
DMM: Empower Diverse Open Transport
Layer Protocol in the Cloud Networking

Yalei Wang

2

Agenda

• Challenges on protocol stack

• DMM introduction

• Use cases and stack integration examples

• Roadmap

3

Challenges on Protocol stack

• TCP Protocol - a performance bottleneck
 Loss sensitive

 Poor in larger bandwidth-delay product network

 No delivery latency SLA guarantee

 Difficult to tune performance

• Operating System Kernel Stack
 Low performance

 Monolithic in design

 Hard to customize

 Long protocol/algorithm release cycle

1992 2002 2007 ？ time

v0.98

v2.5.20

v2.6.33

TCP/IP
SCTP

UDP-Lite

MPTCP?

• More than 25 years, <5 transport protocols are released in the Linux

kernel

• It has takes 8 years after MPTCP was firstly proposed, but MPTCP is still

not released in the Linux kernel

The history of transport protocol released in

Linux Kernel
Kernel

version

BBRv4.8

4

Future Transport Protocol Design

• Ultimate performance
 Video – orders of magnitudes higher bandwidth

 VR/AR – very low latency and jitter

 IoT – orders of magnitudes more concurrent connections

• Diversified network QoS/SLA

 Applications with different QoS/SLA requirements exist

simultaneously on the same platform

 Any optimization is tradeoff between factors

• Heterogeneous network environments
 Cloud computing and mobile internet turn the network

into an extremely complicated system

 Network environment might change significantly due to

mobility

5

Challenges on protocol stack - Some Answers

• Alternative transport protocols
 Google’s QUIC

 IBM’s FASP

• User-space network stack
 Improving performance: System call, scalability, …

 Protecting intellectual property

 F-Stack, Seastar, MTCP, vpp-hoststack, …

6

Challenges

• Diversity is future: One-size-fits-all protocol is not feasible，

• User space protocol stacks need complete solution on：socket layer, fd

management，epoll framework，system call, io layer, …

• Completely bypass kernel stack or kernel mode？
 Intrusive or non-intrusive for APP

• How to apply the new protocol?
 RTC mode or pipeline mode

• APP won’t consider service discovery, LB … but how to avoid considering

using what kind of protocol stack

7

Agenda

• What protocol stack face today

• DMM introduction

• Use cases and stack integration example

• Roadmap

8

DMM: Re-design the Protocol Stack

DMM (Dual modes Multi-protocols Multi-instances) is a network stack

framework which enables:

• Dual mode: Kernel space and User space

• Multi-protocols: Simple new protocol adoptions and integrations

• Multi-instances: Enable “Protocol Routing”

The concept of DMM was proposed by Huawei for the first time in 2015.

Enabling “Protocol Routing”: Revisiting Transport Layer Protocol Design in Internet

Communications

https://ieeexplore.ieee.org/document/8114687/

9

DMM: Architecture

Key Techniques

• Distributed and Centralized nRD deployment

(LRD & CRD) provide end-to-end protocol

orchestration

• Stack-transparent “Protocol Routing” (Stack

orchestrator)

• POSIX compatible socket APIs

• Flexible socket API redirection and mapping

(SBR)

• Flexible APIs for integration of third party stacks

(EAL)

• Multiple stack instances support

• Multiple I/O engines support

POSIX Socket-compatible API (LD_PRELOAD)

Socket

MUX

P
ro

to
c
o

l O
rc

h
e

s
tra

to
r

VPP

Host

Stack

TLDK F-Stack

Kernel

stack

IPv6

input/output
IPv4

input/output

DPDK input

Web APP
Video

streaming

Online

gaming

n
R

D
H

o
n

e
y
c
o

m
b

Socket Bridge(SBR)

REST

REST

VPP

User

Space

Kernel

Space

NIC

…

Data-plane EAL

DMM

3rd Party stack

L2~L4

Socket

Layer

10

DMM: Distinguishing feature for protocol stack

• Socket layer support both Pipeline mode & RTC mode

• Protocol routing capability

• Fd management

• Epoll framework

• …

11

DMM: Pipeline & RTC mode integration

• The flavor is different，socket layer will support both

Shared

Memory

APP1

S

B

R

S

B

R

APP2

Protocol

Stack

Damon

Protocol

Stack

APP

Protocol

Stack

APP

Protocol

Stack

APP

primary

secondary

primary secondary secondary

S

B

R

S

B

R

S

B

R

12

DMM: Protocol Routing

Another protocol stackVPP

socket(), bind(), listen(), accept(), send(), recv()

Application server

LD_PRELOAD

vppcom_session_...() stackx-socket_...()

vppcom_session_...() stackx-socket_...()

socket(), connect(), send(), recv()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

nRD

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

Server call listen() triggers L-RD to

publish capacity policies and preference

policies to C-RD.

