

代码复用与函数递归

Python语言程序设计

嵩 天

北京理工大学

单元开篇

CC BY-NC-SA 4.0 嵩天

- 代码复用与模块化设计

- 函数递归的理解

- 函数递归的调用过程

- 函数递归实例解析

代码复用与函数递归

代码复用与模块化设计

CC BY-NC-SA 4.0 嵩天

代码复用

把代码当成资源进行抽象

-代码资源化：程序代码是一种用来表达计算的"资源"

-代码抽象化：使用函数等方法对代码赋予更高级别的定义

-代码复用：同一份代码在需要时可以被重复使用

代码复用

函数 和 对象 是代码复用的两种主要形式

函数：将代码命名

在代码层面建立了初步抽象

对象：属性和方法

<a>. 和 <a>.()

在函数之上再次组织进行抽象

抽象级别

模块化设计

分而治之

-通过函数或对象封装将程序划分为模块及模块间的表达

-具体包括：主程序、子程序和子程序间关系

-分而治之：一种分而治之、分层抽象、体系化的设计思想

模块化设计

紧耦合 松耦合

-紧耦合：两个部分之间交流很多，无法独立存在

-松耦合：两个部分之间交流较少，可以独立存在

-模块内部紧耦合、模块之间松耦合

函数递归的理解

CC BY-NC-SA 4.0 嵩天

递归的定义

函数定义中调用函数自身的方式

𝑛! = ቊ
1 𝑛 = 0

𝑛 𝑛 − 1 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

递归的定义

两个关键特征

-链条：计算过程存在递归链条

-基例：存在一个或多个不需要再次递归的基例

𝑛! = ቊ
1 𝑛 = 0

𝑛 𝑛 − 1 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

递归的定义

类似数学归纳法

-数学归纳法

-证明当n取第一个值n0时命题成立

-假设当nk时命题成立，证明当n=nk+1时命题也成立

-递归是数学归纳法思维的编程体现

函数递归的调用过程

CC BY-NC-SA 4.0 嵩天

递归的实现

𝑛! = ቊ
1 𝑛 = 0

𝑛 𝑛 − 1 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

递归的实现

函数 + 分支语句

-递归本身是一个函数，需要函数定义方式描述

-函数内部，采用分支语句对输入参数进行判断

-基例和链条，分别编写对应代码

递归的调用过程

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

def fact(n):

if n == 0 :

return 1

else :

return n*fact(n-1)

fact(5)

递归调用

n=5 n=4 n=3

n=2n=1n=0

n=4n=5 n=3

n=2

n=1n=0

1 1

2

624
120

函数递归实例解析

CC BY-NC-SA 4.0 嵩天

字符串反转

将字符串s反转后输出

-函数 + 分支结构

-递归链条

-递归基例

>>> s[::-1]

def rvs(s):

if s == "" :

return s

else :

return rvs(s[1:])+s[0]

斐波那契数列

一个经典数列

𝐹(𝑛) = ቐ
1 𝑛 = 1
1 𝑛 = 2

𝐹 𝑛 − 1 + 𝐹 𝑛 − 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

F(n) = F(n-1) + F(n-2)

-函数 + 分支结构

-递归链条

-递归基例

def f(n):

if n == 1 or n == 2 :

return 1

else :

return f(n-1) + f(n-2)

斐波那契数列

汉诺塔

>>> s[::-1]

汉诺塔

-函数 + 分支结构

-递归链条

-递归基例

count = 0

def hanoi(n, src, dst, mid):

global count

if n == 1 :

print("{}:{}->{}".format(1,src,dst))

count += 1

else :

hanoi(n-1, src, mid, dst)

print("{}:{}->{}".format(n,src,dst))

count += 1

hanoi(n-1, mid, dst, src)

A B C

汉诺塔

count = 0

def hanoi(n, src, dst, mid):

… (略)

hanoi(3, "A", "C", "B")

print(count)

A B C

>>>

1:A->C

2:A->B

1:C->B

3:A->C

1:B->A

2:B->C

1:A->C

7

单元小结

CC BY-NC-SA 4.0 嵩天

- 模块化设计：松耦合、紧耦合

- 函数递归的2个特征：基例和链条

- 函数递归的实现：函数 + 分支结构

代码复用与函数递归

