

字符串类型及操作

Python语言程序设计

嵩 天

北京理工大学

单元开篇

CC BY-NC-SA 4.0 嵩天

字符串类型及操作

- 字符串类型的表示

- 字符串操作符

- 字符串处理函数

- 字符串处理方法

- 字符串类型的格式化

字符串类型的表示

CC BY-NC-SA 4.0 嵩天

字符串

由0个或多个字符组成的有序字符序列

- 字符串由一对单引号或一对双引号表示

"请输入带有符号的温度值: "或者 'C'

- 字符串是字符的有序序列，可以对其中的字符进行索引

"请" 是 "请输入带有符号的温度值: " 的第0个字符

字符串

字符串有 2类共4种 表示方法

- 由一对单引号或双引号表示，仅表示单行字符串

"请输入带有符号的温度值: "或者 'C'

- 由一对三单引号或三双引号表示，可表示多行字符串

''' Python

语言 ''' Q: 老师老师，三引号不是多行注释吗？

Python语言为何提供 2类共4种 字符串表示方式？

字符串

字符串有 2类共4种 表示方法

- 如果希望在字符串中包含双引号或单引号呢？

'这里有个双引号(")' 或者 "这里有个单引号(')"

- 如果希望在字符串中既包括单引号又包括双引号呢？

''' 这里既有单引号(')又有双引号 (") '''

字符串的序号

正向递增序号 和 反向递减序号

0

请 输 入 带 有 符 号 的 温 度 值 :

1 2 3 4 5 6 7 8 9 10 11

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

正向递增序号

反向递减序号

字符串的使用

使用[]获取字符串中一个或多个字符

- 索引：返回字符串中单个字符 <字符串>[M]

"请输入带有符号的温度值: "[0] 或者 TempStr[-1]

- 切片：返回字符串中一段字符子串 <字符串>[M: N]

"请输入带有符号的温度值: "[1:3] 或者 TempStr[0:-1]

字符串切片高级用法

使用[M: N: K]根据步长对字符串切片

- <字符串>[M: N]，M缺失表示至开头，N缺失表示至结尾

"〇一二三四五六七八九十"[:3] 结果是 "〇一二"

- <字符串>[M: N: K]，根据步长K对字符串切片

"〇一二三四五六七八九十"[1:8:2] 结果是 "一三五七"

"〇一二三四五六七八九十"[::-1] 结果是 "十九八七六五四三二一〇"

字符串的特殊字符

转义符 \

- 转义符表达特定字符的本意

"这里有个双引号(\")" 结果为 这里有个双引号(")

- 转义符形成一些组合，表达一些不可打印的含义

"\b"回退 "\n"换行(光标移动到下行首) "\r" 回车(光标移动到本行首)

字符串操作符

CC BY-NC-SA 4.0 嵩天

字符串操作符

由0个或多个字符组成的有序字符序列

操作符及使用 描述

x + y 连接两个字符串x和y

n * x 或 x * n 复制n次字符串x

x in s 如果x是s的子串，返回True，否则返回False

获取星期字符串

- 输入：1-7的整数，表示星期几

- 输出：输入整数对应的星期字符串

- 例如：输入3，输出 星期三

字符串操作符

获取星期字符串

字符串操作符

#WeekNamePrintV1.py

weekStr = "星期一星期二星期三星期四星期五星期六星期日"

weekId = eval(input("请输入星期数字(1-7)："))

pos = (weekId – 1) * 3

print(weekStr[pos: pos+3])

获取星期字符串

字符串操作符

#WeekNamePrintV2.py

weekStr = "一二三四五六日"

weekId = eval(input("请输入星期数字(1-7)："))

print("星期" + weekStr[weekId-1])

字符串处理函数

CC BY-NC-SA 4.0 嵩天

字符串处理函数
一些以函数形式提供的字符串处理功能

函数及使用 描述

len(x)
长度，返回字符串x的长度

len("一二三456") 结果为 6

str(x)
任意类型x所对应的字符串形式

str(1.23)结果为"1.23" str([1,2])结果为"[1,2]"

hex(x) 或 oct(x)
整数x的十六进制或八进制小写形式字符串

hex(425)结果为"0x1a9" oct(425)结果为"0o651"

字符串处理函数
一些以函数形式提供的字符串处理功能

函数及使用 描述

chr(u) x为Unicode编码，返回其对应的字符

ord(x) x为字符，返回其对应的Unicode编码

chr(u)

ord(x)

