
Copyright © www.jiuzhang.com

林平之老师

Python入门与基础
第五讲 树结构与递归
Tree & Recursion

扫描二维码关注微信/微博
获取最新面试题及权威解答

微信: ninechapter
知乎专栏：http://zhuanlan.zhihu.com/jiuzhang
微博: http://www.weibo.com/ninechapter
官网: www.jiuzhang.com

Copyright © www.jiuzhang.com

九章课程不提供视频，也严禁录制视频的侵权行为

否则将追求法律责任和经济赔偿

请不要缺课

版权声明

Copyright © www.jiuzhang.com

● 二叉树及其遍历

● 递归算法

● 递归算法的时间，空间复杂度分析

本节重点

Copyright © www.jiuzhang.com

树

现实中的树是这样的，那么
数据结构中的树呢？

Copyright © www.jiuzhang.com

树 Tree

树 Tree （好比一个公司）

● 由节点（node）组成

● 每个节点有零个或多个子节点（child node）

○ 这是一个manager，他管理很多人

● 没有父节点的是根节点（root node）

○ 公司的大Boss

● 每个非根节点只有一个父节点（parent node）

○ 除了大Boss，每个人都有一个manager

● 没有任何子节点的节点叫叶子节点（leaf node）

○ 底层的员工

● 一棵树中，只有一个 root node

○ 大Boss之允许有一个

我是root

这些是叶子节点

Copyright © www.jiuzhang.com

二叉树 Binary Tree

二叉树（binary tree）

● 每个节点最多有两个子节点

● 两个子节点分别被称为左孩子（left child）和右孩子（right child）

● 叶子节点：没有孩子节点的节点

不特别说明的话，我们提到的树都是指二叉树

Copyright © www.jiuzhang.com

树 Tree

子树（sub-tree）

树中的每个节点代表以它为根的一棵树

左孩子所代表的树成为左子树（left sub-tree）

右孩子所代表的树成为右子树（right sub-tree）

Copyright © www.jiuzhang.com

● 如何遍历一棵树

● 如何使用树的遍历算法解题

● 如何分析递归程序的时间，并学会分析时间、空间复杂度

你会掌握

Copyright © www.jiuzhang.com

树结构，随处可见的数据结构

● 文件系统 B+树

● 数据库的索引－第七节课

● 字典树，平衡树等 - 高级数据结构

Copyright © www.jiuzhang.com

学习目标1

● 构造一棵二叉树 Construct a binary tree

● 打印出这课二叉 print a binary tree

○ 格式如下node value： x, parent node, left node, right node

Copyright © www.jiuzhang.com

剖析LintCode TreeNode

 TreeNode类

1. left和right分别对应左右子节点

2. val表示node的值

val

left right

Copyright © www.jiuzhang.com

Coding

Coding & Print 构造和打印二叉树

Copyright © www.jiuzhang.com

树的遍历 Traversal

树（二叉树）的遍历 （Binary Tree Traversal）

● 先序遍历（Preorder traversal）

○ 口诀：根左右

● 中序遍历（Inorder traversal）

○ 口诀：左根右

● 后序遍历（Postorder traversal）

○ 口诀：左右根

Copyright © www.jiuzhang.com

先序遍历 Preorder traversal

根左右：8，3，1，6，4，7，10，14，13 （先序遍历）

Copyright © www.jiuzhang.com

中序遍历 Inorder traversal

左根右：1，3，4，6，7，8，10，13，14 （中序遍历）

Copyright © www.jiuzhang.com

后序遍历 Postorder traversal

左右根：请同学们写出这棵树的后续遍历

Copyright © www.jiuzhang.com

树 Tree

如何遍历一棵树？

使用递归的方式！？

程序实现一般有两种方式：

● 递归的实现方式

● 非递归的实现方式

Copyright © www.jiuzhang.com

递归 Recursion

什么是递归 (Recursion)？

● 数据结构的递归

○ 树就是一种递归的数据结构

● 算法（程序）的递归

○ 函数自己调用自己

没错，这就是递归。。。

Copyright © www.jiuzhang.com

递归三要素 *

● 递归的定义

○ 首先这个问题或者数据结构得是递归定义的

● 递归的出口

○ 什么时候递归终止

● 递归的拆解

○ 递归不终止的时候，如何分解问题

Copyright © www.jiuzhang.com

经典例题Fibonacci

http://www.lintcode.com/en/problem/fibonacci/

http://www.lintcode.com/en/problem/fibonacci/

Copyright © www.jiuzhang.com

经典例题Fibonacci

递归的定义：

- 因为斐波那契数列满足F(n) = F(n - 1) + F(n - 2)

