

Python程序设计思维

Python语言程序设计

嵩 天

北京理工大学

单元开篇

CC BY-NC-SA 4.0 嵩天

Python程序设计思维

- 计算思维与程序设计

- 计算生态与Python语言

- 用户体验与软件产品

- 基本的程序设计模式

计算思维与程序设计

CC BY-NC-SA 4.0 嵩天

计算思维

第3种人类思维特征

- 逻辑思维：推理和演绎，数学为代表，A->B B->C A->C

- 实证思维：实验和验证，物理为代表，引力波<-实验

- 计算思维：设计和构造，计算机为代表，汉诺塔递归

计算思维

抽象和自动化

- 计算思维：Computational Thinking

- 抽象问题的计算过程，利用计算机自动化求解

- 计算思维是基于计算机的思维方式

计算思维

计数求和：计算1-100的计数和

s =
𝒂𝟏+𝒂𝒏 𝒏

𝟐

计算思维

现代人的新玩儿法

逻辑思维

数学家高斯的玩儿法

s = 0

for i in range(1, 101):

s += i

计算思维

圆周率的计算

计算思维逻辑思维

𝜋 = ෍

k=0

∞

[
1

16k
4

8𝑘 + 1
−

2

8𝑘 + 4
−

1

8𝑘 + 5
−

1

8𝑘 + 6
]

计算思维

汉诺塔问题

𝟐n − 𝟏 计算思维逻辑思维

count = 0

def hanoi(n, src, dst, mid):

… (略)

hanoi(3, "A", "C", "B")

print(count)

>>>

1:A->C

2:A->B

1:C->B

3:A->C

1:B->A

2:B->C

1:A->C

7

计算思维

天气预报

计算思维实证思维+逻辑思维

MM5模型

@超算经验

猜

计算思维

量化分析

计算思维实证思维+逻辑思维

机器学习

自动交易
猜

计算思维

抽象问题的计算过程，利用计算机自动化求解

- 计算思维基于计算机强大的算力及海量数据

- 抽象计算过程，关注设计和构造，而非因果

- 以计算机程序设计为实现的主要手段

计算思维与程序设计

编程是将计算思维变成现实的手段

抽象 自动化

设计和构造 编程

计算思维 真的很有用…

计算生态与Python语言

CC BY-NC-SA 4.0 嵩天

计算生态

从开源运动说起…

- 1983, Richard Stallman启动GNU项目

- 1989, GNU通用许可协议诞生

自由软件时代到来

计算生态

从开源运动说起…

- 1991, Linus Torvalds发布了Linux内核

- 1998, 网景浏览器开源，产生了Mozilla

开源生态逐步建立

计算生态

从开源运动说起…

- 1991, Linus Torvalds

集市模式

- 1983, Richard Stallman

大教堂模式

V.S.