Unicode 单字符

Python字符串的编码方式

Unicode编码

- 统一字符编码，即覆盖几乎所有字符的编码方式

- 从0到1114111 (0x10FFFF)空间，每个编码对应一个字符

- Python字符串中每个字符都是Unicode编码字符

一些有趣的例子

Unicode编码

>>> "1 + 1 = 2 " + chr(10004)

'1 + 1 = 2 ✔'

>>> "这个字符♉的Unicode值是：" + str(ord("♉"))

'这个字符♉的Unicode值是： 9801'

>>> for i in range(12):

print(chr(9800 + i), end="")

♈♉♊♋♌♍♎♏♐♑♒♓

字符串处理方法

CC BY-NC-SA 4.0 嵩天

"方法"在编程中是一个专有名词

字符串处理方法

- "方法"特指<a>.()风格中的函数()

- 方法本身也是函数，但与<a>有关，<a>.()风格使用

- 字符串及变量也是<a>，存在一些方法

字符串处理方法
一些以方法形式提供的字符串处理功能

方法及使用 1/3 描述

str.lower() 或 str.upper()
返回字符串的副本，全部字符小写/大写

"AbCdEfGh".lower() 结果为 "abcdefgh"

str.split(sep=None)
返回一个列表，由str根据sep被分隔的部分组成

"A,B,C".split(",") 结果为 ['A','B','C']

str.count(sub)
返回子串sub在str中出现的次数

"a apple a day".count("a") 结果为 4

字符串处理方法
一些以方法形式提供的字符串处理功能

方法及使用 2/3 描述

str.replace(old, new)

返回字符串str副本，所有old子串被替换为new

"python".replace("n","n123.io") 结果为

"python123.io"

str.center(width[,fillchar])

字符串str根据宽度width居中，fillchar可选

"python".center(20,"=") 结果为

'=======python======='

字符串处理方法
一些以方法形式提供的字符串处理功能

方法及使用 3/3 描述

str.strip(chars)

从str中去掉在其左侧和右侧chars中列出的字符

"= python= ".strip(" =np") 结果为

"ytho"

str.join(iter)

在iter变量除最后元素外每个元素后增加一个str

",".join("12345") 结果为

"1,2,3,4,5" #主要用于字符串分隔等

字符串类型的格式化

CC BY-NC-SA 4.0 嵩天

字符串类型的格式化

格式化是对字符串进行格式表达的方式

- 字符串格式化使用.format()方法，用法如下：

<模板字符串>.format(<逗号分隔的参数>)

字符串类型的格式化

槽

"{ }:计算机{ }的CPU占用率为{ }%".format("2018-10-10","C",10)

0 1 2

字符串中槽{}的默认顺序

0 1 2

format()中参数的顺序

字符串类型的格式化

槽

"{1}:计算机{0}的CPU占用率为{2}%".format("2018-10-10","C",10)

format()方法的格式控制
槽内部对格式化的配置方式

{ <参数序号> ： <格式控制标记>}

引导

符号

用于填充的

单个字符

< 左对齐

> 右对齐

^ 居中对齐

槽设定的输

出宽度

数字的千位

分隔符

浮点数小数

精度 或 字

符串最大输

出长度

整数类型

b, c, d, o, x, X

浮点数类型

e, E, f, %

： <填充> <对齐> <宽度> <,> <.精度> <类型>

format()方法的格式控制

引导

符号

用于填充的

单个字符

< 左对齐

> 右对齐

^ 居中对齐

槽设定的输

出宽度

： <填充> <对齐> <宽度> <,> <.精度> <类型>

>>>"{0:=^20}".format("PYTHON")

'=======PYTHON======='

>>>"{0:*>20}".format("BIT")

'*****************BIT‘

>>>"{:10}".format("BIT")

'BIT '

format()方法的格式控制

>>>"{0:,.2f}".format(12345.6789)

'12,345.68'

>>>"{0:b},{0:c},{0:d},{0:o},{0:x},{0:X}".format(425)

'110101001,Ʃ,425,651,1a9,1A9'

>>>"{0:e},{0:E},{0:f},{0:%}".format(3.14)

'3.140000e+00,3.140000E+00,3.140000,314.000000%'

数字的千位

分隔符

浮点数小数

精度 或 字

符串最大输

出长度

整数类型

b, c, d, o, x, X

浮点数类型

e, E, f, %

<填充> <对齐> <宽度> <,> <.精度> <类型>：

单元小结

CC BY-NC-SA 4.0 嵩天

- 正向递增序号、反向递减序号、<字符串>[M:N:K]

- +、*、len()、str()、hex()、oct()、ord()、chr()

- .lower()、.upper()、.split()、.count()、.replace()

- .center()、.strip()、.join(）、.format()格式化

字符串类型及操作

