


序列类型及操作

Python语言程序设计

嵩 天

北京理工大学



单元开篇

CC BY-NC-SA 4.0 嵩天



序列类型及操作
- 序列类型定义

- 序列处理函数及方法

- 元组类型及操作

- 列表类型及操作

- 序列类型应用场景



序列类型定义

CC BY-NC-SA 4.0 嵩天



序列类型定义

序列是具有先后关系的一组元素

- 序列是一维元素向量，元素类型可以不同

- 类似数学元素序列： s0, s1, … , sn-1

- 元素间由序号引导，通过下标访问序列的特定元素



序列类型定义

序列是一个基类类型

序列类型

字符串类型 元组类型 列表类型



序列类型定义

序号的定义

0

"BIT"

1 2 3 4

-5 -4 -3 -2 -1

正向递增序号

反向递减序号

3.1415 1024 (2,3) ["中国",9]



序列处理函数及方法

CC BY-NC-SA 4.0 嵩天



序列类型通用操作符

操作符及应用 描述

x in s 如果x是序列s的元素，返回True，否则返回False

x not in s 如果x是序列s的元素，返回False，否则返回True

s + t 连接两个序列s和t

s*n 或 n*s 将序列s复制n次

s[i] 索引，返回s中的第i个元素，i是序列的序号

s[i: j] 或 s[i: j: k] 切片，返回序列s中第i到j以k为步长的元素子序列

6个操作符



>>> ls = ["python", 123, ".io"] 

>>> ls[::-1]

['.io', 123, 'python']

>>> s = "python123.io"

>>> s[::-1]

'oi.321nohtyp'

序列类型操作实例



序列类型通用函数和方法

函数和方法 描述

len(s) 返回序列s的长度

min(s) 返回序列s的最小元素，s中元素需要可比较

max(s) 返回序列s的最大元素，s中元素需要可比较

s.index(x) 或
s.index(x, i, j)

返回序列s从i开始到j位置中第一次出现元素x的位置

s.count(x) 返回序列s中出现x的总次数

5个函数和方法



>>> ls = ["python", 123, ".io"] 

>>> len(ls)

3

>>> s = "python123.io"

>>> max(s)

'y'

序列类型操作实例



元组类型及操作

CC BY-NC-SA 4.0 嵩天



元组类型定义

元组是序列类型的一种扩展

- 元组是一种序列类型，一旦创建就不能被修改

- 使用小括号 () 或 tuple() 创建，元素间用逗号 , 分隔

- 可以使用或不使用小括号 def func():

return 1,2



>>> creature = "cat", "dog", "tiger", "human"

>>> creature 

('cat', 'dog', 'tiger', 'human')

>>> color = (0x001100, "blue", creature)

>>> color

(4352, 'blue', ('cat', 'dog', 'tiger', 'human'))

元组类型定义



元组类型操作

元组继承序列类型的全部通用操作

- 元组继承了序列类型的全部通用操作

- 元组因为创建后不能修改，因此没有特殊操作

- 使用或不使用小括号



>>> creature = "cat", "dog", "tiger", "human"

>>> creature[::-1] 

('human', 'tiger', 'dog', 'cat') 

>>> color = (0x001100, "blue", creature)

>>> color[-1][2]

'tiger'

元组类型操作



列表类型及操作

CC BY-NC-SA 4.0 嵩天



列表类型定义

列表是序列类型的一种扩展，十分常用

- 列表是一种序列类型，创建后可以随意被修改

- 使用方括号 [] 或list() 创建，元素间用逗号 , 分隔

- 列表中各元素类型可以不同，无长度限制



>>> ls = ["cat", "dog", "tiger", 1024]

>>> ls

['cat', 'dog', 'tiger', 1024] 

>>> lt = ls

>>> lt

['cat', 'dog', 'tiger', 1024] 

