dz + /(z —E[2])*p(2) dz
= var(z) + var(z). (22)

For discrete variables the integrals are replaced by suionsaand the same results
are again obtained.

If m = nthenz,z,, = 22 and using (1.50) we obtaifi[z2]| = u? + o2, whereas if

n # m then the two data points, andx,, are independent and henger,, z,,] =
Elz,|E[z,,] = pu? where we have used (1.49). Combining these two results we
obtain (1.130).

Next we have v
Elpn] = Z =K (23)

using (1.49).

Finally, consideff[o3; ]. From (1.55) and (1.56), and making use of (1.130), we
have

1< 1 < ’

E[Ul%iL] = E NZ(»”LnNZSLm)
m=1
N
>

{
_ <M> - (24)

as required.

The redundancy in the coefficients in (1.133) arises frorargftange symmetries
between the indices.. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one merimbeach group of
equivalent configurations occurs in the summation.



12

Solution 1.15

To derive (1.135) we note that the number of independentnpetersn (D, M)
which appear at ordev/ can be written as

M —1

5 3 3¢ @9

11=115=1 ip=1
which hasM terms. This can clearly also be written as
M1
o) -3 {30 3} @0
11=1 1o=1 iv=1

where the term in braces has— 1 terms which, from (25), must equali,, M —1).
Thus we can write

n(ip, M —1) (27)

HMU

which is equivalent to (1.135).

To prove (1.136) we first sdd = 1 on both sides of the equation, and make use of
0! = 1, which gives the valué on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimeraionD and
then show that it must be true for dimensionali?y- 1. Thus consider the left-hand
side of (1.136) evaluated fdp + 1 which gives

&R (+M-2! (D+M-1)! (D+M-1)
Z(i—l)!(M—l)! = oo T D=y
 (D+M-1)D+(D+M-1)M
N D!M!
(D + M)
- T DM (28)

which equals the right hand side of (1.136) for dimensidpal) + 1. Thus, by
induction, (1.136) must hold true for all valuesbf

Finally we use induction to prove (1.137). Fbf = 2 we find obtain the standard
resultn(D,2) = £D(D + 1), which is also proved in Exercise 1.14. Now assume
that (1.137) is correct for a specific ordef — 1 so that

(D + M —2)!

DM =1 = -

(29)

Substituting this into the right hand side of (1.135) we abta

2 i+ M- 2)
n<D7M)_Z(i(—1)!(M—)1)! (30)

i=



1.17

1.18

1.20
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which, making use of (1.136), gives

(D+ M —1)!

(D M) = =5

(31)

and hence shows that (1.137) is true for polynomials of oideThus by induction
(1.137) must be true for all values 61.

Using integration by parts we have

MNx+1) = / ufe " du
0

[—e‘“ux]go + / zu* e "du=0+2l(z). (32)
0
Foraz = 1 we have
I'(1) = / e “du= [—efu]go =1. (33)
0

If x is an integer we can apply proof by induction to relate the ganfunction to
the factorial function. Suppose th&fz + 1) = z! holds. Then from the result (32)
we havel'(z +2) = (z + 1)I'(z + 1) = (= + 1)!. Finally,I'(1) = 1 = 0!, which
completes the proof by induction.

On the right-hand side of (1.142) we make the change of a@sab— r? to give
%SD / e P2 dy = %SDF(D/2) (34)
0

where we have used the definition (1.141) of the Gamma fumc@m the left hand
side of (1.142) we can use (1.126) to obtaifi/2. Equating these we obtain the
desired result (1.143).

The volume of a sphere of raditisn D-dimensions is obtained by integration

1
Vp =5Sp / Pt g = 20 (35)
JOo D

For D = 2 andD = 3 we obtain the following results
2 4 3
Sy = 2, Sy = 4, Vo = ma”, Vs = 3T (36)

Sincep(x) is radially symmetric it will be roughly constant over theefilof radius
r and thickness. This shell has volumé&r?~'e and sincd|x||? = ? we have

/h 11p(x) dx ~ p(r)SprP~1e (37)
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Solutions 1.22—-1.24

1.22

1.24

from which we obtain (1.148). We can find the stationary poofip(r) by differen-
tiation

4 (r) o« [(D—l)rD_2+rD_1 (—L)}e —i =0 (38)
ar? o2) ] P\ T2 ) T
Solving forr, and usingD > 1, we obtairi ~ v/Do.
Next we note that
o 2
pF+e) o« T+e)P lexp [— (F+e¢) }
202
(T + €)? N
= exp [— 552 +(D-1)In(r+¢€)| . (39)

We now expand(r) around the poinf. Since this is a stationary point @fr)
we must keep terms up to second order. Making use of the expengl + x) =
x — 22/2 + O(2®), together withD >> 1, we obtain (1.149).

Finally, from (1.147) we see that the probability densityteg origin is given by
1
p(x=0)= Qo)1

while the density ajx|| = 7 is given from (1.147) by

(I =) = 75— e (g ) = o e (2
X||=7r)= X — = X ——
P (2mo2)1/2 PN 7202 (2mo2)1/2 P 2
where we have usetl~ v/ Do. Thus the ratio of densities is given byp(D/2).

SubstitutingL,; = 1 — d;; into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for eaghwe should choose the clag$or which

1 — p(C;|x) is a minimum, which is equivalent to choosing théor which the pos-
terior probabilityp(C;|x) is @ maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is cdlyetassified, and hence
minimizing the expected loss will minimize the misclassifion rate.

A vectorx belongs to clas§;, with probabilityp(Cx|x). If we decide to assigr to
classC; we will incur an expected loss of’, Li;p(Ck|x), whereas if we select the
reject option we will incur a loss of. Thus, if

j = argmin Zk: Liap(Cr|x) (40)

then we minimize the expected loss if we take the followintoac

class j, if min; ), Lip(Crlx) < A;
Choose{ reject, otherwise. (41)
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For a loss matrix.,; = 1 — I,; we have) |, Lip(Cr|x) = 1 — p(C;|x) and so we
reject unless the smallest valuelof- p(C;|x) is less tham\, or equivalently if the
largest value op(C;|x) is less tharl — A. In the standard reject criterion we reject
if the largest posterior probability is less th@nThus these two criteria for rejection
are equivalent provide@l = 1 — \.

The expected squared loss for a vectorial target varialgeén by

B(L] = [ [ Iyeo) — et ) axae

Our goal is to choosg(x) so as to minimizé&[L]. We can do this formally using
the calculus of variations to give

OE[L] /
= [ 2(y(x) —t)p(t,x)dt = 0.
5y (%) (y(x) — t)p(t, x)
Solving fory(x), and using the sum and product rules of probability, we obtai
/tp(t7x) dt

0 =L = [ttt e
/ p(t, x) dt

which is the conditional average ttonditioned orx. For the case of a scalar target
variable we have

) = [ tpteie) e
which is equivalent to (1.89).

Since we can choosgx) independently for each value &f the minimum of the
expected., loss can be found by minimizing the integrand given by

/ ly(x) — tp(t) dt (42)

for each value ok. Setting the derivative of (42) with respecti(x) to zero gives
the stationarity condition

/ aly(x) — 1l sign(y(x) — H)p(t) dt

y(x) e’}
. / ly(x) — H7 " p(t]) dt — g / ly(x) — 17 p(t]x) dt = 0

—0o0 Jy(x)

which can also be obtained directly by setting the functideavative of (1.91) with
respect tqy(x) equal to zero. It follows thaj(x) must satisfy

y(x) ()
/ y(x)—tqlpux)dt:/ ) — (e A (43)

—oo Jy(x)
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131

For the case of = 1 this reduces to

y(x) 00
/ p(tx)dt = / p(t|x) dt. (44)

J o0 Jy(x)

which says thay(x) must be the conditional median of

Forg¢ — 0 we note that, as a function of the quantity|y(x) — ¢|? is close to 1
everywhere except in a small neighbourhood arauady(x) where it falls to zero.
The value of (42) will therefore be close to 1, since the dgnsgi) is normalized, but
reduced slightly by the ‘notch’ close to= y(x). We obtain the biggest reduction in
(42) by choosing the location of the notch to coincide witl drgest value gf(t),
i.e. with the (conditional) mode.

The entropy of an\/-state discrete variablecan be written in the form

M

S 1
- Zp@%) Inp(z;) = ZP(%) In . (45)

— (i)

The functionin(z) is concave~ and so we can apply Jensen’s inequality in the form
(1.115) but with the inequality reversed, so that

M 1
z) <ln ZP(TZ)M =InM. (46)

We first make use of the relatidiix; y) = H(y) — H(y|x) which we obtained in
(1.121), and note that the mutual information satisfigsy) > 0 since it is a form
of Kullback-Leibler divergence. Finally we make use of taktion (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient camdfor the equality to be
satisfied, we substituig(x, y) = p(x)p(y) into the definition of the entropy, giving

H(x,y) = l//i x,y) Inp(x,y) dx dy
_'LK/ y) {lnp(x) +Inp(y)} dxdy

= [rompeoax+ [ o) mp)ay
H(x) + H(y).

To show that statistical independence is a necessary camdite combine the equal-
ity condition

H(x,y) = H(x) + H(y)
with the result (1.112) to give

H(y[x) = H(y).
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Solutions 1.35—-1.38

1.35

1.38

do indeed satisfy the three constraints.

Note that there is a typographical error in the question,ctvishould read "Use
calculus of variations to show that the stationary pointhef tunctional shown just
before (1.108) is given by (1.108)".

For the multivariate version of this derivation, see ExsgcP.14.

Substituting the right hand side of (1.109) in the argumérihe logarithm on the
right hand side of (1.103), we obtain

- / p(e) np() da

_ _/p@) <—%1n(27702) - (x%f)2> de

where in the last step we used (1.107).

From (1.114) we know that the result (1.115) holdsfér= 1. We now suppose that
it holds for some general valug and show that it must therefore hold fof + 1.
Consider the left hand side of (1.115)

M+1 M
f <Z >\sz> f <>\M+11‘M+1 + Z >\i~1’z‘> (50)

i=1

M
f <)\M+1SL'M+1 + (1= Apga) mel) (51)

=1

where we have defined \

= - 52
1 — A (52)

i

We now apply (1.114) to give

M+1 M
f (Z >\ﬂ?z‘> S A f(@mg) + (1= Anra) f (Z m%) . (89)

We now note that the quantities by definition satisfy

M—+1

d ai=1 (54)




Solutions 1.41-2.1 19

and hence we have
M
Z)\i =1-Am1 (55)

Then using (52) we see that the quantitigsatisfy the property

M
Y ni=—— ZA =1. (56)

1- )\M+1 —
Thus we can apply the result (1.115) at ordérand so (53) becomes

M1 M M1
f (Z )\iwi> <A f(@ars1) + (1= A1) Z ni f(x4) Z Aif(zi) (57)

i=1
where we have made use of (52).

1.41 From the product rule we hayéx,y) = p(y|x)p(x), and so (1.120) can be written

as
Ix;y) = //p(x,y) Inp(y) dxdy+//p(x,y) Inp(y[x) dx dy

_ / p(y) Inp(y) dy + / / p(%,v) lnp(y|x) dx dy
= H(y) - H(ylx). (58)

Chapter 2 Density Estimation

2.1 From the definition (2.2) of the Bernoulli distribution wevea

> p@lp) = plx=0lp)+plx=1lp) (59)
z€{0,1}
= 1-p+p=1 (60)
> aplalp) = 0pe=0lu)+ Lple = 1u) = p (61)
z€{0,1}
(x—p)?p(zlp) = pPple=0lp)+ (1 —p)’plz=1p)  (62)
>

ze{0,1}
= (1= p)+ (1 —p)p=pl —p). (63)
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Solution 2.3

The entropy is given by

H(x) = = ) plalp)np(lp)
z€{0,1}
= = ) W= {anp+ (1—2)n(l - p)}
z€{0,1}
= —(1—p)n(l—pn)—plnu. (64)
Using the definition (2.10) we have
N NY N N
<n> + <n - 1>  nl(N —n)! + (n—1IN+1—n)!
(N4+1—-n)N!'+nN!' (N +1)
nl(N +1—n)! (N +1—n)!
_ <N + 1>. (65)
n

To prove the binomial theorem (2.263) we note that the thmdeetrivially true
for N = 0. We now assume that it holds for some general va&fuand prove its
correctness foV + 1, which can be done as follows

N

(1+2)) ({Z)x”

n=0

S22
- (B0 () ()

n
1
)
1

N
(N1, N+1\ , [N+
- (0 e x () (3

(1 4 x)N+l

n=1
N41
1
- (N * >T” (66)
n=0 n

which completes the inductive proof. Finally, using thedmmal theorem, the nor-

malization condition (2.264) for the binomial distributigives

é <'Z>u"(1 - = (1 —/L)Niv: <JZ> <1 ﬁp])n

n=0

- (1M)N<1+L>N_1

I—p

(67)
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Figure 2

2.5

2.9

Solutions 2.5-2.9 21

Plot of the region of integration of (68)
in (z,t) space.

as required.

Making the change of variable= y + « in (2.266) we obtain

rmwwy_lmxwi{mem—w@—xﬂ4a}dﬁ (68)

We now exchange the order of integration, taking care owelithits of integration

[(a)L'(b) = /000/0 % exp(—t)(t — )P~ dx dt. (69)

The change in the limits of integration in going from (68) 6@} can be understood
by reference to Figure 2. Finally we change variables irthtegral usinge = tu
to give

L(a)T(b) = /00 exp(—t)t* 0t de /1 pt 1 = )t dp
0 0
= T+t [ a0 (70)
0

When we integrate ovet,;_; the lower limit of integration i), while the upper

limitis 1 — ZjM:IQ 1; since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

1—Z§W=I2 Hj
Pr—1 (1, phar—2) =/ pavr (o, - fiar—1) dptar—1
0

M—2 1= 0% M-1 onrt
N — _1—1
H " 1] / par (1 - Z 14 dpar—1.
0
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In order to make the limits of integration equal@cand1 we change integration
variable fromu ;1 to ¢ using

M—2
pa—1 =1 <1 - Z ,Uj> (71)
=1

which gives

plbf—l(ﬂh sy MM — 2)

] M—2 apm—1tanp—1 1
= Cu H /Lak ! <1 — Z Mj) / tahlfl_l(l _t)aM—l dt
j=1 0

C(an—1 + an)

1 M—2 ap—1+oap—1 I‘(a )F(a )
— CAI H /,Lak 1 (1 _ Z M]> M—-1 ' M (72)
j=1

where we have used (2.265). The right hand side of (72) is teele@ a normalized

Dirichlet distribution oveM/ —1 variables, with coefficients,, . .., an—o, apr—1+
u ayr, (note that we have effectively combined the final two catieg) and we can
F2 )5 R IR TAZ #E K IR %15‘ F identify its normalization coefficient using (2.38). Thus
Oy = F(Oél-i-...—i-()éM) ) F((XM—1+(1A[)
I(aq)...D(ap—2)(ap—1 +anr) Tlanr—1)(anr)
C(ay +...+an)
— 73
Dan) - T(ax) 79
as required.

2.11 We first of all write the Dirichlet distribution (2.38) in tHerm

Dir(ula) = Hu’” -

where

Do) - Tan)
Next we note the following relation

5 M M
ap—1
— || " = o H exp ((ar — 1) In pg)
0a; k=1 0a; k=1
M
= Hlnu] exp{(ax — 1) In g}
k=1

= ln,u]Hua’“ !
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Solution 1.34 17

We now note that the right-hand side is independestafid hence the left-hand side
must also be constant with respecktaUsing (1.121) it then follows that the mutual
informationI[x, y] = 0. Finally, using (1.120) we see that the mutual informat®n i
a form of KL divergence, and this vanishes only if the two rilisttions are equal, so

thatp(x,y) = p(x)p(y) as required.

Obtaining the required functional derivative can be dorgdy by inspection. How-
ever, if a more formal approach is required we can proceedl&svs using the
techniques set out in Appendix D. Consider first the funetion

Iip(a)] = / p(a)f () da.
Under a small variatiop(z) — p(z) + en(x) we have
Ip(o) +en(@)] = [ pla) e do +c [ nfe) ) da

and hence from (D.3) we deduce that the functional derigasi\given by
ol

Similarly, if we define
Jpta)) = [ plo)nplz) ds

then under a small variatigin(z) — p(x) + en(x) we have

o) +enta)] = [ ple)mple) da
+e {/r](m) Inp(x)dx + /p(l)]%n(x) dw} +O(é?)
and hence e
m =p(z) + 1.

