
1

第五章⽂件处理

⼀ ⽂件读写基本操作

1. ⽂件操作的⼯作流程

2. ⽂件操作的基本形式

⼆ 默认打开⽂件的参数说明

1. ⽂件打开的字符编码

2. ⽂件的打开模式

三 ⽂本模式打开⽂件的操作

1. 操作⽂件“r”模式

2. 操作⽂件“w”模式

3. 操作⽂件“a”模式

四 ⼆进制模式打开⽂件的操作

1. “b”模式基本介绍

2. 操作⽂件的“rb”模式

3. 操作⽂件的“wb”模式

4. 操作⽂件的“ab”模式

5. 操作⽂件的其他模式（了解）

五 ⽂件内光标移动

本⽂是Python通⽤编程系列教程，已全部更新完成，实现的⽬标是从零基础开始到精通Python编程语

⾔。本教程不是对Python的内容进⾏泛泛⽽谈，⽽是精细化，深⼊化的讲解，共5个阶段，25章内容。

所以，需要有耐⼼的学习，才能真正有所收获。虽不涉及任何框架的使⽤，但是会对操作系统和⽹络通

信进⾏全局的讲解，甚⾄会对⼀些开源模块和服务器进⾏重写。学完之后，你所收获的不仅仅是精通⼀

⻔Python编程语⾔，⽽且具备快速学习其他编程语⾔的能⼒，⽆障碍阅读所有Python源码的能⼒和对

计算机与⽹络的全⾯认识。对于零基础的⼩⽩来说，是⼊⻔计算机领域并精通⼀⻔编程语⾔的绝佳教

材。对于有⼀定Python基础的童鞋，相信这套教程会让你的⽔平更上⼀层楼。

⼀ ⽂件读写基本操作

1. ⽂件操作的⼯作流程

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

2

⽂件在我们的计算机上随处可⻅，当我们需要永久保存数据的时候就会⽤到⽂件，⽂件是由计算机操作系

统来提供的，那么⾃然也就受操作系统的控制。如下图所示，⼀套完整的计算机系统主要由三部分构成：

1. 应⽤程序

2. 操作系统

3. 计算机底层硬件

如果应⽤程序需要操作硬件，必须先要发指令给操作系统，通过操作系统来帮应⽤程序完成对机器硬件的

操作。如果应⽤程序需要把⾃⼰产⽣的数据永久保存起来（应⽤程序产⽣的数据原本是在内存中），那么

就是把它写⼊硬盘，这时应⽤程序要通过操作系统提供的接⼝来控制硬件，如果应⽤程序需要读取⽂件内

容，同样是向操作系统发起请求，最后由操作系统返回⽂件内容，这之间的过程如下图所示：

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

3

接下来我们要讲解的就是应⽤程序如何调⽤操作系统提供的接⼝来读取和写⼊⽂件。

我们事先在当前路径下准备好⼀个⽂件a.txt，如下图所示：

2. ⽂件操作的基本形式深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

4

接下来我们在 "⽂件处理.py" ⽂件内开始打开读取⽂件的操作，在Python中必然会有⼀个功能或者接⼝来

打开⽂件，这个接⼝就是open，使⽤参数如下图所示：

⽂件读取操作代码示例如下：

"""

open打开文件需要3个参数，

打开文件之后会有一个返回值，

读写操作就是对这个返回值进行操作

f = open('文件的路径',mode='打开文件的模式',encoding='操作文件的字符编码')

"""

"""

open是向操作系统发请求，会占用操作系统资源，这个资源不会自动回收

返回值就是应用程序拿到的变量，应用程序的变量Python解释器会自动帮你回收

"""

1 打开文件

f = open(r'a.txt',mode='r',encoding='utf-8')# 关于open()函数中的mode参数可参⻅

二.2

"""

对于应用程序来说上面这行代码与我写一个"f = 1"没有本质区别，

你不需要再执行"del f"，因为解释器会自动帮你清理这个应用程序资源，

但是，打开的文件占用了操作系统的资源，这不会自动回收，所以必须人为显式的进行回收，

f.close()即可，注意其中del f一定要发生在f.close()之后，否则就会导致操作系统打开的文件还没

有关闭，

白白占用资源

"""

2 读取文件

data = f.read()

print(data)