列表类型定义

['cat','dog','tiger',1024] 

ls

lt

方括号 [] 真正创建一个列表，赋值仅传递引用



列表类型操作函数和方法

函数或方法 描述

ls[i] = x 替换列表ls第i元素为x

ls[i: j: k] = lt 用列表lt替换ls切片后所对应元素子列表

del ls[i] 删除列表ls中第i元素

del ls[i: j: k] 删除列表ls中第i到第j以k为步长的元素

ls += lt 更新列表ls，将列表lt元素增加到列表ls中

ls *= n 更新列表ls，其元素重复n次



>>> ls = ["cat", "dog", "tiger", 1024]

>>> ls[1:2] = [1, 2, 3, 4]

['cat', 1, 2, 3, 4, 'tiger', 1024]

>>> del ls[::3]

[1, 2, 4, 'tiger']

>>> ls*2

[1, 2, 4, 'tiger', 1, 2, 4, 'tiger']

列表类型操作



列表类型操作函数和方法
函数或方法 描述

ls.append(x) 在列表ls最后增加一个元素x

ls.clear() 删除列表ls中所有元素

ls.copy() 生成一个新列表，赋值ls中所有元素

ls.insert(i,x) 在列表ls的第i位置增加元素x

ls.pop(i) 将列表ls中第i位置元素取出并删除该元素

ls.remove(x) 将列表ls中出现的第一个元素x删除

ls.reverse() 将列表ls中的元素反转



>>> ls = ["cat", "dog", "tiger", 1024]

>>> ls.append(1234)

['cat', 'dog', 'tiger', 1024, 1234] 

>>> ls.insert(3, "human")

['cat', 'dog', 'tiger', 'human', 1024, 1234]

>>> ls.reverse()

[1234, 1024, 'human', 'tiger', 'dog', 'cat']

列表类型操作



列表功能默写

 定义空列表lt

 向lt新增5个元素

 修改lt中第2个元素

 向lt中第2个位置增加一个元素

 从lt中第1个位置删除一个元素

 删除lt中第1-3位置元素

 判断lt中是否包含数字0

 向lt新增数字0

 返回数字0所在lt中的索引

 lt的长度

 lt中最大元素

 清空lt



列表功能默写

 定义空列表lt

 向lt新增5个元素

 修改lt中第2个元素

 向lt中第2个位置增加一个元素

 从lt中第1个位置删除一个元素

 删除lt中第1-3位置元素

>>> lt = []

>>> lt += [1,2,3,4,5]

>>> lt[2] = 6

>>> lt.insert(2, 7)

>>> del lt[1]

>>> del lt[1:4]



列表功能默写

 判断lt中是否包含数字0

 向lt新增数字0

 返回数字0所在lt中的索引

 lt的长度

 lt中最大元素

 清空lt

>>> 0 in lt

>>> lt.append(0)

>>> lt.index(0)

>>> len(lt)

>>> max(lt)

>>> lt.clear()



序列类型应用场景

CC BY-NC-SA 4.0 嵩天



序列类型应用场景

数据表示：元组 和 列表

- 元组用于元素不改变的应用场景，更多用于固定搭配场景

- 列表更加灵活，它是最常用的序列类型

- 最主要作用：表示一组有序数据，进而操作它们



序列类型应用场景

元素遍历

for item in ls :

<语句块>

for item in tp :

<语句块>



序列类型应用场景

数据保护

- 如果不希望数据被程序所改变，转换成元组类型

>>> ls = ["cat", "dog", "tiger", 1024]

>>> lt = tuple(ls)

>>> lt

('cat', 'dog', 'tiger', 1024)



单元小结

CC BY-NC-SA 4.0 嵩天



- 序列是基类类型，扩展类型包括：字符串、元组和列表

- 元组用()和tuple()创建，列表用[]和set()创建

- 元组操作与序列操作基本相同

- 列表操作在序列操作基础上，增加了更多的灵活性

序列类型及操作