Using these two results we obtain the following result fa thnctional derivative
—Inp(z) — 14 A + Aox + As(z — ).

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1)1i0& each of the three
constraints (1.105), (1.106) and (1.107) in turn. The sofus most easily obtained
by comparison with the standard form of the Gaussian, andgdtat the results

1
A = 1f§1n (27r02) (47)
A2 = 0 (48)
1
M= o (49)

.T_
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Solution 2.14 23

'om which we obtain

1 1 M
Ellnp;] = K(a)/ / In p; H/Lgk’_ld/m...duM
/0 J0 k=1
1 M
= K(a) / / p N dpn L. dpas
aaj 0 ’H k
= K(a)z—
a,uk K( )
= fian(a).
Ok

Finally, using the expression fdf («), together with the definition of the digamma
functiony(-), we have

Elln ;] = ¢(ar) — (o).

As for the univariate Gaussian considered in Section 1.6¢cavemake use of La-
grange multipliers to enforce the constraints on the maxirentropy solution. Note
that we need a single Lagrange multiplier for the normakratonstraint (2.280),
a D-dimensional vectom of Lagrange multipliers for thé constraints given by
(2.281), and @ x D matrix L of Lagrange multipliers to enforce th&* constraints
represented by (2.282). Thus we maximize

Hjp] = - /p(X) Inp(x) dx + A </p(><) dx — 1)
ot ([ e}
+Tr{L </p(x)(xu)(xu)TdXE>}. (74)

By functional differentiation (Appendix D) the maximum dii$ functional with
respect tg(x) occurs when

0=—-1-Inp(x) + A+ m x+ Tr{L(x — p)(x — p)"}. (75)
Solving forp(x) we obtain
p(x) = exp {)\ — 14 mTx + (x — p)"L(x — u)} . (76)

We now find the values of the Lagrange multipliers by appltleconstraints. First
we complete the square inside the exponential, which besome

T
1 1 1
A—1+4 <Xu+§L_lm> L<xu+§L_lm> +uTmmeTL_lm.
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We now make the change of variable
1 —1
y=Xx—p+ §L m.

The constraint (2.281) then becomes
T T L |
expsA—1+y Ly+p m—ZmL m y+u—§L m | dy = p.

In the final parentheses, the termyinvanishes by symmetry, while the term in
simply integrates tqu by virtue of the normalization constraint (2.280) which now
takes the form

1
/exp {)\ —14+y"Ly+p"m — ZmTL_lm} dy = 1.

and hence we have )
——L'm=0
2

where again we have made use of the constraint (2.280). ithus 0 and so the
density becomes

p(x) =exp{A =1+ (x—p) L(x —p)}.

Substituting this into the final constraint (2.282), and mgkhe change of variable
x — p = z we obtain

/exp {)\ -1+ ZTLZ} zzl dx = 3.

Applying an analogous argument to that used to derive (2v@49btainL = — 3.
Finally, the value of\ is simply that value needed to ensure that the Gaussiait distr
bution is correctly normalized, as derived in Section 2] ence is given by

1 1
A= 1“{<27r>D/2 |z|1/2}‘

2.16 We havep(z1) = N (z1|u1, 7 ') andp(zs) = N (2za|pe, 75 ). Sincexr = z; + x5
we also havep(z|ry) = N (x| + z2,7, '). We now evaluate the convolution
integral given by (2.284) which takes the form

T\Y2 yp /2 [ T T
)= (35) " (52) / exp {~ (0 — i — 72)” = 2wz — o)} .

(77)
Since the final result will be a Gaussian distribution#¢r) we need only evaluate
its precision, since, from (1.110), the entropy is deterdihy the variance or equiv-
alently the precision, and is independent of the mean. Tlugs us to simplify the
calculation by ignoring such things as normalization cants.

B R R EMNKRAE T
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Solutions 2.17-2.20 25

We begin by considering the terms in the exponent of (77) imtiepend o, which
are given by

1
—53[:3(7'1 + 7o)+ xo {7 (x — 1) + Topa}

2 2
1 _ _
— (4 362_71(95 fi1) + Tapto n {ri(z— ) + 1ap0}
2 T1 +7’2 2(7’14‘7’2)

where we have completed the square ower When we integrate outs,, the first
term on the right hand side will simply give rise to a constactor independent
of z. The second term, when expanded out, will involve a term?n Since the
precision ofz is given directly in terms of the coefficient af in the exponent, it is
only such terms that we need to consider. There is one otimariter? arising from
the original exponentin (77). Combining these we have

2
T o T 2 1 mime

¢ = ——
2 2(11 + 72) 271 + 1

from which we see that has precision; 7o /(11 + 72).

We can also obtain this result for the precision directly ppealing to the general
result (2.115) for the convolution of two linear-Gaussigstributions.

The entropy ofr is then given, from (1.110), by

H(z)= %IH{W}

We can use an analogous argument to that used in the soldtiexeocise 1.14.
Consider a general square matfixwith elements\;;. Then we can always write
A = A® + AS where

(78)

Aij + Ajz‘
2 b

A
Az‘j = (79)

and it is easily verified thad® is symmetric so thaA\fj = A]SZ andA* is antisym-

metric so that\2 = —A%,. The quadratic form in the exponent of&dimensional
multivariate Gaussian distribution can be written

D D
Z Z(wi — pi)Nij(x5 — pj) (80)

i=1 j=1

|~

whereA = 37! is the precision matrix. When we substittie= A* + AS into
(80) we see that the term involvilg™ vanishes since for every positive term there
is an equal and opposite negative term. Thus we can alwagték be symmetric.

Sinceuy, ..., up constitute a basis fdk”, we can write

a:d1u1+d2u2+...+dDuD7
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Solutions 2.22—-2.24

2.22

2.24

whereay, ..., ap are coefficients obtained by projectiagnu, . .., up. Note that
they typically donot equal the elements af.

Using this we can write

a'>¥a = (&1u”1r + ...+ &Du};) ¥ (Guy + ...+ apup)

and combining this result with (2.45) we get
(aquf + ...+ apup) (@\uy + ...+ apApup).
Now, sinceu] u; = 1 only if i = j, and0 otherwise, this becomes
a2+ ...+ abAp

and sincea is real, we see that this expression will be strictly posifier any non-
zeroa, if all eigenvalues are strictly positive. It is also clehat if an eigenvalue,
i, IS Zero or negative, there exist a vecige.g.a = u;), for which this expression
will be less than or equal to zero. Thus, that a matrix haswigetors which are all
strictly positive is a sufficient and necessary conditiontfee matrix to be positive
definite.

Consider a matrixM which is symmetric, so tha¥IT = M. The inverse matrix
M~! satisfies
MM ' =1

Taking the transpose of both sides of this equation, andyukimrelation (C.1), we
obtain .
M) M"=1"=1

since the identity matrix is symmetric. Making use of the gyatry condition for
M we then have "
(M™) M=I
and hence, from the definition of the matrix inverse,
(M) =m
and soM ! is also a symmetric matrix.

Multiplying the left hand side of (2.76) by the matrix (2.28mvially gives the iden-
tity matrix. On the right hand side consider the four blockshe resulting parti-
tioned matrix:

upper left
AM-BD 'CM=(A-BD 'C)(A-BD!C) ! =1 (81)
upper right

—~AMBD !+ BD ! + BD !CMBD !
= —(A-BD !C)(A-BD !C)"'BD !'+BD!
-BD'+BD !'=0 (82)
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Solutions 2.28-2.32 27

lower left
CM-DD 'CM=CM-CM =0 (83)

lower right
~CMBD '+DD '+DD !CMBD '=DD !=1 (84)
Thus the right hand side also equals the identity matrix.

For the marginal distributiop(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simply. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) asithierefore given b, —*.

Now consider the conditional distributigriy |x). Applying the result (2.81) for the
conditional mean we obtain

fyp = Ap+b+ AATTA(x — p) = Ax +b.

Similarly applying the result (2.82) for the covariancelud tonditional distribution
we have

covly|x] =L7' + AATTAT - AATTAATTAT = L7!
as required.

The quadratic form in the exponential of the joint distribatis given by

50— WA~ @)~ Sy~ Ax—b)"L(y - Ax~b).  (85)

We now extract all of those terms involvingand assemble them into a standard
Gaussian quadratic form by completing the square

1
= —-x"(A+A"LA)x+x" [Ap+ A"L(y — b)| + const

2
1
= —§(X —m) (A + ATLA)(x — m)
1
+§mT(A + ATLA)m + const (86)

where
m=(A+A"LA)"' [Ap+A"L(y —b)].

We can now perform the integration ovemwhich eliminates the first term in (86).
Then we extract the terms 1 from the final term in (86) and combine these with
the remaining terms from the quadratic form (85) which depemy to give
1
= —5¥ {L-LA(A+A'LA)'A'L}y
+y" [{L-LAA+A"LA)'A"L} b
+LA(A+ATLA) 'Ap]. (87)
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We can identify the precision of the marginal distributjgy) from the second order
term iny. To find the corresponding covariance, we take the invertieegbrecision
and apply the Woodbury inversion formula (2.289) to give

{L-LAA+A"LA)'ATL} " =L '+ AA AT (88)

which corresponds to (2.110).

Next we identify the meam of the marginal distribution. To do this we make use of
(88) in (87) and then complete the square to give

1 _
—E(y —v)T (L' + AATTAT) ' (y —v) + const

where

v=(L"+AATAT) (L' + AAT'AT) 'b + LA(A + ATLA) 'Ap] .
Now consider the two terms in the square brackets, the fisstroolvingb and the
second involvings. The first of these contribution simply givies while the term in
L can be written

= (LT'"+AATTAT)LAA+A'LA) 'Ap
= AD+AT'ATLAYI+ATTATLA) 'A 'Ap = Ap

where we have used the general resBBC)~' = C'B~!. Hence we obtain
(2.109).

2.34 Differentiating (2.118) with respect t8 we obtain two terms:

N 0 N ,-\T N,
s () =g
For the second term, we first re-write the sum
N
> (xn—p)TS T (x, — p) = NTr[B7'S],
n=1

where
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Using this together with (C.21), in which= ¥;; (element(i, j) in X), and proper-
ties of the trace we get

0
8E¢j

0
aZij

N
Y 0 =)' (xn —p) = N=—Tr[27'S]

= NTr [ 2—15}

822']'

= —NTr [21 0%

»7's
0% }

9%
— NT
r[azm

= -N(z7'sxz7).

vJ

21321}

where we have used (C.26). Note that in the last step we haeead the fact that
¥i; = Xj;, so thatoX /0%;; has al in position(i, j) only and0 everywhere else.
Treating this result as valid nevertheless, we get

10 . N
5o 2K — ) 2T (e — ) = S ETISR
Combining the derivatives of the two terms and setting tiseltéo zero, we obtain
N N
—¥'=—x"'sy "
2 2

Re-arrangement then yields
=S

as required.

2.36 Consider the expression foﬁm and separate out the contribution from observation

xy to give
R
olny = N > (wn = p)®
n=1
N—1
1 . o 2
= ¥ 3 (zn — p)? + (lNN 2
N-1, (xy — p)?
= N O-(Nfl) + N
(xn — p)?

1
= O{ny_1)+ N {(en —1)? = afn_1y} - (89)
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2.40

If we substitute the expression for a Gaussian distributitmthe result (2.135) for
the Robbins-Monro procedure applied to maximizing likebd, we obtain

9 1 (xy — p)?
2 2 2
OiNy = OiN_1 +anN-1=———< —=-Ilnoiy_) — —5——
(N) ( ) 80_(2N—1) { 9 ( ) 20(2N—1)

1 _ 2

oln-1) FaN-19 ~53— + (;N4 2
I(N-1) I(N-1)
aN—1
= U(QN,U + W {(Z‘N - /4)2 - O'(QN,l)} . (90)

Comparison of (90) with (89) allows us to identify

20’?N_1)

¢ O1)

aAN—1 =

Note that the sign in (2.129) is incorrect, and this equasioould read

pN) — p(N-1) oA=L,

—an—1%(

Also, in order to be consistent with the assumption thg) > 0 for ¢ > 6* and
f(0) < 0forf < 6*in Figure 2.10, we should find the root of the expecteghtive
log likelihood in (2.133). Finally, the labelg and iy, in Figure 2.11 should be
interchanged.

The posterior distribution is proportional to the produidte prior and the likelihood
function

N
p(p|X) o< p(p) [ | p(enl 1, ). (92)

Thus the posterior is proportional to an exponential of adgaiéc form ing given
by

(Xn - H)

N)Ir—l
Mz

1
—5 (= 10) 2 (1 = o)

n=1
) N
— —§HT (B + NS ) p+p” <20_1u0 +x! an> + const
n=1

where const.” denotes terms independent pf Using the discussion following
(2.71) we see that the mean and covariance of the postesimibdition are given by

_ _1\—1 _ _
Uy (Eo '+ NZ 1) (Eo "o+ X 1NNML) (93)
> = 4N (94)
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wherep,,;, is the maximum likelihood solution for the mean given by
1 N
Ha = 7 Z:lxn- (95)

E 2.46 From (2.158), we have

Oobae(_bT)Ta_l 7\ 1/2 T )
—_— [ — ——(x — d

| ra (5) e{ge-wrte

() e (o (v 25

- We now make the proposed change of variabte A, whereA = b+ (z — pn)?/2,
2R R BT RRE T yielding

pa 1 1/2 0o
<—> A“l/Q/ 2712 exp(—2) dz
I(a) \ 27 0

b 1 e —a—1/2
=T (E) A=Y20(a 4 1/2)

where we have used the definition of the Gamma function (3. Hhally, we sub-
stituteb + (x — p)?/2 for A, v/2 for a andv /2 for b:

2
F<_a+1/2) ba < 1 >]/ Aa—l/Q

T'(a) o7

T((w+1)/2) qoN/2/ 1N (v  (z—p2\ "2
—Torm (o) (%) <5+ 2 )

)
)
v v \V/? V2, —(41)/2 r— )2\ /2
MR () ) ()
)
)

_ v+ 1)/2) (i)l/z <1+M>(u+1)/2

2.47 Ignoring the normalization constant, we write (2.159) as
)\ . 2 7(1/71)/2
St(z|pu, A\, v) o [1 + M}

— exp (”;11n [HL”_“’)QD. (96)
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2.51

2.56

For larger, we make use of the Taylor expansion for the logarithm in dnenf
In(1 +€) = e+ O(e?) 97)

to re-write (96) as

exp<—”;11n [1+M]>
~ exp (-”;1 [W;“)z +0(V2)D

= exp (—M + O(V_1)> .

We see that in the limit — oo this becomes, up to an overall constant, the same as
a Gaussian distribution with meanand precision\. Since the Student distribution

is normalized to unity for all values ofit follows that it must remain normalized in
this limit. The normalization coefficient is given by thersdiard expression (2.42)
for a univariate Gaussian.

Using the relation (2.296) we have
1 = exp(iA) exp(—iA) = (cos A+ isin A)(cos A — isin A) = cos®> A +sin® A.
Similarly, we have

cos(A—B) = Rexp{i(A—B)}
= Rexp(iA)exp(—iB)
= R(cos A+ isin A)(cos B —isin B)
= cos Acos B + sin Asin B.

Finally

sin(A— B) = Sexp{i(A— B)}

= SQexp(id)exp(—iB)
S(cos A + isin A)(cos B — isin B)
sin A cos B — cos Asin B.

We can most conveniently cast distributions into standgpdeential family form by
taking the exponential of the logarithm of the distributi¢ior the Beta distribution
(2.13) we have

Beta(pu|a, b) = f’(c?)if(b)) exp{(a—1)Inp+ (b—1)In(1 —p)} (98)
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which we can identify as being in standard exponential fa2rh94) with

h(p) = 1 (99)
sah) = o (100)
w0 = (i) oy
n(a,b) = (Z“D. (102)

Applying the same approach to the gamma distribution (2.t60btain

a

Gam(\l|a,b) = b exp{(a—1)In\ —bA}.