计算生态

开源思想深入演化和发展，形成了计算生态

计算生态以开源项目为组织形式，充分利

用“共识原则”和“社会利他”组织人员，在

竞争发展、相互依存和迅速更迭中完成信息技

术的更新换代，形成了技术的自我演化路径。

计算生态

没有顶层设计、以功能为单位、具备三个特点

- 竞争发展

- 相互依存

- 迅速更迭

计算生态与Python语言

- 以开源项目为代表的大量第三方库

Python语言提供 >13万个第三方库

- 库的建设经过野蛮生长和自然选择

同一个功能，Python语言2个以上第三方库

计算生态与Python语言

- 库之间相互关联使用，依存发展

Python库间广泛联系，逐级封装

- 社区庞大，新技术更迭迅速

AlphaGo深度学习算法采用Python语言开源

计算生态与Python语言

API != 生态

计算生态的价值

创新：跟随创新、集成创新、原始创新

- 加速科技类应用创新的重要支撑

- 发展科技产品商业价值的重要模式

- 国家科技体系安全和稳固的基础

计算生态的运用

刀耕火种 -> 站在巨人的肩膀上

- 编程的起点不是算法而是系统

- 编程如同搭积木，利用计算生态为主要模式

- 编程的目标是快速解决问题

计算生态

优质的计算生态

http://python123.io

理解和运用计算生态

用户体验与及软件产品

CC BY-NC-SA 4.0 嵩天

用户体验

实现功能 -> 关注体验

- 用户体验指用户对产品建立的主观感受和认识

- 关心功能实现，更要关心用户体验，才能做出好产品

- 编程只是手段，不是目的，程序最终为人类服务

提高用户体验的方法

方法1：进度展示

- 如果程序需要计算时间，可能产生等待，请增加进度展示

- 如果程序有若干步骤，需要提示用户，请增加进度展示

- 如果程序可能存在大量次数的循环，请增加进度展示

提高用户体验的方法

方法2：异常处理

- 当获得用户输入，对合规性需要检查，需要异常处理

- 当读写文件时，对结果进行判断，需要异常处理

- 当进行输入输出时，对运算结果进行判断，需要异常处理

提高用户体验的方法

其他类方法

- 打印输出：特定位置，输出程序运行的过程信息

- 日志文件：对程序异常及用户使用进行定期记录

- 帮助信息：给用户多种方式提供帮助信息

软件程序 -> 软件产品

用户体验是程序到产品的关键环节

基本的程序设计模式

CC BY-NC-SA 4.0 嵩天

基本的程序设计模式

从IPO开始…

- I：Input 输入，程序的输入

- P：Process 处理，程序的主要逻辑

- O：Output 输出，程序的输出

基本的程序设计模式

从IPO开始…

- 确定IPO：明确计算部分及功能边界

- 编写程序：将计算求解的设计变成现实

- 调试程序：确保程序按照正确逻辑能够正确运行

基本的程序设计模式

自顶向下设计

- I：Input 输入，程序的输入

- P：Process 处理，程序的主要逻辑

- O：Output 输出，程序的输出

基本的程序设计模式

自顶向下设计

- I：Input 输入，程序的输入

- P：Process 处理，程序的主要逻辑

- O：Output 输出，程序的输出

基本的程序设计模式

模块化设计

- 通过函数或对象封装将程序划分为模块及模块间的表达

- 具体包括：主程序、子程序和子程序间关系

- 分而治之：一种分而治之、分层抽象、体系化的设计思想

基本的程序设计模式

模块化设计

- 紧耦合：两个部分之间交流很多，无法独立存在

- 松耦合：两个部分之间交流较少，可以独立存在

- 模块内部紧耦合、模块之间松耦合

基本的程序设计模式

配置化设计

+

程序引擎 配置文件

基本的程序设计模式

配置化设计

- 引擎+配置：程序执行和配置分离，将可选参数配置化

- 将程序开发变成配置文件编写，扩展功能而不修改程序

- 关键在于接口设计，清晰明了、灵活可扩展

应用开发的四个步骤

从应用需求到软件产品

- 1 产品定义

- 2 系统架构

- 3 设计与实现

- 4 用户体验

应用开发的四个步骤

从应用需求到软件产品

- 1 产品定义：对应用需求充分理解和明确定义

产品定义，而不仅是功能定义，要考虑商业模式

- 2 系统架构：以系统方式思考产品的技术实现

系统架构，关注数据流、模块化、体系架构

应用开发的四个步骤

从应用需求到软件产品

- 3 设计与实现：结合架构完成关键设计及系统实现

结合可扩展性、灵活性等进行设计优化

- 4 用户体验：从用户角度思考应用效果

用户至上，体验优先，以用户为中心

单元小结

CC BY-NC-SA 4.0 嵩天

- 计算思维：抽象计算过程和自动化执行

- 计算生态：竞争发展、相互依存、快速更迭

- 用户体验：进度展示、异常处理等

- IPO、自顶向下、模块化、配置化、应用开发的四个步骤

Python程序设计思维