递归的出口：

- n = 0 和 n = 1的时候，问题规模足够小的时候

递归的拆解：

- return self.fibonacci(n - 1) + self.fibonacci(n - 2)

Copyright © www.jiuzhang.com

Coding

Coding 打印出一个树的中序遍历

Copyright © www.jiuzhang.com

学习目标2

● 获取所有叶子节点的和 Get leaf sum

● 获取树的高度 Get tree height

● 获取所有root到叶子节点的路径 Get root-to-leaf paths

Copyright © www.jiuzhang.com

实战例题

Binary Tree Leaf Sum

http://www.lintcode.com/en/problem/binary-tree-leaf-sum/

 http://www.jiuzhang.com/solution/binary-tree-leaf-sum/

http://www.lintcode.com/en/problem/binary-tree-leaf-sum/
http://www.jiuzhang.com/solution/binary-tree-leaf-sum/

Copyright © www.jiuzhang.com

Recursion 获取叶子节点的和

访问一个Node：

● 如果这个Node是叶子节点，则sum就是他本身

● 如果这个Node不是叶子节点，则sum等于左子树的叶子节点和 + 右子树之和

val: 10

val: 10

左子树的
和

右子树的
和

核心词：
● 树的leaf的和
● 子树的leaf的和

Copyright © www.jiuzhang.com

实战例题

Maximum Depth of Binary Tree

http://www.lintcode.com/en/problem/maximum-depth-of-binary-tree/

 http://www.jiuzhang.com/solution/maximum-depth-of-binary-tree/

http://www.lintcode.com/en/problem/maximum-depth-of-binary-tree/
http://www.jiuzhang.com/solution/maximum-depth-of-binary-tree/

Copyright © www.jiuzhang.com

Recursion 获取树的高度

访问一个Node：

● 如果这个Node是叶子节点，则高度是1

● 如果这个Node不是叶子节点，则高度等于

○ max(左子树的高度, 右子树的高度) + 1

val: 10

val: 10

左子树的
高度

右子树的
高度

核心词：
● 树的高度
● 子树的高度

Copyright © www.jiuzhang.com

Recursion 获取树中root到leaf的所有路径

能否根据之前两个问题，我们来做同样的分析？

Copyright © www.jiuzhang.com

实战例题

Identical Binary Tree

http://www.lintcode.com/en/problem/identical-binary-tree/

http://www.jiuzhang.com/solutions/identical-binary-tree/
题目大意：判断两棵Tree是否同构，同构的定义是可以通过交换左右子

树是的他们相同

http://www.lintcode.com/en/problem/identical-binary-tree/
http://www.jiuzhang.com/solutions/identical-binary-tree/

Copyright © www.jiuzhang.com

Recursion 判断子树是否同构

访问一个A树中的Node1, 和B树中的Node2：

● 如果这个Node1和Node2都是NULL，则同构

● 如果这个Node1和Node2都不是NULL，则同构的条件是

○ Node1和Node2节点val相同

○ Node1和Node2的left subtree同构且Node1和Node2的right subtree同构

● 他们不同构

判断同构的子问题

Copyright © www.jiuzhang.com

LintCode 树的遍历问题

Binary Tree Preorder Traversal

http://www.lintcode.com/en/problem/binary-tree-preorder-traversal/

Binary Tree Inorder Traversal

http://www.lintcode.com/en/problem/binary-tree-inorder-traversal/

Binary Tree Postorder Traversal

http://www.lintcode.com/en/problem/binary-tree-postorder-traversal/

更多Traversal的问题 http://www.lintcode.com/en/tag/binary-tree-traversal/

http://www.lintcode.com/en/problem/binary-tree-preorder-traversal/
http://www.lintcode.com/en/problem/binary-tree-inorder-traversal/
http://www.lintcode.com/en/problem/binary-tree-postorder-traversal/
http://www.lintcode.com/en/tag/binary-tree-traversal/

Copyright © www.jiuzhang.com

谢谢大家