I'(a)
from which it follows that
h(A) = 1 (103)
ba
g(a,b) = m (104)
A
u(\) = <ln )\> (105)
—b
nab) = ( 5 1) | (106)
Finally, for the von Mises distribution (2.179) we make u$éhe identity (2.178) to
give
1 . .
p(0]0y, m) = 2o (m) exp {m cosf cos By + msin Osin by}
from which we find
ho) = 1 (207)
1
Og,m — 108
9(80,m) 21 Iy(m) (108)
cosf
u(f) = <sin9> (109)
/ [ mecost
ntom) = (i), (110

2.60 The value of the density(x) at a pointx,, is given byh,,), where the notatiofi(n)
denotes that data poit, falls within regionj. Thus the log likelihood function

takes the form
N N
Z Inp(x,) = Z In A
n=1 n=1
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Solution 3.1

Chapter 3

We now need to take account of the constraintfita) must integrate to unity. Since
p(x) has the constant value over regioni, which has volumé\;, the normalization
constraint becomey |, h;A; = 1. Introducing a Lagrange multipliex we then
minimize the function

N
Zln h](n) + A (Z hz’Az’ — 1)
n=1 %

with respect tdu;, to give

Nk
0=—+)A
I + k

wheren;, denotes the total number of data points falling within regioMultiplying
both sides by, summing overk and making use of the normalization constraint,
we obtainA\ = —N. Eliminating A then gives our final result for the maximum
likelihood solution forh;, in the form

Note that, for equal sized bins, = A we obtain a bin height; which is propor-
tional to the fraction of points falling within that bin, agpgected.

Linear Models for Regression

3.1

Using (3.6), we have

20’(2@)-1 = m—l

2 1+e 2
l+e20 14e2a
1 — -2
et —e
= tanh(a)
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If we now takea; = (z — p1;)/2s, we can rewrite (3.101) as

M
y(x,w) = wo+ > w;o(2a)
j=1

M
= wt+ Y % (20(2a;) — 1+ 1)
j=1
M
= up+ Z uj tanh(a;),

=1

whereu; = w;/2,forj=1,..., M, andu, = wy + Ejj\il w; /2. Note that there is
a typographical error in the question: there & missing in the denominator of the

argument to thetanh’ function in equation (3.102).

3.4 Let
D
Yn = Wo+ Z Wi (Tni + €ni)

i=1

D
= yn+§ Wi€nj
i=1

wherey,, = y(z,, w) ande,; ~ N(0,0?) and we have used (3.105). From (3.106)
we then define

N
E = Z {:ljn - tn}2
n=1
N
> {72 — 2t +£2}
n=1

D D 2
Yp + 2yn Z Wi€ni + <Z wﬁm)

1 i=1 i=1

DN | — N —

NE

1
2

3
I

D
—2t,yn — 2ty Z W;i€ni + ti

i=1

If we take the expectation df under the distribution of,,;, we see that the second
and fifth terms disappear, sin,,;| = 0, while for the third term we get

D 2 D
E E W;i€ni = E ’LU120'2
i=1 i=1
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Solutions 3.5-3.6

3.5

since the,,; are all independent with varianeg.
From this and (3.106) we see that

D
Pl 1 2 2
E[E} —ED+§2wia,

as required.

We can rewrite (3.30) as
1 (&
b (i) <0
j=1

where we have incorporated th¢2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can éoenthis with (3.12)
to obtain the Lagrangian function

1 N A M
L{w,A) =5 Y At~ wh(x)} + 3 <Z Jw;|* = n)

and by comparing this with (3.29) we see immediately that Hre identical in their
dependence ow.

Now suppose we choose a specific value.at 0 and minimize (3.29). Denoting
the resulting value ofv by w* (), and using the KKT condition (E.11), we see that

the value ofy is given by
M
n=y_lw\]
j=1

We first write down the log likelihood function which is givéry

N 1 z T Ts1—1 T
lnL(W7E):—51n\E\—§Z(tn—W d(x)TE 7 (b6, — W (x,)).

n=1

First of all we set the derivative with respect¥ equal to zero, giving

N
0=— Z Z_l(tn - WT¢(XR))¢(XR)T°

Multiplying through by3 and introducing the design matrii and the target data
matrix T we have
"PW ="' T

Solving forW then gives (3.15) as required.
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The maximum likelihood solution faE is easily found by appealing to the standard
result from Chapter 2 giving

=N Z Wit @ (xn)) (tn — Wi ¢p(x,)) "

as required. Since we are finding a joint maximum with resfrebbthW andX
we see that it i3V, which appears in this expression, as in the standard result f
an unconditional Gaussian distribution.

Combining the prior
p(w) = N(wlmy,Sy)
and the likelihood

AR g
p(tN+1[xny1, W) = <%> exp <_§(tN+l - WT¢N+1)2> (111)

whereg, ; = ¢(xn41), We obtain a posterior of the form

P(W[tN41,XN4+1, mpy, Sy)

X exp <—%(w —my)"Sy (W —my) — %ﬁ(tNH - WT¢N+1)2> :

We can expand the argument of the exponential, omitting-thé factors, as fol-
lows
(Ww—my)"SHw —my) + Btn —wion )’
= WTS&lw — ZWTS&lmN
+ ﬁwT¢%+1¢N+lw — 2ﬁwT¢N+1tN+1 + const
= WT(Sﬁl + [3¢N+1¢Jr{7+1)w - 2WT<S]T/1mN + ﬁ¢N+1tN+1) + const,

whereconst denotes remaining terms independentofFrom this we can read off
the desired result directly,

p(Wltyi1,Xni1, my, Sy) = N(wimpy,1,Sni1),
with
Sihi =Sy + BoN 1PN (112)
and
my4i = SN+1(S§1mN + 5¢N+1tN+1)- (113)

Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

pltlx,t v B) = / Nt ()™ w, 5~ N (wlmy, S) dw

By matching the first factor of the integrand with (2.114) éimel second factor with
(2.113), we obtain the desired result directly from (2.115)
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3.15 This is easily shown by substituting the re-estimation folam (3.92) and (3.95) into
(3.82), giving

«

E(my) = g It — <I>mNH2 + §m}rva
N—~v ~v N
=3 tyT 3

3.18 We can rewrite (3.79)

g It — ®w]® + %WTW
(tTt —otTdw + WT(I’T(I’W) + %WTW

N = ol

(Bt — 26t @w + wTAw)

where, in the last line, we have used (3.81). We now use tblestof addingd =
miAmy — miAmy and usingd = A~ A, combined with (3.84), as follows:

(ﬁtTt —26tT®w + WTAW)

DN | —

(BTt — 28t @A Aw + W Aw)
(Bt't — 2myAw + w'Aw + myAmy — myAmy)

("t — myAmy) + %(w —my)"A(w — my).

N =N =D =

Here the last term equals term the last term of (3.80) andremiains to show that
the first term equals the r.h.s. of (3.82). To do this, we usesttme tricks again:

1 1
5 (Bt —myAmy) = 5 (Bt"t — 2myAmy + myAmy)
1 _
=3 (BTt —2mPAAT'® Tt + mYy, (ol + 5P @) my)
1
=3 (ﬁtTt — Zm%{)Ttﬁ + ﬁm%q)T'{)mN + am%mN)
1
=3 (ﬁ(t —®mpy)T(t — dmy) + am%mN)
«
— D= @my ) + SmGmy
2 2
as required.

3.20 We only need to consider the terms of (3.86) that depend,amhich are the first,
third and fourth terms.
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Following the sequence of steps in Section 3.5.2, we stéhntthve last of these terms,
1

From (3.81), (3.87) and the fact that that eigenvectgrare orthonormal (see also
Appendix C), we find that the eigenvectorsdtto bea+ \;. We can then use (C.47)
and the properties of the logarithm to take us from the lefh#oright side of (3.88).

The derivatives for the first and third term of (3.86) are measily obtained using
standard derivatives and (3.82), yielding

1 /M +m?
- mym .
2\ « NN

We combine these results into (3.89), from which we get (3v82 (3.90). The
expression fory in (3.91) is obtained from (3.90) by substituting

e

e

M N +a
Zi:)\i+

for M and re-arranging.

From (3.10), (3.112) and the properties of the Gaussian ardr@a distributions
(see Appendix B), we get
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[(ag) b5 g%t exp(—by3) dB

sy [ s e aw)

oxp{§<w mo) TS (w mo)}dw

B0t NN exp(—bof) A3

((2m) Mf;s RE // {‘ w—my)' Sy <WmN)} dw

CXp {g (tTt + mo S mo m;[‘vs;vlm]v) }

BN =1 M2 exp(—by3) d3

where we have completed the square for the quadratic fonmn umsing

my = Sy [S;'my+ @'t
Sy = A(S;t+aTe)
any = ap+ ?
1 N
by = bo+ 5 (méso—lmo — m}l\}SﬁlmN + Zf%) .
n=1

Now we are ready to do the integration, first overand then3, and re-arrange the
terms to obtain the desired result

bao )
Goemgy 2 sw T / 0~ exp(~bx3) df

1 |Sn[Y2 b5° T(an)
(277)N/2 ‘So|1/2 b(JIVN F(ao)'

p(t) =
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Chapter 4 Linear Models for Classification

4.2 Forthe purpose of this exercise, we make the contributidheobias weights explicit
in (4.15), giving

Ep(W) = %Tr {(XW +1wj — T)"(XW + 1w; — T)}, (114)

wherewy is the column vector of bias weights (the top rOWAT transposed) antl
is a column vector of N ones.

We can take the derivative of (114) w.nt,, giving
2Nwy + 2(XW — T)"1.
Setting this to zero, and solving fer,, we obtain
wo=t—-W'x (115)
where
t= %TTl and x = %XTL
If we subsitute (115) into (114), we get

Ep(W) = %Tr{(XWJrT—YW—T)T(XW+T—YW—T)}7

where B -
T=1t" and X =1x".

Setting the derivative of this w.r¥ to zero we get
W= (X"X)"'X"T = X'T,

where we have define = X — X andT = T — T.
Now consider the prediction for a new input vecsor,

y(x*) = WTx* 4w,
= Wix*+t-W'x
~ ~N\T
—— (XT> (x* — %). (116)

If we apply (4.157) tat, we get

_ 1
alt = NaTTTl = —b.
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Solutions 4.4-4.9

4.4

4.7

4.9

Therefore, applying (4.157) to (116), we obtain

AT
aly(x*) = a"t+a'T?t <XT) (x* — %)

:a_T

e+

= —b,
sincea™TT = aT(T — T)T = (1 — 1)T =0".
From (4.22) we can construct the Lagrangian function
L=w"(my;—m;)+ A (WTW — 1) )
Taking the gradient of. we obtain
VL = my—m;+2\w
and setting this gradient to zero gives

1
w=——(my —m;y)

2A

form which it follows thatw oc m, — m;.
From (4.59) we have

1 lte -1
l+ee  14e o
- e 1

1—0—6*‘1_6@—0—1:

l—0(a) = 1

o(—a).

The inverse of the logistic sigmoid is easily found as fokow

1
1+e @

E
—
—_
@‘I
<
——
I
|
S

The likelihood function is given by

N K
P {n, tnt{mi}) = H H {p(dn|Cr)mr )

n=1k=1

(117)
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and taking the logarithm, we obtain

N K
mp ({dn, ta}{mi}) = Y ) tur {Inp(dnlC) +Inme}.  (118)

n=1 k=1

In order to maximize the log likelihood with respecttp we need to preserve the
constrainty |, m, = 1. This can be done by introducing a Lagrange multiphend
maximizing

np ({fn, tn}l{me}) + A (Z T — 1) :

Setting the derivative with respect4q equal to zero, we obtain

Ny
ZWL:+)\:O.

n=1
Re-arranging then gives
N
—7Tk)\ = Ztnk = Nk. (119)
Summing both sides ovérwe find that\ = — N, and using this to eliminat® we
obtain (4.159).
4.12 Differentiating (4.59) we obtain

do e @

da (14e)

= o(a)(1 - o(a)).

4.13 We start by computing the derivative of (4.90) w.g.t.

OF 1—1¢ t
— = r_ (120)
OYn 1—yn Yn
_ Yn(1 —t) =t (1 —yn)
yn(l - yn)
Yn — yntn - tn + yntn
- (121)
Yn(1 —yn)
_ YnTtn (122)

B Yn(1 = yn)



Solutions 4.17—-4.19

From (4.88), we see that

Do = 200 o) (1= o)) = gall =) (129

Finally, we have
Va, = ¢, (124)

whereV denotes the gradient with respectto Combining (122), (123) and (124)
using the chain rule, we obtain

N
VE = Za—E%van

as required.

4.17 From (4.104) we have

8?Jk ek etk 2
a3 - = 1—
day, Zi edi <Z@ i > yk( yk)v
8yk ek e®i .

ST T 2 T TURY j#k.
day (Zz eai)

Combining these results we obtain (4.106).
4.19 Using the cross-entropy error function (4.90), and follogvExercise 4.13, we have

OFE Yn — tn

— = 125
OYn yn(l - yn) ( )
Also
Va, = ¢,. (126)
From (4.115) and (4.116) we have
Oy 0®(an) 1 _,p2
Combining (125), (126) and (127), we get
N N
oOF Oyy, Yn — tn 1 -
VE = ———Va, = ———c g, 128
o ayn Oay, p—") yn(l - yn) \/ﬂ ¢ ( )
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In order to find the expression for the Hessian, it is is coregrto first determine

i Yn — tn _ yn(l - yn) o (yn - tn)(l - 2yn)
OYn Yn(1 — yn) Y (1 —yn)? yr (1 —yn)?
2
CU (129)
Yz (1 —yn)?
Then using (126)—(129) we have
N
0 Yn — tn :| 1 .2
VVE = — e e, Vyn
; {5yn L/n(l —yn)] V2r
Yn — tn 1 —a? }
+——x——¢ “(—2ay,)¢,Va,
yn(l - yn) V2T ( )
N2ty = 2yat, 1 e e BT
= e % —2an(Yn — tn) | ———22—.
! Yn(l—yn) V2r V21yn (1 —yn)

The BIC approximation can be viewed as a laig@pproximation to the log model
evidence. From (4.138), we have

A = —VVInp(D|Ouar)p(Oriar)
= H-VV 1HP(9MAP)
and ifp(8) = N (0|m, V,), this becomes
A=H+V;"

If we assume that the prior is broad, or equivalently thatrthember of data points
is large, we can neglect the tei¥fj, * compared tdd. Using this result, (4.137) can
be rewritten in the form
hlp(D) >~ 1Hp<’D‘0MAp) — %(OMAP — m)Val(OMAp — m) - %ln |H| -+ const
(130)
as required. Note that the phrasing of the question is ndsigasince the assump-
tion of a broad prior, or of largéV, is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowingouseglect the second
term on the right hand side of (130) relative to the first term.

Since we assume i.i.d. datH, = —VV In p(D|0\ap) consists of a sum of terms,
one term for each datum, and we can consider the followingoqapation:

N
H:ZHn:Nﬁ

n=1
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Chapter 5

whereH,, is the contribution from the'® data point and

1 N
H=— Z:l H,.
Combining this with the properties of the determinant, weeha
In|H| = In|VH| = In (NM\}AI\) — MInN + In[H]

wherel is the dimensionality 0f. Note that we are assuming tHAthas full rank

M. Finally, using this result together (130), we obtain (Q)3y dropping thén |ﬁ\
since thisO(1) compared tdn V.

Neural Networks

5.2

5.5

The likelihood function for an i.i.d. data sef(xi,t),..., (xn,tx)}, under the
conditional distribution (5.16) is given by

N
H./\/ (tn|y(xn7 w), [3711) .

If we take the logarithm of this, using (2.43), we get
Zln/\f n|y(xpn, w ),[3*11)

¥ (%0, W)) " (BI) (. — ¥ (%0, W)) + const

l\JlH

y (%, w)||? + const

g0
2

MIQ

where ‘const’ comprises terms which are independent ofThe first term on the
right hand side is proportional to the negative of (5.11) hedce maximizing the
log-likelihood is equivalent to minimizing the sum-of-gaqes error.

For the given interpretation af;(x, w), the conditional distribution of the target
vector for a multiclass neural network is

K
p(tlwy, ..., wg) = Hz/,tj
k=1
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Thus, for a data set a¥ points, the likelihood function will be

N K
p(T|wy,...,wg) = HH’U;I@L

n=1k=1

Taking the negative logarithm in order to derive an errorcfion we obtain (5.24)
as required. Note that this is the same result as for the clagds logistic regression
model, given by (4.108) .

Differentiating (5.21) with respect to the activatiop corresponding to a particular
data pointz, we obtain

oE 1 0y, 1 Oy,
From (4.88), we have
Wn (1= ) (132)
Substituting (132) into (131), we get
or yn(l _yn) yn<1 _yn)
7 = “tpy—————+ (1 —t) 7
= Yn — ty

as required.