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

5

有的时候关闭⽂件的操作总是会被遗忘，我们有⼀个使⽤ "with"来操作⽂件的⽅式，它是⼀个上下⽂的操

作，会帮你⾃动的关闭⽂件，代码示例如下：

除此之外，“with” 可以连续打开多个⽂件，代码示例如下：

如果不指定字符编码，默认打开⽂件的字符编码与操作系统相匹配：

Windows系统（中国⼤陆⽤户）：gbk

Liunx系统：utf-8

MacOS：utf-8

打开⼀个⽂件其实是占⽤了两部分资源，分别是操作系统资源和应⽤程序资源，应⽤程序资源会⾃动由

Python解释器来回收，⽽操作系统打开⽂件的资源并不会⽴即回收，操作系统每打开⼀个⽂件其实会有

⼀个编号，每个编号与应⽤程序向操作系统发起⽂件操作请求的编号⼀⼀对应，这个编号称为⽂件描述

符，操作系统的⽂件描述符编号是有限的，所以，当服务器⾼并发的时候，由于打开⽂件个数⾮常多，

因⽽还没来得及关闭，那么服务器就卡了，返回给⽤的的结果就是⽤户的客户端卡了。

⼆ 默认打开⽂件的参数说明

1. ⽂件打开的字符编码

3 关闭文件，清理操作系统打开文件的资源

f.close()

print(f) # 应用程序的资源还在

f.read() # 文件关闭不能再进行读取

as 指的是赋值

with open('a.txt', 'r', encoding='utf-8') as f:

 data = f.read()

 print(data)

with open('a1.txt', 'r', encoding='utf-8') as f1, \

 open('a2.txt', 'r', encoding='utf-8') as f2:

 data1 = f1.read()

 data2 = f2.read()

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

6

在不指定字符编码的情况下，MacOS系统示例代码：

⽂件默认的打开模式是“t”模式，指的是⽂本模式，这意味着在该模式下⽆法打开图⽚，视频和⾳频等⽂

件，因为这些是以⼆进制格式存储的，⽂本模式是以字符形式存储的。

操作⽂件的模式有三种，分别是：“r”，“w”和“a”模式，“r”是只读，“w”是只写，“a”是指追加，默认操

作⽂件⼤模式是“r”模式，所以默认⽂件的打开模式是“rt”模式，对于操作⽂本⽂件，“t”模式必须与操作

⽂件的三种模式连⽤，很多时候你看到的，这个“t”经常会省略不写，这是可以的。

在⽂件处理中，我们需要打开⼀个⽂件，打开⽂件有若⼲种⽅式，有时我们只希望读取⽂件内容⽽不想修

改，那么为了防⽌失误性的修改⽂件，可使⽤'r'模式打开⽂件，这样你就不能对⽂件进⾏任何修改啦，每

⼀种模式都有其存在的意义，⼤家⽤多了就明⽩了。

全部读取使⽤read，代码示例如下：

2. ⽂件的打开模式

三 ⽂本模式打开⽂件的操作

1. 操作⽂件“r”模式

文件保存的以utf-8编码保存，与本机默认编码一致

with open('a.txt', 'r',) as f:

 data = f.read()

 print(data)

f = open('a.txt', mode='r', encoding='utf-8') # “r”模式下，如果文件不存在会报错

f.write('哈哈') #抛出异常，不能写

print(f.readable()) # 判断是否可读

print('=============>1')

print(f.read()) # 全部读取

print('=============>2')

读文件会有一个光标移动，第一次读完了，光标移至末尾，第二次读无内容

print(f.read())

f.close()

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

7

⼀⾏⼀⾏读⽂件内容使⽤readline，代码示例如下：

全部读取⽂件内容，存⼊列表，每⾏内容为列表的⼀个元素使⽤readlines，代码示例如下：

readlines可以加数字作为参数，但是他不是指的⾏数，⽽是字节数，所以我们⼀般不⽤，如需逐⾏打印⽂

件内容常⽤readlines与for循环连⽤，代码示例如下：

注意：在“w”只写模式下，当⽂件存在时，就会清空该⽂件，代码示例如下：

2. 操作⽂件“w”模式

f = open('a.txt', mode='r', encoding='utf-8')

readline指的是一行一行读文件

print(f.readline(), end='') # 文件中有换行，print也自带换行，指定end参数去掉默认换行

print(f.readline(), end='')

print(f.readline(), end='')

f.close()

f = open('a.txt', mode='r', encoding='utf-8')

print(f.readlines())

f.close()