This simply corresponds to a scaling and shifting of the hyirmutputs, which di-
rectly gives the activation function, using the notatioonfr(5.19), in the form

y=20(a) — 1.

The corresponding error function can be constructed frora1{5by applying the
inverse transform tg,, andt,,, yielding

N
T+tn, 14y, 1+, 1+ yn
E = N T (- In(1-—7"
(w) Z 5 n 5 +< 5 >n< 5 >

N
—% Z {1+ty)In(1+y,) + (1 —tn) In(l —y,)} + N1n2

where the last term can be dropped, since it is independemnt of

To find the corresponding activation function we simply gk linear transforma-
tion to the logistic sigmoid given by (5.19), which gives

2

1+e @
1—¢ @ ea/2 _ 6’_0’/2

14+ e@ - ea/2 +67a/2
tanh(a/2).

yla) = 20(a)—1=
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Solutions 5.10-5.11

5.10 From (5.33) and (5.35) we have

5.11

T T
u; Hu; = u; \ju; = A\,

Assume thaH is positive definite, so that (5.37) holds. Then by setting u, it
follows that

A= u;FHui >0 (133)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (133) holds. Then, for any vectone can make use of
(5.38) to give
T
<Z ciui> H <Z lelj)
i J

T
(Z Ciui> (Z )\jClej)
i J
Z )\lcf >0

where we have used (5.33) and (5.34) along with (133). Thal df the eigenvalues
are positive, the Hessian matrix will be positive definite.

vIHv

We start by making the change of variable given by (5.35) thsllows the error
function to be written in the form (5.36). Setting the valuetloe error function
E(w) to a constant valué' we obtain

* 1 2 __
E<W )+§Z)\¢Oéi =C.

Re-arranging gives
> i =20 - 2E(w) =C

whereC is also a constant. This is the equation for an ellipse whrss are aligned
with the coordinates described by the variables}. The length of axig is found
by settinge; = 0 for all i # j, and solving for; giving

which is inversely proportional to the square root of theresponding eigenvalue.
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5.19

5.25

Solutions 5.12—-5.25 49

From (5.37) we see that, H is positive definite, then the second term in (5.32) will
be positive whenevgiw — w*) is non-zero. Thus the smallest value whiEfw)
can take isF(w*), and sow* is the minimum ofF (w).

Conversely, ifw* is the minimum ofE/(w), then, for any vectow # w*, E(w) >

E(w*). This will only be the case if the second term of (5.32) is pesifor all

values ofw # w* (since the first term is independentw). Sincew — w* can be
set to any vector of real numbers, it follows from the defomit(5.37) thafH must
be positive definite.

If we take the gradient of (5.21) with respectwg we obtain

N

Z aTVan = Z(yn —tn)Van,

n=1

where we have used the result proved earlier in the solubi&xercise 5.6. Taking
the second derivatives we have

VVE(w) = Z{%ann (yn tn)VVan}.

n=1

Dropping the last term and using the result (4.88) for theveéve of the logistic
sigmoid function, proved in the solution to Exercise 4.12,fimally get

VVE(w Zyn — yn)Va,Va, = Zyn Yn)

whereb,, = Va,,.
The gradient of (5.195) is given

VE =H(w —w")
and hence update formula (5.196) becomes

w™ = w™ D — pH(wWT Y — w*).

Pre-multiplying both sides With]T we get

w;ﬂ _ uTw(T> (134)
= u, Tw(T=1 puTH(w(Tfl)—w*)
= w" Y — pnyuf (w—w*)
= wi" Y =y (T —w), (135)

where we have used (5.198). To show that

w™ = {1 -1~ pny) }w
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5.27

forr =1,2,..., we can use proof by induction. For= 1, we recall thatw(®) = 0
and insert this into (135), giving

1 0 0
wi = w® — pn; (wl” —w))
= pnwj
{1— (1= pny)} ;.

Now we assume that the result holds foe= N — 1 and then make use of (135)

Ny _ (N1 (N-1)
W = wy —pnj(wj —wj)

= w1 = pny) + pryuw
{1=Q =)™} wi (1 = ) + pmjwy
= {0 =pmy) = A= pn)" }w} + pnjwj
= {1-0-m)"}wj
as required.

Provided thatl — pn;| < 1 then we havel — pn;)™ — 0 asT — oo, and hence
{1 - (1- pnj)N} — landw(™ — w*,

If 7 is finite butn; > (p7)~!, 7 must still be large, sincg;pr > 1, even though
|1 — pn;| < 1. If 7 is large, it follows from the argument above tl’n@ff) ~ wj.

If, on the other handy; < (p7)~!, this means thain,; must be small, sincen; 7 <
1 andr is an integer greater than or equal to one. If we expand,

(1= pny)" =1 —71pn; + O(p13)
and insert this into (5.197), we get

T)‘

! {1~ (1 — pny)"} ]

= [{1—-1—=7pn; +0(pm?))} w}|
= rpnhu] < ]

Recall that in Section 3.5.3 we showed that when the regatéoin parameter (called
ain that section) is much larger than one of the eigenvaluske@) ; in that section)
then the corresponding parameter valuewill be close to zero. Conversely, when
a is much smaller than; thenw; will be close to its maximum likelihood value.
Thusa is playing an analogous role to-.

If s(x,&) = x+ &, then

Osi _, o 05 _
75, = I, |.e.,8£ =1,
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and since the first order derivative is constant, there at@giwer order derivatives.
We now make use of this result to obtain the derivativeg; wfr.t. &;:

Z Oy Osp _
8{1 sy 0&; 891 !

83/ . Z ab 89k o bi
dEDE; agj dsi, 06,  Ds;

Using these results, we can write the expansioE@[s follows:

///{y ) — t}p(t[x)p(x)p(€) d€ dx dt

/ / {y(x) — t}bTEp(€)p(t|x)p(x) d€ dx dt
% . / / / €' ({y(x) — t}B + bb") &p(€)p(t|x)p(x) d€ dx dt.

The middle term will again disappear, sinE&] = 0 and thus we can writ& on
the form of (5.131) with

-3 / / ¢ ({y(x) - t}B + bb") £p(€)p(tlx)p(x) d€ dx dr.

Again the first term within the parenthesis vanishes to legdrder ing and we are
left with

Q

12

/ ¢ (bb") &p(&)p(x) d€ dx
2// Trace((¢€7) (bb")] p(€)p(x) dg dx
% / Trace[I (bb")] p(x) dx

1
—2/bbp /IV?J )Pp(x

where we used the fact thAf¢ée"] = T

The modifications only affect derivatives with respect tagi#s in the convolutional
layer. The units within a feature map (indexegl have different inputs, but all share
a common weight vector ™. Thus, errorsi™ from all units within a feature
map will contribute to the derivatives of the correspondivgjght vector. In this
situation, (5.50) becomes

(m)
OBn _ 3 OE, 94, S m)
811/£m) 8(1 8111(m> —J i
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Solutions 5.29-5.34

5.29

5.34

Here a§m) denotes the activation of th&® unit in them'" feature map, whereas

wfm) denotes theé'" element of the corresponding feature vector and, finaj[y,)
denotes the'" input for thejt" unit in them!" feature map; the latter may be an
actual input or the output of a preceding layer.

Note thaté(m) oE, /8a(m) will typlcally be computed recursively from thes
of the units in the foIIowmg layer, using (5.55). If thereedayer(s) preceding the
convolutional layer, the standard backward propagatiaratgns will apply; the
weights in the convolutional layer can be treated as if thegewwndependent param-
eters, for the purpose of computing thefor the preceding layer’s units.

This is easily verified by taking the derivative of (5.1383ing (1.46) and standard
derivatives, yielding

89 1 w; — g
ALY 3w sy o) )
J

Ow; 32 TN (wilp, of)

Combining this with (5.139) and (5.140), we immediatelyadbthe second term of
(5.141).

We start by using the chain rule to write

oE, 87rj
8ak Jz: om; daj’ (136)

Note that because of the coupling between outputs causdekelsoftmax activation
function, the dependence on the activation of a single duipit involves all the
output units.

For the first factor inside the sum on the r.h.s. of (136),dhad derivatives applied
to then'™® term of (5.153) gives

8En Nnj 'Ynj

= - =——, (137)
om; Z{il TN T
For the for the second factor, we have from (4.106) that
on;
T‘,ZT:?T]'(IJ']C—T(]{). (138)

Combining (136), (137) and (138), we get

oE, Tnj
Oaf, N Z Ly = k)

K

= —Z’Ynj(fjk — k) = —Vnk + Z%ﬂrk = Tk — Vnk>
: ot

where we have used the fact that, by (5.1@);,(:1 Yn; = 1 forall n.
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Solutions 5.39-6.1 53

Using (4.135), we can approximate (5.174) as
p(Dle, B) =~ p(D|wniap, B)p(Wnap|a)
1
/exp {—5 (w— WMAp)T A(w— WMAP)} dw,

whereA is given by (5.166), since(D|w, 3)p(w|«) is proportional to(w|D, «, 3).
Using (4.135), (5.162) and (5.163), we can rewrite this as

(2m)W/?

N
p(Dla, 3) ~ HN(tn|y(XmWMAP)aﬂ_l)N(WMAP\Oa a‘ll)W.

Taking the logarithm of both sides and then using (2.42) @&xi3), we obtain the
desired result.

For a K -class neural network, the likelihood function is given by

N K

H H Yk (Xn7 W)tnk

n k

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the postetistribution over the

weights, but the corresponding Hessian matfiidxjn (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binarpss entropy error term in
the regularized error function (5.184).

The predictive distribution for a new pattern would agairnéto be approximated,
since the resulting marginalization cannot be done armalyi However, in con-
trast to the two-class problem, there is no obvious candiftaitthis approximation,
although Gibbs (1997) discusses various alternatives.

Kernel Methods

6.1

We first of all note that/ (a) depends oa only through the fornKa. Since typically
the numberN of data points is greater than the numBérof basis functions, the
matrix K = ®®7 will be rank deficient. There will then b&/ eigenvectors oK
having non-zero eigenvalues, aNd- M eigenvectors with eigenvalue zero. We can
then decomposa = a| + a WhereaﬁaL = 0 andKa, = 0. Thus the value of
a, is not determined by (a). We can remove the ambiguity by settiag = 0, or
equivalently by adding a regularizer term

€

T
—a;a|
2 L
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Solution 6.5

6.5

to J(a) wheree is a small positive constant. Then= a; wherea| lies in the span

of K = &' and hence can be written as a linear combination of the caufin
®, so that in component notation

M
ay, = Z uidi(Xn)
i—1

or equivalently in vector notation
a = Pu. (139)
Substituting (139) into (6.7) we obtain

Ju) = =(K®u—t)" (Kdu—t)+ %uT{)TKtI)u

1
2
71 T T T o éTT T

= 5 (®2'Pu—t) (22 Pu—t)+u'P S Du (140)

Since the matrix@™ ® has full rank we can define an equivalent parametrization
given by

w = ®"Tdu
and substituting this into (140) we recover the originalulegzed error function
(6.2).

The results (6.13) and (6.14) are easily proved by using {ghich defines the kernel
in terms of the scalar product between the feature vectorsvim input vectors. If
k1 (x,x’) is a valid kernel then there must exist a feature vegior) such that

ki (x,x') = ¢(x)" $(x).

It follows that

cky (x,x') = u(x) u(x’)

where

u(x) = ¢'2¢(x)
and sak; (x,x’) can be expressed as the scalar product of feature vectdrseane
is a valid kernel.

Similarly, for (6.14) we can write
FEkL(x,x) f(x) = v(x)Tv(x)
where we have defined
v(x) = f(x)o(x).
Again, we see thaf(x)k;(x,x’)f(x’) can be expressed as the scalar product of
feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealindnéogeneral result that
the Gram matrix K, whose elements are given byx,,, x,,), should be positive
semidefinite for all possible choices of the $&t, }, by following a similar argu-

ment to Solution 6.7 below.
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6.7 (6.17)is most easily proved by making use of the result,utised on page 295, that

6.12

a necessary and sufficient condition for a functidx, x’) to be a valid kernel is
that the Gram matri¥, whose elements are given byx,,, x,,, ), should be positive
semidefinite for all possible choices of the $&t,}. A matrix K is positive semi-
definite if, and only if,

a'Ka >0

for any choice of the vectar. Let K; be the Gram matrix fok, (x, x’) and letK,
be the Gram matrix fok,(x,x’). Then

aT(K1 + Kg)a = aTKla + aTKga >0

where we have used the fact tHdt and K, are positive semi-definite matrices,
together with the fact that the sum of two non-negative nushé! itself be non-
negative. Thus, (6.17) defines a valid kernel.

To prove (6.18), we take the approach adopted in Solution Srice we know that
k1 (x,x’) andky(x,x’) are valid kernels, we know that there exist mappiggs)
anda)(x) such that

Ritxx) = 60 d(x)  and  ka(x.x) = 9(x)"p(x).
Hence

k(x,x') = ki(x,x")ka(x,x)

whereK = M N and

k(%) = d(k—1oN)+1(X)Y(R-1)oN) +1(X),
where in turn? and® denote integer division and remainder, respectively.

NOTE: In the first printing of PRML, there is an error in the textathg to this
exercise. Immediately following (6.27), it sayisi| denotes the number sfibsets
in 4; it should have said:A| denotes the number efementsin A.

Since A may be equal td (the subset relation was not defined to be strigt)D)
must be defined. This will map to a vector®f! 1s, one for each possible subset
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Solutions 6.14—-6.17

6.14

6.17

of D, including D itself as well as the empty set. FdrC D, ¢(A) will have 1s in
all positions that correspond to subsetsAodind Os in all other positions. Therefore,
d(A1)T d(Ay) will count the number of subsets shareddyandA,. However, this
can just as well be obtained by counting the number of elesnarthe intersection
of A, andA,, and then raising 2 to this number, which is exactly what{pdbes.

In order to evaluate the Fisher kernel for the Gaussian werfate that the covari-
ance is assumed to be fixed, and hence the parameters coorgyisiee elements of
the mearu. The first step is to evaluate the Fisher score defined by Y6=3@m the
definition (2.43) of the Gaussian we have

gk, x) =V, In N (x|, S) = S7' (x — p).
Next we evaluate the Fisher information matrix using therdlidin (6.34), giving
F =E, [g(p, x)g(p,%)"] = ST'Ex [(x — p)(x — )] S71.

Here the expectation is with respect to the original Gansdistribution, and so we
can use the standard result

Ex [(x —p)(x—p)'] =8
from which we obtain
F=S""
Thus the Fisher kernel is given by
k(e x') = (x — ) 'S K — p),
which we note is just the squared Mahalanobis distance.

NOTE: In the first printing of PRML, there are typographical egar the text relat-
ing to this exercise. In the sentence following immediasdtgr (6.39),f (x) should
be replaced by(x). Also, on the l.h.s. of (6.40);(x,,) should be replaced hy(x).
There were also errors in Appendix D, which might cause csinfy please consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-pripleis derivation of the
solution. First consider a variation in the functigfx) of the form

y(x) = y(x) + en(x).
Substituting into (6.39) we obtain

1 N
Bly+ el =3 3 [ {ulocu+ )+ anloxa + ) — )" v(€) .

Now we expand in powers efand set the coefficient @f which corresponds to the
functional first derivative, equal to zero, giving

N
> [ o +€) ~ tad o, + (e g = (141)
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This must hold for every choice of the variation functigix). Thus we can choose
n(x) = d(x — z)
whered( -) is the Dirac delta function. This allows us to evaluate thegral overg
giving
N N

S [ twa €~ tab o0, €~ 2l€) 6 = 3 (0(a) 1} vl —x,).

n=1 n=1
Substing this back into (141) and rearranging we then olitsnrequired result
(6.40).

6.20 Given the joint distribution (6.64), we can identify;, ; with x, andt with x; in
(2.65). Note that this means that we are prepending ratherappendingy . tot
andC . therefore gets redefined as

kT
CN+1—<IC{ CN>

I‘l’azo u’b:O xp =t
Yoa =C Y = Cu S =Xf =kT

in (2.81) and (2.82), from which (6.66) and (6.67) followsedtitly.