如果文件内容比较少的时候，以下两种方式都可以

with open('a.txt') as f:

 # 当文件很大时，f.readlines()结果是一个很大的列表在内存中，机器就卡了

 for line in f.readlines():

 print(line, end='')

推荐使用这种方式

with open('a.txt') as f: # f是一个可迭代对象，就像老母鸡会下蛋一样

 for line in f:

 # 文件内容很大时，使用这种方式每次内存中只有一行内容

 print(line, end='')

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

8

当⽂件不存在时，就会创建空⽂档，代码示例如下：

只写模式常⽤的⽅法：

“a”模式指的是只追加写，当⽂件不存在时，创建空⽂件；当⽂件存在时，光标直接移⾄⽂件末尾，所以，

我们在记录⽇志的时候都会使⽤“a”模式，代码示例如下：

3. 操作⽂件“a”模式

四 ⼆进制模式打开⽂件的操作

f = open(r'a.txt', mode='w', encoding='utf-8') # 默认是wt

f.write('第一行\n') # 需要自己添加“\n”来换行

f.write('第二行\n')

f.close()

f = open(r'a1.txt', mode='w', encoding='utf-8') # 默认是wt

f.write('第一行\n')

f.write('第二行\n')

f.close()

f = open(r'a1.txt', mode='w', encoding='utf-8') # 默认是wt

f.writable()

writelines指的是可以放一个列表或者元组，里面可以有多行内容，需要自己加换行符

f.writelines(['111111\n', '222222\n', '333333\n'])

下面这样代码与上面写的结果一样

f.write('aaaaaa\nbbbbbbb\ncccccc\n')

f.close()

f = open('access.log', mode='a', encoding='utf-8')

print(f.writable())

print(f.readable())

f.write('5555555555555\n')

f.close()

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

9

“b”模式指的是⽂件打开的模式为“b”模式， 它与“t”模式类似，不能单独使⽤，必须以“rb”，“wb”或

者“ab”模式来使⽤，“b”模式读写都是以bytes为单位进⾏的，所以可以理解为“b”模式就是⼆进制模式。

对于普通⽂本来说是以字符的形式保存的，但是对于图⽚，视频或者⾳频等等这些⽂件则是以⼆进制形式

保存的，所以“t”模式⽆法读取，代码及报错示例如下：

图⽚⽂件并不是以字符编码保存的，⽽是以JPG这个格式保存成了⼆进制形式，与字符编码没有关系，所

以我们以⽂本模式处理⽂件是不可⾏的。应该以⼆进制模式打开⽂件，这时不需要指定字符编码，正确的

打开⽅式请看如下代码示例：

强调：

1、与t模式类似，不能单独使⽤，必须是rb，wb，ab

2、b模式下读写都是以bytes单位的

3、b模式下⼀定不能指定encoding参数，不指定encoding参数默认为⼆进制

4、b模式（⼆进制）可以读取⽂字，图⽚，视频，什么⽂件都可以（因为所有类型的数据都要以⼆进制形

式存在硬盘中）

1. “b”模式基本介绍

b模式下一定不能指定encoding参数

with open('01.jpg', 'rb',) as f:

 data = f.read()

 print(data)

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

10

需要说明的⼀点是，“b”模式也可以读取⽂本⽂件，字符的底层都是以⼆进制形式存储的，只不过你在使

⽤“t”模式读取⽂本⽂件的时候open帮你把⼆进制转成了能够看懂的⽂本，这是“t”模式的便利之处，但是

它有局限性，只能操作⽂本⽂件，⽽“b”模式具有统⼀性，任何⽂件底层存储原理都是⼆进制，这也就是意

味着“b”模式可以操作任何⽂件，代码示例如下：

“wb”模式也是操作⽂件“w”模式的⼀种，当⽂件存在时，就会清空该⽂件，当⽂件不存在时，就会创建空

⽂件，⽐如当你需要对⼀个⽂档重写时就会⽤到。代码示例如下：

“ab”模式指的是以⼆进制形式追加写，与操作⽂件的“a”模式同理，代码示例如下：

2. 操作⽂件的“rb”模式

3. 操作⽂件的“wb”模式

4. 操作⽂件的“ab”模式

with open('01.jpg', 'rb',) as f1, open('a.txt', 'rb') as f2:

 img = f1.read()

 text = f2.read()

 print(text.decode('utf-8')) # 把bytes转化成utf-8

wb模式写入

with open('a.txt', 'wb') as f:

 msg = '你好，世界'

 f.write(msg.encode('utf-8')) # 指定写入文件的字符编码

rb模式读取

with open('a.txt', 'rb') as f:

 data = f.read()

 print(data)

 print(type(data))

 print(data.decode('utf-8')) # 指定读取文件的字符编码

with open('a.txt', 'ab') as f:

 msg = '\n世界：你也好，小鬼'

 f.write(msg.encode('utf-8')) # 指定写入文件的字符编码

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

11

补充：

在这这⾥讲⼀个⼩模块的部分⽤法，是sys模块，它的使⽤说明请看下⾯代码示例和截图：

注： ⼩模块是python⼤⽜已经写好的轮⼦，⾥⾯可能有你在特定场景下需要的⼀些功能性函数，你就不需

要⾃⼰写函数啦，调它的库再调它的函数就完事啦~

接下来我们在终端环境下执⾏以下命令（注意参数1前后的空格）：

你可以看到在终端执⾏打印的结果就是⼀个列表，第⼀个值是⽂件路径，第⼆个和第三个值分别是两个参

数。

5. 操作⽂件的其他模式（了解）

import sys # 首先导入这个模块

list_test = sys.argv # 它的返回值是一个列表

print(list_test)

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

12

⼀般来说，你遇到的操作⽂件的模式都是只读或者只写，但是也有可读可写的模式，这类模式了解即可，

说明和代码示例如下：

“r+”与“w+”，“a+”模式都是可读可写，他们的区别在于不改变⾃身原本操作⽂件的形式，即“r+”模式

下，当⽂件不存在会报错，“w+”或者“a+”模式当⽂件不存在会创建新⽂件，当⽂件存在时w+会清空⽂

件，a+会在写⼊时追加内容。

在打开⽂件时会有⼀个光标移动，我们使⽤seek这个⽅法，可以实现光标的移动，代码示例如下：

注意：光标移动只能是从左往右移动，seek可以加两个参数，第⼀个参数就是上⾯代码中的参数，你如果

只传⼀个参数也就是指的这个参数，第⼆个参数默认是0，指的是光标在⽂件开头位置开始移动，除了0之

外，只能接收1或者2作为参数，1表示从当前位置开始移动，2表示从⽂件末尾开始移动，其中1和2必须

五 ⽂件内光标移动

"r+t"模式，或者写成"r+"模式，指的是可读可写

with open('a.txt', 'r+t', encoding='utf-8') as f:

 print(f.readable())

 print(f.writable())

"w+r"或者"w+"模式，可读可写

with open('a.txt', 'w+t', encoding='utf-8') as f:

 print(f.readable())

 print(f.writable())

"a+t"或者"a+"，可读可追加写

with open('a.txt', 'a+t', encoding='utf-8') as f:

 print(f.readable())

 print(f.writable())

"U"模式，通用换行符，已废弃，无需了解

with open('a.txt', 'U', encoding='utf-8') as f:

print(f.readable())

print(f.writable())

with open('a.txt', 'r') as f:

 f.seek(9) # 这个参数指的是偏移量，以字节为单位

 data = f.read()

 print(data)

深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

13

在“b”模式下进⾏，0可以在“t”模式或者“b”下都能运⾏，但是⽆论哪种模式，都是以bytes为单位进⾏

的，代码示例如下：

补充：

在这⾥补充⼀个⼩模块的⽤法，是os模块，它的使⽤说明请看下⾯代码示例：

with open('a.txt', 'rb') as f:

 f.seek(3, 0) # 移动三个字节，也就是utf-8编码下一个中文字符

 print(f.tell()) # 当前光标位置，以字节为单位

 f.seek(3, 1) # 从当前位置向右偏移3个字节然后再读取文件内容

 # f.seek(3, 2) # 只能读取动态数据新添加的内容

 data = f.read()

 print(data.decode('utf-8'))

with open('a.txt', 'r') as f:

 f.seek(3, 0)

 print(f.read())

import os # 首先导入这个模块

os.rename('a.txt', 'b.txt') # 修改文件名，两个参数分别为源文件名和目标文件名

os.remove('a1.txt') # 删除a1.txt文件，这个参数指的是文件路径
深度之眼

深度之眼

深度之眼

观看视频课程，请关注【Python 高手之路】公众号，或添加深小享（deepshare0106）咨询