It then follows that

6.21 Both the Gaussian process and the linear regression modekige to Gaussian
predictive distribution®(ty . 1|xx11) SO we simply need to show that these have
the same mean and variance. To do this we make use of the sixprés.54) for the
kernel function defined in terms of the basis functions. gg®62) the covariance
matrix C 5 then takes the form

1
Cy=—-8d" + 5 Iy (142)
(6%

where® is the design matrix with elements,, = ¢,(x,), andIy denotes the
N x N unit matrix. Consider first the mean of the Gaussian procesgigive
distribution, which from (142), (6.54), (6.66) and the d#foms in the text preceding
(6.66) is given by

myi1 = a_1¢(xN+1)T<I’T (a_1<I’<I’T + 5_111\7)71 t.
We now make use of the matrix identity (C.6) to give
T ('@ + 57 y) =B (BBT® +aly) @7 = afSydT.
Thus the mean becomes

my+1 = BPp(xni1) Sn®"t
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Solutions 6.23-6.25

6.23

6.25

which we recognize as the mean of the predictive distrilmfoo the linear regression
model given by (3.58) withm 5 defined by (3.53) an8 y defined by (3.54).

For the variance we similarly substitute the expressior2)Xdr the kernel func-
tion into the Gaussian process variance given by (6.67) lagl tise (6.54) and the
definitions in the text preceding (6.66) to obtain

onpi(Xn1) = o ld(xn) T d(xn) + 87!
—a 2 P(xn11) @ (a1 @7 4+ §7Ty)  Bep(xnvia)
= B+ d(xnin) (o Iy
a0 (a1 ®BT + 5 Iy) ®)p(xnya).  (143)

We now make use of the matrix identity (C.7) to give

o 'y — o Iy @ (B(a ' Ty)R" + ﬁ*llN)‘1 LT B
— (a4 827®) " =Sy,

where we have also used (3.54). Substituting this in (148)pbtain

0% (xns1) = = + b(xns1) " Sweb(xns1)

g

as derived for the linear regression model in Section 3.3.2.

If we assume that the target variables,. .., tp, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,
p(tn41|T) = Nty m(xy 1), o0 (xn1)I),
whereT is aN x D matrix with the vectorsT, ..., t} as its rows,
m(xy;1)" =kTCNT

ando(xy.1) is given by (6.67). Note thaf , which only depend on the input
vectors, is the same in the uni- and multivariate models.

Substituting the gradient and the Hessian into the NewtapkRon formula we ob-
tain
anNeW = aN—l—(C&l—Q—WN)’l [tN—O'N—folaN]
= (Cy' +Wy) 'ty —on + Wyan]
= CN<I+WNCN)71 [tN—UN+WNaN]
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Chapter 7 Sparse Kernel Machines

7.1 From Bayes’ theorem we have

p(t[x) oc p(x[t)p(t)
where, from (2.249),

p(x[t) = > —-k(x,x0)d(t, 1),

HereN; is the number of input vectors with labgl+1 or —1) andN = N1+ N_;.
o(t,t,) equalsl if ¢ = t, and0 otherwise. Zj, is the normalisation constant for
the kernel. The minimum misclassification-rate is achiefefbr each new input
vector,x, we chosé to maximisep(t|x). With equal class priors, this is equivalent
to maximizingp(x|t) and thus

. 1
+1 iff k(x,x;) > k(x,x;
Z( ) NZ (%, %;)

—1 otherwise.

2
I

Here we have dropped the factiotZ, since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classificatiacan be written in the

more compact form
gy
7 o . n ~
t = sign ( g 1 N k(x, Xn)> :
n—=

Now we takek(x, x,,) = xTx,,, which results in the kernel density

p(x|t=+1) = N1+1 Z xTx, =x'x".
n:t,=-+1
Here, the sum in the middle experssion runs over all vestgr®or whicht, = +1
andx™* denotes the mean of these vectors, with the correspondfimgtiba for the
negative class. Note that this density is improper, sin@aitnot be normalized.
However, we can still compare likelihoods under this densésulting in the classi-
fication rule

- { +1 if xTxt > xTx,

"1 —1 otherwise.

The same argument would of course also apply in the feataeesiix ).

7.4 From Figure 4.1 and (7.4), we see that the value of the margin

1
p=-— andso — = |wl|>*
[[wl]

0?
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Solutions 7.8-7.10

7.8

7.10

From (7.16) we see that, for the maximum margin solutionstmond term of (7.7)
vanishes and so we have

1
L(w,b,a) = §”W“2

Using this together with (7.8), the dual (7.10) can be wnitis

from which the desired result follows.

This follows from (7.67) and (7.68), which in turn follow fiothe KKT conditions,
(E.9)—(E.11), fonu,,, &, 11, and&,,, and the results obtained in (7.59) and (7.60).

For example, foy.,, andé&,,, the KKT conditions are

& =2 0
Pn = 0
pnkn = 0 (144)
and from (7.59) we have that
i = C — ap. (145)

Combining (144) and (145), we get (7.67); similar reasoriargz,, andfn lead to
(7.68).

We first note that this result is given immediately from (B}4(2.115), but the task
set in the exercise was to practice the technique of complétie square. In this
solution and that of Exercise 7.12, we broadly follow thesprgation in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a formilar to (3.78)

3 >N/2 1

M

where )
E(w) = g”t — ®w|® + §WTAW

andA = diag(a).
Completing the square over, we get

E(w)=-(w-m)"S"Y(w —m) + E(t) (147)

(BTt —m"Y 'm). (148)

5 R R TIEHKIRA T
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Using (147), we can evaluate the integral in (146) to obtain

/exp {—E(w)} dw = exp {—E(t)} (2n)M/?|x|'/2, (149)

Considering this as a function ofwe see from (7.83), that we only need to deal
with the factorexp {—E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
(148) as follows

E(t) = %(ﬁtlt m'% 'm)

1

= §(ﬁtTt—[3tT<1>22 'E®'tp)
1

= §tT( — fOTP )t

_ %tT (51— fB(A + 687 D) BT 4)t
1 . e

= ST (I eATI")

o 1 T~—1

= t'c't

This gives us the last term on the r.h.s. of (7.85); the twaeguleng terms are given
implicitly, as they form the normalization constant for {hesterior Gaussian distri-
butionp(t|X, «, 3).

Using the results (146)—(149) from Solution 7.10, we cariev(7.85) in the form
of (3.86):

N 1 & 1 N
Inp(tX, e f) = o Inf+ 5 > na; - E(t) - 5 [Z] - o In(2m).  (150)

By making use of (148) and (7.83) together with (C.22), wetede the derivatives
of this w.r.t«;, yielding

(t‘X, Oé,ﬁ) = ‘ —Z”‘ — %mz (151)
Setting this to zero and re-arranging, we obtain
A
o = ——F5— = —,
m? m?
where we have used (7.89). Similarly, féewe see that
O X ) = (Y- em|? - [z«;%]) (152)
op Y 2\ 08 '

2R R TS A
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Using (7.83), we can rewrite the argument of the trace opeest

TP = X®TP+[IZA-[FIZA

= X(@'®B+ A -pIZA
(A+p2T®) " Y(@T®3+A)B - 3IZA
(I-AX)5 L (153)

Here the first factor on the r.h.s. of the last line equalsQ)/v@&itten in matrix form.
We can use this to set (152) equal to zero and then re-arrarggedin (7.88).

7.15 Using (7.94), (7.95) and (7.97)—(7.99), we can rewrite §y & follows

Inp(t|X, a, )

1
—g{Nln(%r) +In|C4||1 + o 'l CZ i,

C- TCc-
+tT <C:;L —1 ‘101’:01 > t}
a; + ¢; C_lgoZ

1 —
= —5{NIn@m) +|C_| +t"Clt)

CZlg;p;Co t]

1
- |—In|l 4 a; 'l C g, | +tT == ——1
2 |: ‘ 7 Lpl 72‘10| az_‘_(toTsz‘Pz

= L(ay)

1 &
5 |[Ina; —Ina; +s; -
+2[na n(o +s)+ai+82}

= L(a,i) —‘—)\(Ckz)

7.18 As the RVM can be regarded as a regularized logistic regressiodel, we can
follow the sequence of steps used to derive (4.91) in Exerdid 3 to derive the first
term of the r.h.s. of (7.110), whereas the second term fallfram standard matrix
derivatives (see Appendix C). Note however, that in Exercis13 we are dealing
with the negative log-likelhood.

To derive (7.111), we make use of (123) and (124) from Exerdsl3. If we write
the first term of the r.h.s. of (7.110) in component form we get

N
0 B Oyn, 8an
a—,wj ;(tn - yn)¢nz == Z 8an aw]

- _Zyn — Yn ¢n]¢mu

which, written in matrix form, equals the first term inside fharenthesis on the r.h.s.
of (7.111). The second term again follows from standard imnd#rivatives.

R & T4E H0g RIRFE T
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Chapter 8 Probabilistic Graphical Models
CHECK! 8.1 We want to show that, for (8.5),
K
ZZP(X) = Z...an(mk|pak) =1.
T, T K T T k=1
We assume that the nodes in the graph has been numbered atich ithe root
node and no arrows lead from a higher numbered node to a lawebered node.
We can then marginalize over the nodes in reverse ordetingtavith x ;-
K—-1
o px) = > peklpag) [] plzxlpay)
x TK Ty T K k=1
K—-1
= > > 11 plaxlpay),
T rr_1 k=1
since each of the conditional distributions is assumed twobectly normalized and
none of the other variables dependon. Repeating this proceds — 2 times we
are left with
Zp(xlm) =1.

8.2 Consider a directed graph in which the nodes of the graphwaregared such that
are no edges going from a node to a lower numbered node. # thasts a directed
cycle in the graph then the subset of nodes belonging to itd@stéd cycle must also
satisfy the same numbering property. If we traverse theedycthe direction of the
edges the node numbers cannot be monotonically increaisiog we must end up
back at the starting node. It follows that the cycle cannat beected cycle.

8.5 The solution is given in Figure 3.

Figure 3 The graphical representation of the relevance
vector machine (RVM); Solution 8.5.
8.8 a 1 b,c|dcan be written as

p(a,b, c|d) = p(ald)p(b, c[d).
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8.9

8.12

Figure 4

Summing (or integrating) both sides with respect,tave obtain
p(a,bld) = p(ald)p(bld)  or  allb|d,
as desired.

Consider Figure 8.26. In order to apply the d-separaticierdoin we need to con-
sider all possible paths from the central nogeo all possible nodes external to the
Markov blanket. There are three possible categories of patiis. First, consider
paths via the parent nodes. Since the link from the parere tmthe node; has its
tail connected to the parent node, it follows that for anyhspath the parent node
must be either tail-to-tail or head-to-tail with respecthie path. Thus the observa-
tion of the parent node will block any such path. Second aargpaths via one of
the child nodes of node; which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child nauteence will be
head-to-tail with respect to the child node and so will beckém. The third and
final category of path passes via a child node&pénd then a co-parent node. This
path will be head-to-head with respect to the observed ctulde and hence will
not be blocked by the observed child node. However, this pétreither tail-to-
tail or head-to-tail with respect to the co-parent node agick observation of the
co-parent will block this path. We therefore see that allgitde paths leaving node
x; Will be blocked and so the distribution &f, conditioned on the variables in the
Markov blanket, will be independent of all of the remainirggigbles in the graph.

In an undirected graph of/ nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raisetié power of the
number of potential links. To evaluate the number of digtlimks, note that there
are M nodes each of which could have a link to any of the other- 1 nodes,
making a total ofM (M — 1) links. However, each link is counted twice since, in
an undirected graph, a link from nodeo nodeb is equivalent to a link from node

b to nodea. The number of distinct potential links is therefavr&(M — 1)/2 and so
the number of distinct graphs 28/(M-1/2_ The set of 8 possible graphs over three
nodes is shown in Figure 4.

oo do ob oo
Lo 0% 4%

The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.
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8.15 The marginal distributiop(z,,—1, x,) is obtained by marginalizing the joint distri-

T

8.18

butionp(x) over all variables except,_; andz,,
P(n-1,n) Z DID I Zp
Tn—2 Tn41

This is analogous to the marginal distribution for a singleéable, given by (8.50).

Following the same steps as in the single variable caseideddn Section 8.4.1,
we arrive at a modified form of (8.52),

1
Z wn 2,n—1 xn 2, Tp— 1 [Z¢12 X1, T2 ] ’lbnfl,n(xnfhxn)
Tn—2
po(Tn—1)
Z 1/)71 n+1 xnyxn—i—l [Z’wN 1,N :EN 17xN>] R I}
_xn+1
1s(Tn)

from which (8.58) immediately follows.

The joint probability distribution over the variables in argral directed graphical
model is given by (8.5). In the particular case of a tree, eadie has a single parent,
sopa,, Will be a singleton for each nodg, except for the root node for which it will
empty. Thus, the joint probability distribution for a tredlvioe similar to the joint
probability distribution over a chain, (8.44), with thefdifence that the same vari-
able may occur to the right of the conditioning bar in seveaaditional probability
distributions, rather than just one (in other words, altifftoeach node can only have
one parent, it can have several children). Hence, the anguimé&ection 8.3.4, by
which (8.44) is re-written as (8.45), can also be appliedrabability distributions
over trees. The result is a Markov random field model wheré patential function
corresponds to one conditional probability distributiorthie directed tree. The prior
for the root node, e.qx(x1) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, altermdyivcan be incorporated as a
single node potential.

This transformation can also be applied in the other dioectGiven an undirected
tree, we pick a node arbitrarily as the root. Since the grapa iree, there is a
unique path between every pair of nodes, so, starting atwbivorking outwards,
we can direct all the edges in the graph to point from the rodhée leaf nodes.
An example is given in Figure 5. Since every edge in the treeespond to a two-
node potential function, by normalizing this approprigtebe obtain a conditional
probability distribution for the child given the parent.
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Figure 5

8.20

8.21

The graph on the left is an T T2 T T2
undirected tree. If we pick
x4 to be the root node and
direct all the edges in the
graph to point from the root
to the leaf nodes (z1, x2 and
x5), we obtain the directed
tree shown on the right. iz Z5 T4 5

T3 €3

Since there is a unique path beween every pair of nodes in diregted tree, once
we have chosen the root node, the remainder of the resuliiagteld tree is given.
Hence, from an undirected tree witfi nodes, we can construdt different directed

trees, one for each choice of root node.

We do the induction over the size of the tree and we grow tleedne node at a time
while, at the same time, we update the message passing sehBdte that we can
build up any tree this way.

For a single root node, the required condition holds triyittue, since there are no
messages to be passed. We then assume that it holds for dttre® wodes. In the
induction step we add a new leaf node to such a tree. This redwégle need not
to wait for any messages from other nodes in order to senditgooig message and
so it can be scheduled to send it first, before any other messag sent. Its parent
node will receive this message, whereafter the messagagatpn will follow the
schedule for the original tree witN nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the rodt toaihe leaves, we
first follow the propagation schedule for the original treiéhwV nodes, for which
the condition is assumed to hold. When this has completedpdnent of the new
leaf node will be ready to send its outgoing message to theleafinode, thereby
completing the propagation for the tree with+ 1 nodes.

To computep(x,), we marginalizep(x) over all other variables, analogously to

(8.61),
p(xs) = Z p(x).

x\x5

Using (8.59) and the defintion df,(x, X,) that followed (8.62), we can write this

as
pxs) = > fix) [T II  FilwXi)

x\Xs i€ne(fs) jEne(x;)\ fs

= fx) 11 X2 I Bxy)

i€ne(fs) x\xs jE€ne(xi)\ fs

= fS(XS) H /Lmiﬂfs(xi)a

i€ne(fs)
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where in the last step, we used (8.67) and (8.68). Note tkantirginalization over
the different sub-trees rooted in the neighbourgofvould only run over variables
in the respective sub-trees.

This follows from the fact that the message that a nagewill send to a factorfs,
consists of the product of all other messages received biyrom (8.63) and (8.69),
we have

plxi) = [ wrow()

s€ne(x;)

t€ne(x;)\ fs

8.28 If a graph has one or more cycles, there exists at least oref sedes and edges
such that, starting from an arbitrary node in the set, we @sihall the nodes in the
set and return to the starting node, without traversing aggenore than once.

Consider one particular such cycle. When one of the nagés the cycle sends a
message to one of its neighboussin the cycle, this causes a pending messages on
the edge to the next nodsg in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message orxttezlige in that cycle.
Since this is true for every node in the cycle it follows thegre will always exist at
least one pending message in the graph.

8.29 We show this by induction over the number of nodes in the $tegctured factor
graph.

First consider a graph with two nodes, in which case only tvessages will be sent
across the single edge, one in each direction. None of thessages will induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withnodes, there will be no pending
messages after a finite number of messages have been sesti.98c6h a graph, we
can construct a new graph withi + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the gnayist remain a tree)
and so if this new node receives a message on this edge, indilce no pending
messages. A message sent from the new node will trigger gatipa of messages
in the original graph withV nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messalie aigorithm will
terminate.

2 R B TS 4 RIRIE T
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Solutions 9.1-9.7

Chapter 9

Mixture Models

9.1

9.3

9.7

Since both the E- and the M-step minimise the distortion mes®.1), the algorithm
will never change from a particular assignment of data pdimtprototypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, eé&bhawcorresponding
unique minimum of (9.1) w.r.t. the prototype&y, }, the K-means algorithm will
converge after a finite number of steps, when no re-assighofettata points to
prototypes will result in a decrease of (9.1). When no-rigassent takes place,
there also will not be any change fi; } .

From (9.10) and (9.11), we have

K
x) = 3 p(xla)p(@) = 3 [ 0 (xlpage 20))*

z k=1

Exploiting the 1-of# representation faz, we can re-write the r.h.s. as

K K
ZH (meN (x|, Zi)) IM 7279 (x|ps, X5)

j=1 k=1
wherel;,; = 1if k = j and 0 otherwise.

Consider first the optimization with respect to the paransdtg,,, X, }. For this we
can ignore the terms in (9.36) which dependlon;,. We note that, for each data
pointn, the quantities,,;, are all zero except for a particular element which equals
one. We can therefore partition the data set ilitgroups, denoteX;, such that all
the data pointx,, assigned to componehfare in groupX,. The complete-data log
likelihood function can then be written

K
np(X,Z | p,,7) = Z{ > 1n/v(xn|uk,2k)} .

k=1 neXy

This represents the sum &f independent terms, one for each component in the
mixture. When we maximize this term with respectip and 3, we will simply

be fitting thek'™™ component to the data sXt;,, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as dised$n Chapter 2.

For the mixing coefficients we need only consider the terms iy, in (9.36), but
we must introduce a Lagrange multiplier to handle the camsttd *, 7, = 1. Thus

we maximize N
ZZ Zpk IN TR 4 A <Z7rk - 1)
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which gives
N

o Znk
O_ZW—k+A.

n=1

Multiplying through byr, and summing over we obtain\ = — N, from which we

have
T = — Znk = ——
FEN > k N

where Ny, is the number of data points in grog, .

9.8 Using (2.43), we can write the r.h.s. of (9.40) as

1 e
9 Z ZV('Z”j)(Xn — p;) "= (%, — p) + const.,

n=1 j=1

where ‘const.” summarizes terms independent ptfor all j). Taking the derivative
of this w.r.t. i, we get

N

- ZV(an) (Eilﬂk - Zilxn) )

n=1
and setting this to zero and rearranging, we obtain (9.17).

9.12 Since the expectation of a sum is the sum of the expectatiertsawe

K K
Ex] = ZﬂkEk[X] = Zwk/“k
k=1 k=1

whereEy x| denotes the expectation funder the distributiop(x|k). To find the
covariance we use the general relation

cov[x] = E[xx"] — E[x]E[x]"

to give

covlx] = E[xx']-E[xE[x]"

K
> mErxx"] - EX]E[x]"
k=1

K

= ) e {Zk+ et} — EXEX]"
k=1
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Solutions 9.15-9.23

9.15

9.17

9.20

9.23

This is easily shown by calculating the derivatives of (9,58&tting them to zero and
solve foruyg;. Using standard derivatives, we get

ki ki L= i

(an)mni - Zn 'Y(an),ufki
pori (1 — firi) '

0 N .
Ezlnp(X,Zlp.m)] = > Y(zk) <n 771)
Do

Setting this to zero and solving faw,;, we get

g = 2an Y Cnk)Eni
' En ’V(znk) ’

which equals (9.59) when written in vector form.

This follows directly from the equation for the incompletsgitlikelihood, (9.51).

The largest value that the argument to the logarithm on the. rof (9.51) can have
is 1, sincevn, k : 0 < p(xplp,) < 1,0< m < 1 ande 7, = 1. Therefore, the
maximum value foin p(X|u, ) equals 0.

If we take the derivatives of (9.62) w.rd, we get

0 M1l .
%E Inp(t,w|a, 3)] = 55" §E [W w] :

Setting this equal to zero and re-arranging, we obtain §9.63

NOTE: In the first printing of PRML, the task set in this exercisg¢asshow that
the two sets of re-estimation equations are formally edentawithout any restric-
tion. However, it really should be restricted to the casemtine optimization has
converged.

Considering the case when the optimization has convergedaw start withy;, as
defined by (7.87), and use (7.89) to re-write this as

*
x 1*0%22'1'

o

K2 )

2
my
wherea] = o}V = «; is the value reached at convergence. We can re-write this as

a;(mi + ;) =1

which is easily re-written as (9.67).
For 3, we start from (9.68), which we re-write as

L= @myl? |,

p* N BN -




9.25

9.26

RA R BT # LR
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As in thea-case,f* = ™" = [ is the value reached at convergence. We can

re-write this as
1
B* (N_ Z%> = It - @my]?,

which can easily be re-written as (7.88).

This follows from the fact that the Kullback-Leibler divengce K1 (q||p), is at its
minimum, 0, whery andp are identical. This means that

0
%KL(QHP) =0,

sincep(Z|X, 0) depends o). Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.0, the contribution from the second term on the r.h.s. wilbhend

so the gradient of the first term must equal that of the I.h.s.

From (9.18) we get

NP =) "4 (). (154)

We getN;*™ by recomputing the responsibilities(z,,), for a specific data point,
X, yielding

N;;ew _ Z ,yold(znk) + 7new<zmk)-

n#m
Combining this with (154), we get (9.79).
Similarly, from (9.17) we have

(e} 1 (e}
Ij'kld = ol E v 1d<an)Xn
k n

and recomputing the responsibilitiegz,, ), we get

1
uzew = N new <Z ’yOld(an)Xn + 'Ynew<zmk)xm>
k n#m
1
— new ( ];)Id 21d o ,yold(zmk)xm +’Ynew<zmk)xm)
k

1
_ N <(N]?ew o ,.ynew (ka) 4 ,.yold (ka)) Hild
k

_'YOId(ka)Xm + 'Ynew(zmk)xm>

o ,.ynew(zmk) - PYOId (ka) o
p + ( A (%m — g%,
k

where we have used (9.79).
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Chapter 10 Variational Inference and EM

10.1 Starting from (10.3), we use the product rule together with4) to get

o) = [ In{pg’fé)z)} 1z

_ /q(Z)ln{p—(Xq?z))p(X)} dz

_ /q(Z) (m{[%} +1np(X)> az
= —KL(q|p)+np(X).

Rearranging this, we immediately get (10.2).

10.3 Starting from (10.16) and optimizing w.r¢; (Z;), we get

M
Kiplla) = - [»(@ [Zm% (2)

dZ + const.

= / <P (Z)Ing; (Z;)+p(Z) Zln qi (Zl)> dZ + const.

i#]
= = /p (Z)Ing; (Z;) dZ + const.

_ /mqj (Z,) [/p(Z)H dZi] dZ,; + const.

i#]

= —/Fj(Zj)lan‘ (ZJ) de ~+ const.,
where terms independent @f (Z,) have been absorbed into the constant term and
we have defined
52 = [v@)]] iz

i#]
We use a Lagrange multiplier to ensure thatZ;) integrates to one, yielding

/Fj(zj)ln% () dZ; + A </ q;(2;) dZ; — 1) :

Using the results from Appendix D, we then take the functiateivative of this
w.r.t. ¢; and set this to zero, to obtain

Fi(Z,

a5 (Z;)
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From this, we see that
Agj (Zj) = Fy(Z;).
Integrating both sides ové&;, we see that, sinag (Z;) must intgrate to one,

A_/Fj(zj)dzj_/ [/p(Z)H dzi] dz; =1,

i#£]
and thus

w(2) = 12) = [p@]] az.

10.5 We assume that(Z) = ¢(z)q(0) and so we can optimize w.r¢(z) andq(8) inde-
pendently.

For ¢(z), this is equivalent to minimizing the Kullback-Leibler @rgence, (10.4),
which here becomes

(lp) == [[a@ st T a0

For the particular chosen form gf@), this is equivalent to

KL(q||p) = —/q(z)ln%dz—i—const.

_ z np(z\OO,X)p(ao\X) Z & cons
S I 1 TP,

where const accumulates all terms independentof. This KL divergence is min-
imized whery(z) = p(z|69, X), which corresponds exactly to the E-step of the EM
algorithm.

To determineg; (@), we consider

[0 fan 50

= /q(B)Eq(z) lnp(X,0,z)] d6 — /q(ﬂ) Ing (@) dO + const.

where the last term summarizes terms independent(6§. Sinceq(0) is con-
strained to be a point density, the contribution from theamt term (which formally
diverges) will be constant and independen@gf Thus, the optimization problem is
reduced to maximizing expected complete log posterioritigion

Eqz Inp (X, 60,2)],

w.r.t. 8y, which is equivalent to the M-step of the EM algorithm.
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Solutions 10.10-10.13

10.10 NOTE: The first printing of PRML contains errors that affect thieecise.L,,, used
in (10.34) and (10.35) should really i& whereas’,,, used in (10.36) is given in
Solution 10.11 below.

This completely analogous to Solution 10.1. Starting frd®.85), we can use the
product rule to get,

ro qu(Zm)q(m)ln{%?))}
Z,m|X) p(X
_ Z;q@m)q(mﬂn{ﬁ}
- ZZq(Zm)q(m)ln{%}Hw(X)

Rearranging this, we obtain (10.34).

10.11 NOTE: Consult note preceding Solution 10.10 for some relevarmrections.
We start by rewriting the lower bound as follows

= m)qg(m) In 7p(Z,X7m)
L= 20 a@mglm)! {q<Z|m>q<m>}
ZZ (Zm)q(m) {Inp(Z, X|m) + Inp(m) — In g(Z|m) — Ing(m)}

_ Zq<m>(1np<m> ~Ing(m)

m

+ 3 o) (p(2.Xe) ~ na(2m)

V4

= > q(m){In (p(m) exp{Lm}) — Ing(m)}, (155)

m

where
Lo = ZZ:q(Z\m) In {%} .

We recognize (155) as the negative KL divergence betwéer) and the (not nec-
essarily normalized) distributiop(m) exp{L,, }. This will be maximized when the
KL divergence is minimized, which will be the case when

q(m) o p(m) exp{ Ly, }.
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10.13 In order to derive the optimal solution f@f,,, Ax) we start with the result (10.54)
and keep only those term which dependignor A, to give

lnq*(uk, Ak) = lﬂ/\/(uk‘mmﬁoAk) -+ th(Ak‘WQ, Z/Q)

N
+ Z Elzpnk] In N (x5 | g2y, Ag) + const.
n=1
_ Bo T 1 1 -1
= —7(1% —my) Ag(py, —mo) + 3 In |Ak| - §Tr (ArWgt)
N
vop—D—1 1
0D ) DS B en — ) A G )
n=1
WA
+§ <Z:l E[zm]) In |Ag| + const. (156)

Using the product rule of probability, we can expriesg* (u,,, Ax) asln ¢* (p;, | Ax)
+ Ing¢*(Ag). Let us first of all identify the distribution fog,. To do this we need
only consider terms on the right hand side of (156) which ddeu,., giving

Inq* (pay, | A)

N N
1
= —iﬂ;f Bo + Z Elznk] | Akpy, + Ak | Bomg + Z ]E[an]xn]
n=1 n=1
-+const.

1
= —iuz [ﬂo + Nk] Appy, + HEAI@ [ﬁomo + Nkik} -+ const.

where we have made use of (10.51) and (10.52). Thus we se&ntfidiu, |A )
depends quadratically gm, and hence™* (i, |Ax) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determineen and precision of
this Gaussian, giving

O (pglAr) = N (py |my, B Ax) (157)
where

Br = Po+ Ni
m; = ﬁi (Bomg + NiXy) .
%

Next we determine the form a@f (A ;) by making use of the relation
In¢*(Ag) = Ing* (g, Ar) — Ing*(pp.|Ar).

On the right hand side of this relation we substitutelfog* (s, Ax) using (156),
and we substitute fdn ¢* (| Ax) using the result (157). Keeping only those terms



76 Solution 10.16

which depend om\ ;, we obtain

1 1 _
g (Ax) = 2 (o) A — mo) + 5 In Ak ST (AgW, )
N
vo—D—1 1
0= D2 D py - > Bleaelen — )M )

1 al Bk T
+35 ZE[ZMJ InfAp] + = (e —mp) " Ag(p — my)

n=1
1
—3 In|Ay| + const.

-D-1 1
= % In |Ag| — §Tr (AkW;I) + const.

Note that the terms involving, have cancelled out as we expect sigtéAy) is
independent of:,.. Here we have defined

N
Wit = Wi+ Bo(py, — mo)(py, — mo) " + Z]E[an](xn — ) (xn — 1,)*
n=1
— B (g, — my) (poy, — mk)T
_ N _ _
= W, '+ NSk + ﬁoﬁ:- ]@k (X — my) (X — mO)T
N
v, = VO+ZE[an]
n=1
= 1l +Nk7

where we have made use of the result

N N
D Elaklxnxy = D Elzar] (%0 — i) (%0 — %) " + NiXiX)
n=1 n=1
= NiSi+ Nkfkfz (158)

and we have made use of (10.53). Thus we seejtl{a;.) is a Wishart distribution
of the form
q*(Ak) = VV(.A]{‘VV]€7 Vk).

10.16 To derive (10.71) we make use of (10.38) to give

E[lnp(D|z, p, A)]

Elzni] {E[In |Ax[] — E[(xn — ) Ak (xn — p1y)] = DIn(2m)} .
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We now useéE|[z,,x] = r, together with (10.64) and the definition Eﬁf given by
(10.65) to give

| NK N
E[llnp(D|z, u,A)] = 5 ZZT”’“{IHA’“

n=1 k=1
—DB = v(xn — my) T Wi (x, — my) — Dln(27r)}.

Now we use the definitions (10.51) to (10.53) together withrésult (158) to give
(10.71).

We can derive (10.72) simply by taking the logarithnmp¢|7) given by (10.37)

N K
]np ZZ an ln7rk

n=1 k=1

and then making use @&|[z,x] = ., together with the definition of; given by
(10.65).

10.20 Consider first the posterior distribution over the precisid componenk given by
q"(Ar) = W(ALWy, ).

From (10.63) we see that for largé we havev, — Ny, and similarly from (10.62)
we see thaW, — Nk_ls;l. Thus the mean of the distribution ovAy,, given by
E[Ag] = vy Wy — S,;l which is the maximum likelihood value (this assumes that
the quantities,,;, reduce to the corresponding EM values, which is indeed the ca
as we shall show shortly). In order to show that this postésialso sharply peaked,
we consider the differential entrogf/A ] given by (B.82), and show that, a5, —

oo, H[Ax] — 0, corresponding to the density collapsing to a spike. Fiosistler
the normalizing constarm8(Wy, vy) given by (B.79). SincéV, — N,;ls,;l and

Vg — N,

D
N,
—InB(Wy, 1) — —7’“ (DIn Ny, +In[S| — DIn2)+>» InT <

i=1

N +1—1
5 .

We then make use of Stirling’s approximation (1.146) to obta

Ne+1-i\ N,
InT <%> — (n Ny —ln2—1)

which leads to the approximate limit

N.D

N,
—In B(Wg,v,) — (lnNk—ln2—lnNk+ln2+1)—7kln\Sk|

N,
= —7’“ (In|Sk| + D). (159)

A R BT B 6 KR
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Next, we use (10.241) and (B.81) in combination wiy, — N,;ls,;l andv, —
N}, to obtain the limit

N,
E[ln|A] — D1n7’“ +DIn2— DInNj —In|Sy|
= _1n|Sk‘7

where we approximated the argument to the digamma functiaN;hy2. Substitut-
ing this and (159) into (B.82), we get

H[A] — 0

whenN;, — oo.

Next consider the posterior distribution over the mgarof thek'" component given
by
q (1| Ax) = N (py.Imy, BxAg).

From (10.61) we see that for larg€ the meanm,, of this distribution reduces to
X Which is the corresponding maximum likelihood value. Frdi.60) we see that
B, — Ny and Thus the precisiofi, Ay, — Bxvx Wi — NiS, ' which is large for
large N and hence this distribution is sharply peaked around itsimea

Now consider the posterior distributiarf () given by (10.57). For large&v we
havea, — N and so from (B.17) and (B.19) we see that the posterior Higidn
becomes sharply peaked around its m&#n,] = ar/a — Ny /N which is the
maximum likelihood solution.

For the distribution;*(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic resultlie digamma function,
we again obtain the maximum likelihood expression for tiepomsibilities for large
N.

Finally, for the predictive distribution we first performetlintegration ovetr, as in
the solution to Exercise 10.19, to give

K
p&ID) = 30 % [ [N Rl Audaliag, M) dpg dA
k=1 h

The integrations ovem,;, and A, are then trivial for largéV since these are sharply
peaked and hence approximate delta functions. We thereliaén

SN
p(RID) =) | N (X%, W)
k=1
which is a mixture of Gaussians, with mixing coefficientsagioy N, /N .

10.23 When we are treatingr as a parameter, there is neither a prior, nor a variational
posterior distribution, overr. Therefore, the only term remaining from the lower
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bound, (10.70), that involves is the second term, (10.72). Note however, that
(10.72) involves thexpectations of In 7;, underq(m), whereas here, we operate
directly with 7, yielding

N K
Eq(z)[In p(Z|)] :ZZ ke N Ty
n=1 k=1

Adding a Langrange term, as in (9.20), taking the derivative. 7;, and setting the

result to zero we get

N,
ZEya=o, (160)

Tk
where we have used (10.51). By re-arranging this to

Nk = —)\7Tk

and summing both sides ovirwe see that-A = ), N, = N, which we can use
to eliminate\ from (160) to get (10.83).

The singularities that may arise in maximum likelihood mstiion are caused by a
mixture component;, collapsing on a data point,,, i.e.,7x, = 1, p;, = x,, and
However, the prior distributiom(u, A) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Considerrbeyzt of the expected
complete log-likelihood and(u, A) as a function ofA:

N
= % Z kn ln |Ak‘ ( Hk)TAk(Xn - Ij'k))

+In \ k| = Bo(py, — mo) " Ay (p), — my)
+(vo — D — 1) In|Ag| — Tr [W; ' Ay] + const.

where we have used (10.38), (10.40) and (10.50), togetttarthe definitions for
the Gaussian and Wishart distributions; the last term suiaesmterms independent
of Ak. Using (10.51)—(10.53), we can rewrite this as

(vo 4+ N, — D) In |Ag| = Tr [(Wg + Bo(py, — mo) (g, — mo)" + NiSp)Ay]

where we have dropped the constant term. Using (C.24) a28)Qve can compute
the derivative of this w.r.tA; and setting the result equal to zero, we find the MAP
estimate forA, to be
_ 1 _
A= m(wo b Bo(py — mo) (py, — mo) " + NiSy).
From this we see that\, ' | can never become 0, because of the presend¥ pf
(which we must chose to be positive definite) in the expressiothe r.h.s.
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10.29 Stardard rules of differentiation give

dn(z) 1
dr  «
dIn(z) 1
de? a2
Since its second derivative is negative for all valuecpin(z) is concave fo) <

xr < oQ.

From (10.133) we have

g(A\) = min{iz - f(z)}
= ma;m{)\x—ln(a;)}.

We can minimize this w.r.tz by setting the corresponding derivative to zero and
solving forz:

d 1 1

do L o o, L

dx T

Substituting this in (10.133), we see that

g =1—In G) .

If we substitute this into (10.132), we get

(@) —m/\in{)\x—1+ln G)}

Again, we can minimize this w.r.i by setting the corresponding derivative to zero
and solving for\:
df 1 1

and substituting this into (10.132), we find that

fla) = ix 14 (ﬁ) — In(2).

10.32 We can see this from the lower bound (10.154), which is sinapbyim of the prior
and indepedent contributions from the data points, all dEtvare quadratic inw. A
new data point would simply add another term to this sum andameregard terms
from the previously arrived data points and the originabpcollectively as a revised
prior, which should be combined with the contributions frira new data point.
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The corresponding sufficient statistics, (10.157) and1@8), can be rewritten di-
rectly in the corresponding sequential form,

N
my =Sy (S_lmo + Z ty — 1/2)¢n>

=1

Sy 1m0+Zt -1/2)¢ (N—1/2)¢N>

N-—-1
= Sy (S SN (S 1m0+Z(t —1/2)¢n> +(tN—1/2)qu>

= Sy (SyLimno1 + (tx — 1/2)y)

and

N
Sy = St 42> Méw)o.o

N-—-1

= Sy H2) An)dudn +2MEN)Dx PN

n=1

= Sy, +2M&N) PN o

The update formula for the variational parameters, (10,1&3nain the same, but
each parameter is updated only once, although this upditeenjart of an iterative
scheme, alternating between updating: andS y with £ kept fixed, and updating
¢n with my andSy kept fixed. Note that updatingy will not affectmy_; and
Sn_1. Note also that this updating policy differs from that of th&tch learning
scheme, where all variational parameters are updated gatigtics based on all
data points.

Here we use the general expectation-propagation equdtiorz04)—(10.207). The
initial ¢(0) takes the form

Ginit(0) = }0(9) H ?@(9)

i#0
where?o(e) = fo(0). Thus
°0) o [] fi(0)
i#0
andge¥(0) is determined by matching moments (sufficient statistigsjrast

() fo(0) = ginis(6).
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Solution 11.1

Chapter 11

Snce by definition this belongs to the same exponential fafaiim asq¢"%(0) it

follows that
7""(0) = ginie(0) = ¢\°(0) fo(6).
Thus Zo " ()
q
fo( ) = 7\9(6) = Zofo(0)
where

Zo= [ d°®1h0)20 = [ 0120 =1,

Sampling Methods

111

Since the samples are independent, for the mean, we have

L
1
(l) —
I Z / 1z =¥ =7 Z
Using this together with (1.38) and (1.39), for the varigrvee have

wlf] - s[5 [)]
- E[P?| -EUT.

E[f(z™), f(z™)] = {E;%H-E[F] it 0=k,

otherwise,
= E[f*] + dpnpvar[f],

where we again exploited the fact that the samples are imdigpe.
Hence

" 1 & 1 &
var [ 7] = ]E[sz(z(m))sz(z(k))]—]E[fb

m=1 k=1
1 L L
— ﬁZZ{E[f | + Ompvar]f } E[f
m=1 k=1
1
= zvar{f}
1
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11.5 SinceE [z] = 0,
Ely] =E[p+Lz] = p
Similarly, sinceE [zz"] =1,

covly] = Elyy'| -E]E[y"]
- E [(u +Lz) (1 + Lz)T] — ppt
LL"
>3

11.6 The probability of acceptance follows trivially from the al@nism used to accept or
reject the sample. The probability of a sampldrawn uniformly from the interval
[0, kq(z)] being less than or equal to a valplez) < kq(z) is simply

(z) 1 I~
p(z)
acceptance|z) = du = .
placcep =) /0 kq(z) kq(z)

Therefore, the probability density for drawing a samplds

q(z)p(acceptancelz) = ¢(z) ]f;(zz)) - f’%). (161)
Sincep(z) is proportional top(x),
pla) = —-7(s),
where :
Zy = / (2) dz.

As the l.h.s. of (161) is a probability density that integeato 1, it follows that

and sok = Z;, and

as required.

11.11 This follows from the fact that in Gibbs sampling, we sampkrayle variable 7,
at the time, while all other variable$z; };.1, remain unchanged. Thu§;.}i ., =
{zi}ixr and we get

P (2)T(2,2') = p*(zr. {zitizn)0" (21 2 binn

zi[{zibizn)p* ({23 biser )0

p*(
p*( )P (
= p*(ekl{zi i) ({#i}izn ) 0"
p*( )™ (
p(z

*

zi{zi }izk)
2 {zi Yizk)

\_//\/‘\\./

“(2kl{ 21 i)D" (215 {21 it

NT(2',2),

*
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Solutions 11.15-12.1

11.15

11.17

Chapter 12

where we have used the product rule together ®ith, z') = p* (2, [{z: }izx)-
Using (11.56), we can differentiate (11.57), yielding
OH 0K
87“1‘ N 87“@‘ B
and thus (11.53) and (11.58) are equivalent.
Similarly, differentiating (11.57) w.r.tz; we get

OH _ o
azi - 87”1'7

and from this, it is immediately clear that (11.55) and (B} .&re equivalent.

T

T R T A5 H80 LIR A T

NOTE: In the first printing of PRML, there were sign errors in edoas (11.68)
and (11.69). In both cases, the sign of the argument to thenexgial forming the
second argument to thein-function should be changed.

First we note that, it/ (R) = H(R’), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either havE (R) > H(R') or H(R) < H(R'). We consider the
former case, for which (11.68) becomes

1 1
Z_H eXP(_H(R))(SV?

since themin-function will return1. (11.69) in this case becomes

Zi exp(—H(R’))(ﬂ/% exp(H(R') — H(R)) = — exp(—H(R))(SV%.
H

In the same way it can be shown that both (11.68) and (11.68leq
~—exp(—H(R'))3V
Zn P 2

whenH (R) < H(R).

Latent Variables

12.1

Suppose that the result holds for projection spaces of dieality M. The M +

1 dimensional principal subspace will be defined by ffeprincipal eigenvectors
uy, ..., uys together with an additional direction vectey; . ; whose value we wish
to determine. We must constraimy,; such that it cannot be linearly related to
uy,...,uy (otherwise it will lie in theM -dimensional projection space instead of
defining anM + 1 independent direction). This can easily be achieved byireagu
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thatuy, 1 be orthogonaltauy, .. ., u,s, and these constraints can be enforced using
Lagrange multipliers);, . .., 7.
Following the argument given in section 12.1.1 tgrwe see that the variance in the
directionuyy is given byuy, . Suys, 1. We now maximize this using a Lagrange
multiplier A, to enforce the normalization constrain}{[+1uM+1 = 1. Thus we
seek a maximum of the function

M

u]lu+1SuM+1 + )\M+1 (1 — u]1\4+1uk[+1) + Z niu}WHui.

i=1

with respect tau,, ;. The stationary points occur when

M
0 =2Supry1 — 2Ap1un41 + Zmui-

i=1

Left multiplying with ujl and using the orthogonality constraints, we seerthat 0
forj =1,..., M. We therefore obtain

Sup41 = Am1un4a

and sou,,,; must be an eigenvector & with eigenvalueu,,,;. The variance
in the directionuy, . is given byu}HlSuMﬂ = Ap41 and so is maximized by
choosingu,, ., to be the eigenvector having the largest eigenvalue amahgse
not previously selected. Thus the result holds also forqut@mn spaces of dimen-
sionality M + 1, which completes the inductive step. Since we have alrelaoyis
this result explicitly forM = 1 if follows that the result must hold for any/ < D.

Using the results of Section 8.1.4, the marginal distrdoutor this modified proba-
bilistic PCA model can be written

p(x) = N(x|Wm + p, 0’ I+ WIET'W).

If we now define new parameters

w = z=/?w

po= Wm+p

then we obtain a marginal distribution having the form
p(x) = (x|, 0° 1+ WW).

Thus any Gaussian form for the latent distribution therefgives rise to a predictive
distribution having the same functional form, and so fon@mence we choose the
simplest form, namely one with zero mean and unit covariance

Omitting the parameterdV, i ando, leaving only the stochastic variablesand
x, the graphical model for probabilistic PCA is identical ihe the ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these tadets exhibit the
same independence structure.

20 51 BT AE M RN T
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12.8

12.11

12.15

12.17

By matching (12.31) with (2.113) and (12.32) with (2.114f tave from (2.116)
and (2.117) that

plafx) = N (2(1+02WIW) "' W o I(x — ), (1 + 0 *WTW) ™)
= N(zZM "W (x—p),c?M ™),
where we have also used (12.41).

Takingo? — 0in (12.41) and substituting into (12.48) we obtain the pdstenean
for probabilistic PCA in the form

(Wi, W) ™ Wy (x — ).

Now substitute fofW;, using (12.45) in which we takR = I for compatibility
with conventional PCA. Using the orthogonality propeti}, U,, = I and setting
o2 = 0, this reduces to

L~/?UL,(x —X)

which is the orthogonal projection is given by the convemaidCA result (12.24).

Using standard derivatives together with the rules for matifferentiation from
Appendix C, we can compute the derivatives of (12.53) viiWtando?:

N
) , 1 1 -
a—WE[hlp (X, Z|p, W,0%)] = n§:1 {;(Xn —X)E[z,]" — ;WE[ZnZn]}

and

N
B ) 1 S
o7 Elnp (X, Z|u, W.o%)] = E_l: {ﬁE[znzn}W \\%

1 0y 1w D

Setting these equal to zero and re-arranging we obtaing)2rtd (12.57), respec-
tively.
Setting the derivative of with respect tqu to zero gives

N

0:—Z<Xn_ﬂ_wzn)

n=1

from which we obtain

1 & 1
- S ——S"Wz,=x-W

N]
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Figure 6 The left plot shows the ™ ) i
graphical model correspond- Z
ing to the general mixture of
probabilistic PCA. The right s S
plot shows the correspond-
ing model were the param- | Wy W
eter of all probabilist PCA
models (u, W and o°) are 4 T x m
shared across components.
In both plots, s denotes
the K-nomial latent variable ™~ o} o2
that selects mixture compo- K

nents; it is governed by the
parameter, .

Back-substituting inte/ we obtain

N
3 - J = n—_—W 3 2.
25 R B TS M RIR R T ;H(X X — W(z, —7)|

e
&
b 3
Hy
4

25 KT
We now definéX to be a matrix of sizéV x D whosen'" row is given by the vector
x,, — X and similarly we defin& to be a matrix of sizéD x M whosen'™ row is
given by the vector,, — z. We can then write/ in the form

J=Tr{(X-ZW"H)(X-zZW")"}.

Differentiating with respect t& keepingW fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative of with respect towW to zero with{z,}
fixed gives rise to the PCA M-step (12.59).

12.19 To see this we define a rotated latent space vectoRz whereR is anM x M or-
thogonal matrix, and similarly defining a modified factordogy matrixW = WR.
Then we note that the latent space distributign) depends only oz™z = 27z,
where we have useR™R = I. Similarly, the conditional distribution of the ob-
served variable(x|z) depends only o'Wz = Wz. Thus the joint distribution
takes the same form for any choiceRf This is reflected in the predictive distri-
butionp(x) which depends oW only through the quantitfv W™ = WWT and
hence is also invariant to different choicesRf

12.23 The solution is given in figure 6. The model in which all paréengare shared (left)
is not particularly useful, since all mixture componentd Wave identical param-
eters and the resulting density model will not be any diffiéte one offered by a
single PPCA model. Different models would have arisen ify@dme of the param-
eters, e.g. the meam, would have been shared.

12.25 Following the discussion of section 12.2, the log likeliddanction for this model
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can be written as

ND
L(p, W, ®) = —— 1n(27r) - — ln (WWT' + &

——Z{ YI(WWT + @) (x, — )},

where we have used (12.43).
If we consider the log likelihood function for the transfathdata set we obtain

ND
La(p, W,®) = ———1In(27) — —ln (WW?' + &|
——Z{Axn— TWW? + &) (Ax, —p)}.

Solving for the maximum likelihood estimator farin the usual way we obtain

N
1 -
Ha =7 E Axp, = AX = Apy,

n=1

Back-substituting into the log likelihood function, anding the definition of the
sample covariance matrix (12.3), we obtain

ND N
La(p, W,®) = ———In(27) — — 5 In (WWT + @

N
—% S T {(WWT+ @) "ASATY .

We can cast the final term into the same form as the correspgtelim in the origi-
nal log likelihood function if we first define

) =AP AT, Wa = AW.
With these definitions the log likelihood function for thanmsformed data set takes
the form
ND
LA(;LA7WA, @A) = - 111(271') - — hl |WAWA + @A‘
——Z{ T(WAWR + @) (x, — pa)} — NInJAl.

This takes the same form as the original log likelihood fiorcapart from an addi-
tive constant- In |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in theevariables.
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We now ask whether specific constraints®mill be preserved by this re-scaling. In
the case of probabilistic PCA the noise covariafices proportional to the unit ma-
trix and takes the formI. For this constraint to be preserved we reqirA™ =1

so thatA is an orthogonal matrix. This corresponds to a rotation efdbordinate
system. For factor analys# is a diagonal matrix, and this property will be pre-
served ifA is also diagonal since the product of diagonal matricesasnedjagonal.
This corresponds to an independent re-scaling of the coatelsystem. Note that in
general probabilistic PCA is not invariant under componeise re-scaling and fac-
tor analysis is not invariant under rotation. These rearisillustrated in Figure 7.

If we assume that the function= f(z) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite densityjify), we are guaranteed that
the inverse function = f~*(y) exists. We can then use (1.27) to write

=
dy |’

p(y) = a7 () ' (162)

Since the only restriction ofiis that it is monotonic, it can distribute the probability
mass over arbitrarily overy. This is illustrated in Figure 1 on page 8, as a part of
Solution 1.4. From (162) we see directly that

If z; andz, are independent, then

CWM&ﬂ“//%—%X@—@M%@N%@g
=[] 2 - mplape) dan s

— /(zl —21)p(21) dz /(2’2 — Z2)p(22) dzo
= 0,

where

% =Elx] = / 2ip(zi) dzi.

NOTE: In the first printing of PRML, this exercise contained twostakes. In the
second half of the exercise, we require thats symmetrically distributed arourtq
not just that-1 < y; < 1. Moreovery, = y? (noty, = y3).

Then we have
p(yalyr) = 6(y2 — yi),
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Figure 7 Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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i.e., a spike of probability mass onewgt which is clearly dependent @i3. With y;
defined analogously te; above, we get

covlyr, yo] = //(?Jl — 1) (y2 — §2)p(y1, o) dy dyo
— // y1(y2 — 52)p(y2|y1)p(y1) dys dys

= /(?J:f —y1Y2)p(y1) dys

where we have used the fact that all odd momentg,ofvill be zero, since it is
symmetric around zero and henge

Sequential Data

131

134

13.8

Since the arrows on the path fram, to x,,, with m < n — 1, will meet head-to-tail
at x,,_1, which is in the conditioning set, all such paths are blockgd:,, _; and
hence (13.3) holds.

The same argument applies in the case depicted in Figurewighdhe modification
thatm < n — 2 and that paths are blocked by_, or z,,_».

The learning ofw would follow the scheme for maximum learning described in
Section 13.2.1, witkw replacinge. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of ssgre model used and
how it is being used.

The most obvious situation where this would occur is in a HMiMikr to that
depicted in Figure 13.18, where the emmission densitieonlyt depends on the
latent variablez, but also on some input variable The regression model could
then be used to mapto x, depending on the state of the latent variable

Note that when a nonlinear regression model, such as a netwabrk, is used, the
M-step forw may not have closed form.

Only the final term ofQ(6, 0°'® given by (13.17) depends on the parameters of the
emission model. For the multinomial variablewhoseD components are all zero
except for a single entry of 1,

ZZ’Y Znk hlp Xn‘¢k ZZ'Y Znk mehlum

n=1 k=1 n=1 k=1

Now when we maximize with respect {o,; we have to take account of the con-
straints that, for each value éfthe components qix; must sum to one. We there-
fore introduce Lagrange multipliefs\;, } and maximize the modified function given
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13.9

by
N K
ZZ’Y an Zajnzlnﬂlﬂ"‘Z}\k <Zﬂk1_1>
n=1 k=1

Setting the derivative with respect tq; to zero we obtain

N

Tni
0= ZW(an)MM + A

n=1

Multiplying through byux;, summing ovet, and making use of the constraint on
i together with the resuly, x,,; = 1 we have

N

Ap = — Z’Y(an)-

n=1

Finally, back-substituting fok; and solving foru,; we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli obseswariablex whoseD com-
ponents independently take the value 0 or 1, using the stdrdg@ression for the
multivariate Bernoulli distribution we have

N K
> 4(zak) mp(xaley,)

n=1 k=1
N K
=) Z {zniIn g + (1 — 200) In(1 — i) } -
n=1 k=1

Maximizing with respect tq.x; we obtain

which is equivalent to (13.23).
We can verify all these independence properties using draépn by refering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from anxgf. . . , x,, to any of
Xni1,-- -, XN Meet head-to-tail or tail-to-tail at,, which is in the conditioning set.

(13.25) follows from the fact that arrows on paths from ankef. . ., x, 1 to x,
meet head-to-tail at,,, which is in the conditioning set.
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13.17

13.19
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(13.26) follows from the fact that arrows on paths from ankef. .., x,_; to z,
meet head-to-tail or tail-to-tail at, 1, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths framto any ofx,,1,..., Xy
meet head-to-tail a,,, ;, which is in the conditioning set.
(13.28) follows from the fact that arrows on paths fram, ; to any ofx,,2,..., Xy

to meet tail-to-tail ak,,, 1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on pdtbm any ofxy, . . .,
x,_1 10 x,, meet head-to-tail or tail-to-tail at,_, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from ankof. .., xy to xx11
meet head-to-tail atx 1, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from ankof. .., xy t0zyx11
meet head-to-tail or tail-to-tail aty, which is in the conditioning set.

Using (8.64), we can rewrite (13.50) as
Ck(Zn) - Z Fn(znu{zlau'vznfl})v (163)

whereF,,(-) is the product of all factors connected#p via f,,, including f,, itself
(see Figure 13.15), so that

n

Fo(2n, {21, 20 1}) = h(z) [ | fi(zi,2i0), (164)

=2

where we have introducddz,) and f;(z;,z;_1) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and egpély applying the product
rule, we can rewrite (164) as

Fo(z2n,{2z1,...,2n-1}) =p(X1, ..., Xn, 21, ...,22).

Applying the sum rule, summing oves, ..., z, 1 as on the r.h.s. of (163), we
obtain (13.34).

The emission probabilities over observed variabigsare absorbed into the corre-
sponding factorsf,,, analogously to the way in which Figure 13.14 was transfarme
into Figure 13.15. The factors then take the form

h(z1) = p(zi|lu)p(x1|z1, 1)

fn(zn—l s Zn) = p(zn‘zn—ly un)p(xn|zn7 un)-

Since the joint distribution over all variables, latent aiiberved, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In padicuke can maximize
w.r.t. all the latent variables jointly or maximize each bétmarginal distributions
separately. However, from (2.98), we see that the resuttiegns will be the same in
both cases and since the mean and the mode coincide for thesi@aumaximizing
w.r.t. to latent variables jointly and individually will gld the same result.
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13.20 Making the following substitions from the I.h.s. of (13.87)

13.22

13.24

—1
X=>2Zp1 U=, AT =V,

y=2z, A=A b=0 L'=T,
in (2.113) and (2.114), (2.115) becomes

p(2z,) = N(zn|Ap, |, T+ AV, AT,
as desired.
Using (13.76), (13.77) and (13.84), we can write (13.93)tlie case: = 1, as
N (z1|py, V1) = N(z1|pg, Vo) N (x1|Cz1, X).

The r.h.s. define the joint probability distribution ower andz; in terms of a con-
ditional distribution overx; givenz; and a distribution ovez,, corresponding to
(2.114) and (2.113), respectively. What we need to do isweite this into a con-
ditional distribution overz, givenx; and a distribution ovek,, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
X=>2z p=>p, A=V,

y=x; A=C b=0 L'=3X
in (2.113) and (2.114), (2.115) directly gives us the r.bf§13.96).

This extension can be embedded in the existing frameworklbgting the following
modifications:

r H’O r V()O r I‘O
[ ] =l R] e [8

A a
A’_[O 1] C¢=[C c].
This will ensure that the constant termsandc are included in the corresponding
Gaussian means far, andx,, forn =1,..., N.

Note that the resulting covariances fgr, V,,, will be singular, as will the corre-
sponding prior covariance®,,_;. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102)e Wases must be handled
separately, using the ‘inversion’ formula

_ P, 0
/ 1 _ n—1
(Pn—l) - |: 0 0 :| )

nullifying the contribution from the (non-existent) vamize of the element in,, that
accounts for the constant termsndc.
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13.27 NOTE: In the first printing of PRML, this exercise should have maaglicit the
assumption tha = 1in (13.86).

From (13.86), it is easily seen thatdf goes ta0, the posterior ovez.,, will become
completely determined by,,, since the first factor on the r.h.s. of (13.86), and hence
also the I.h.s., will collapse to a spikexat = Cz,,.

13.32 We can write the expected complete log-likelihood, giventhg equation after
(13.109), as a function qg§, andV,, as follows:

Q(0,6°) = —% In [V
—%Ezwold 21 Vo 'z — 21 Vo o — po Vo 21+ po Vo 1y (165)
— 5 (V= TV B [s1s] — s — sl + o] ). 256
where we have used (C.13) and omitted terms independent andV.

From (165), we can calculate the derivative wyj.using (C.19), to get

Setting this to zero and rearranging, we immediately oktE31110).

Using (166), (C.24) and (C.28), we can evaluate the devieativ.r.t.V; ',

0Q 1
av-1 =3 (Vo - E[lelr] - ]E[Zl}ﬂror - HOE[ZH + Holﬁg) :
0

Setting this to zero, rearrangning and making use of (13,1®get (13.111).

Chapter 14 Combining Models

14.1 The required predictive distribution is given by
p(t|x, X, T) =
S o) Y plan) [ bl 01,1000, X. T 1) 401 (167)
h

Zp
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14.3

145

where
p(T|X, 0, h)p(04]h)
p(T[X, h)
N
o p(0lh) T] ptalxn. 6, 1)

n=1

N
= pwh)H(Zp(tmznhxme?h)) (168)

n=1 Znh

p(0h|X, T, h) =

The integrals and summations in (167) are examples of Bayasieraging, account-
ing for the uncertainty about which modél,is the correct one, the value of the cor-
responding parameterg;,, and the state of the latent variablg, The summation
in (168), on the other hand, is an example of the use of la@nalbles, where dif-
ferent data points correspond to different latent variakdg¢es, although all the data
are assumed to have been generated by a single nfodel,

We start by rearranging the r.h.s. of (14.10), by moving #wdr1/M inside the
sum and the expectation operator outside the sum, yielding

Mo
Z MGm(X)Ql :

If we then identifye,, (x) and1/M with x; and); in (1.115), respectively, and take
f(z) = z*, we see from (1.115) that

Mo 2 M ]
(Z Mem(x)> <D qpem®)

m=1

Ex

Since this holds for all values of, it must also hold for the expectation ovey
proving (14.54).

To prove that (14.57) is a sufficient condition for (14.56)vese to show that (14.56)
follows from (14.57). To do this, consider a fixed setgf(x) and imagine varying
the a,,, over all possible values allowed by (14.57) and considevéhaes taken by
ycom(x) as a result. The maximum value @fon (x) occurs wheny, = 1 where
yk(x) = ym(x) for m # k, and hence alv,,, = 0 for m # k. An analogous result
holds for the minimum value. For other settingsoaf

Ymin(X) < Ycom (%) < Ymax(X),
sinceycom(x) is a convex combination of pointg,, (x), such that
Vm : ymin(x) < ym(x) < ymaX(X)~

Thus, (14.57) is a sufficient condition for (14.56).
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Showing that (14.57) is a necessary condition for (14.5&)qgsivalent to show-
ing that (14.56) is a sufficient condition for (14.57). Thepiination here is that
if (14.56) holds for any choice of values of the committee rbers{y,,(x)} then
(14.57) will be satisfied. Suppose, without loss of gensrahata is the smallest
of thea values, i.e.;, < v, for k # m. Then considey(x) = 1, together with
ym(x) = 0 for all m # k. Thenyu,(x) = 0 while ycom(x) = ax and hence
from (14.56) we obtaimy; > 0. Sinceay is the smallest of ther values it follows
that all of the coefficients must satisfy, > 0. Similarly, consider the case in which
ym(x) = 1 for all m. Thenymi,(x) = Ymax(x) = 1, While ycom(x) = >, am.
From (14.56) it then follows that o, = 1, as required.

If we differentiate (14.23) w.r.ta,,, we obtain
N N
OF 1
Ja. 3 <(€a'"/2 +e om/?) Zw;m)‘[(ym(xn) #tn) —e /2 z_:l w7(lm)> :

n=1

Setting this equal to zero and rearranging, we get

Don w%m)f(ym(xn) Ftn) e=om/? . 1
Z wglm) B eam/2 + 6_a77L/2 - eam + 1 :

Using (14.16), we can rewrite this as

1 J—
eam. _|_ 1 - 6m7
which can be further rewritten as
1—c¢
eam. — m7
€Em

from which (14.17) follows directly.
The sum-of-squares error for the additive model of (14.2 Heifined as
= LS pata)?
5 n— fm(xn))”

n=1

Using (14.21), we can rewrite this as

al 1
Z(tn - fmfl(xn) - iamym(x))2a

N =

where we recognize the two first terms inside the square asetidual from the
(m — 1)-th model. Minimizing this error w.r.ty,, (x) will be equivalent to fitting
ym(x) to the (scaled) residuals.
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14.13 Starting from the mixture distribution in (14.34), we folldhe same steps as for

14.15

14.17

mixtures of Gaussians, presented in Section 9.2. We intedu<-nomial latent
variable,z, such that the joint distribution overandt¢ equals

K
p(t,z) = p(tlz)p(z) = [ (N (¢t | wie,87") m)™

k=1

Given a set of observation$(t,,, ¢,,)}2_,, we can write the complete likelihood
over these observations and the corresponging. . ,z, as

i BT %ﬁéﬁfg%

—1y)Znk R T4 #00 KR
TTTI (e (tnlwit @, 871) ’ g
n=1k=1

Taking the logarithm, we obtain (14.36).

The predictive distribution from the mixture of linear regsion models for a new

input feature vecto@, is obtained from (14.34), witkh replaced byAﬁ. Calculating
the expectation of under this distribution, we obtain

Elt|@, 6] ZmE |, wi, 3.

k=1

Depending on the parameters, this expectation is potBntiéimodal, with one

mode for each mixture component. However, the weighted amatibn of these
modes output by the mixture model may not be close to anyesimgide. For exam-
ple, the combination of the two modes in the left panel of Fegl4.9 will end up in

between the two modes, a region with no signicant probgiiiass.

If we defineyy(t|x) in (14.58) as

t|X Z )\mkﬁbmk t‘X)

m=1

we can rewrite (14.58) as

M
p(t‘X) Tk Z mk¢mk t|X)

1 m=1
M

Mw

el
Il

Tl Amk Pk (t[X).

Mw

el
Il

1 m=1

By changing the indexation, we can write this as

p(t|x) = Zmd)l tx),
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Figure 8 Left: an illustration of a
hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input
space into regions where
different mixing coefficients
dominate, under the model
illustrated left.

2

1

whereL. = KM, = (k—1)M +m, g, = 7pAmi and¢(-) = ¢dmi(-). By
constructiony; > 0 andy", m = 1.

Note that this would work just as well if, and ), were to be dependent on) as
long as they both respect the constraints of being non-ivegatd summing ta for
every possible value of.

Finally, consider a tree-structured, hierarchical migtarodel, as illustrated in the
left panel of Figure 8. On the top (root) level, this is a mietwith two components.
The mixing coefficients are given by a linear logistic regies model and hence are
input dependent. The left sub-tree correspond to a localitional density model,
1¥1(t]x). In the right sub-tree, the structure from the root is regid, with the
difference that both sub-trees contain local conditioresgity modelsy), (¢|x) and

Vs(t|x).
We can write the resulting mixture model on the form (14.58hwnixing coeffi-
cients

m(x) = o(vix)

m(x) = (1—o(vix))o(vsx)

3 (x (1—o(vix))(1 - a(vyx)),

whereo (+) is defined in (4.59) and; andv, are the parameter vectors of the logistic
regression models. Note that(x) is independent of the value of,. This would
not be the case if the mixing coefficients were modelled uaisimgle level softmax
model,
oubx
m(X) = =5

23 6u}"x7
J

where the parametets;, corresponding tar, (x), will also affect the other mixing
coeffiecientsy; ., (x), through the denominator. This gives the hierarchical rhode
different properties in the modelling of the mixture coe#its over the input space,
as compared to a linear softmax model. An example is showmeimigjht panel of
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Figure 8, where the red lines represent borders of equahgigoefficients in the
input space. These borders are formed from two straighs linerresponding to
the two logistic units in the left panel of 8. A correspondutigision of the input
space by a softmax model would involve three straight lingged at a single point,
looking, e.g., something like the red lines in Figure 4.3 RMRL; note that a linear
three-class softmax model could not implement the bordese/sn right panel of

Figure 8.