Server call accept()and client call

connect() trigger L-RD to retrieve and

resolve protocol stack mapping.

According to the mapping, the socket is

instantiated to one protocol stack or another.

Dual mode(kernel or user-space), Multiple

protocols, Multiple instances can exist

simultaneously.

1

2

3

4

5

6

1

2
3

4
5

6

4

13

DMM: End to End Network Protocol Orchestration

14

DMM: Fd Management

• Distinguish fd

• Monitor app lifecycle in pipeline mode integration

• Support epoll/select to loop mixed stack fds

nstack_fd_Inf

rlfd = 5

rmidx = 3
fd = 8

ops
protoFD

…

…

nstack_fd_Inf 7

nstack_fd_Inf 8

nstack_fd_Inf 9

Protocol kernel fd 8=>index

Kernel 8

Rdma 5

F-stack 32

LWIP 5

...

Protocol

kernel

Protocol

F-stack

Protocol

LWIP

Protocol

rdma

...

LWIP index 4

LWIP index 5

…

…

socket

bind

listen

sendto

ep_getevt

ep_ctl

…

Index 0 Index 1 Index 2 Index 3

Protocol stacks table

15

DMM: Epoll Framework

 APP creates ePoll and nSocket create an epoll info and group file descriptor for this epoll.

 This epoll info manages the list of socket fd’s and its type which this epoll is interested in.

 Upon epoll_ctl the list of interested fd’s are added to this epoll list in nSocket.

 nSocket inform about this ctl info(shared private data) to the stackpool adapter to monitor these sockets(via shared

memory) and notify nsocket on receiving any data.

1 2

3

4

5

6

16

DMM: More Benefits

• Help to implement the“fork”semantics in socket layer

• Help to dock various IO requirement (EAL)

• Help to design flexible socket API redirection and mapping (SBR)

• …

17

DMM: Recap the features

DMM + protocol us protocol stack

LD_PRELOAD yes yes

Modify source of

app

no Add socket plugin layer

Add protocol specific API code

Specify the stack RD Specify in source code

Configure file

Fork yes no

NIC share monopoly

Epoll yes re-implement

Kernel fd yes no

...

18

DMM: Key takeaways

• Flexibility to dynamically choose different

protocols according to performance and/or

functional requirements

• End-to-end orchestration to maintain stack

instances and the app/socket-to-stack

mappings

• Extendable transport protocol plug-in

framework to host multiple stack instances

simultaneously

• Let stack developers concentrate on user

space protocol innovation

POSIX Socket-compatible API (LD_PRELOAD)

Socket

MUX

P
ro

to
c
o

l O
rc

h
e

s
tra

to
r

VPP

Host

Stack

TLDK F-Stack

Kernel

stack

IPv6

input/output
IPv4

input/output

DPDK input

Web APP
Video

streaming
Online

gaming

n
R

D
H

o
n

e
y
c
o

m
b

Socket Bridge(SBR)

REST

REST

VPP

User

Space

Kernel

Space

NIC

…

Data-plane EAL

DMM

3rd Party stack

L2~L4

Socket

Layer

19

Agenda

• What protocol stack face today

• DMM introduction

• Use cases and stack integration example

• Roadmap

20

Booth Demo1: Protocol Routing for Multi-network

Client-Server Application

File Sync Application

• 3 Clients --> Server

Network Setting

• Internet (Client #1)

• Intra DataCenter (Client #2)

• Inter DataCenter (Client #3)

Comparison scheme

• Default: the kernel TCP/IP stack

• DMM: automatically negotiate appropriate stacks (kernel TCP/IP, customized user-space TCP/IP,

RDMA) on different network

Client #3

Client #2

21

Booth Demo1: Protocol Routing for Multi-network

Client-Server Application

No one stack/protocol fits all scenario, but by adaptively negotiating stack

according to the network environment, DMM achieves significant performance

improvement.

Reduced

by 97%

Reduced

by 69%

Almost no Framework overhead

DMM + RDMA

DMM + Customized

Userspace TCP/IP

DMM +Kernel Stack

22

Booth Demo2 : Dual mode support for Nginx Server

Nginx application

• kernel stack vs user-space stack ?

DMM nRD Policy (Example):

• Internet connection ---> kernel stack

• LAN connection ---> user-space stack

Using DMM Nginx application server could switch between kernel stack and

user-space stack adaptively to use their advantages respectively under different

scenario; and “D” mode help to process the kernel fd and event.

23

How DMM applied into production environment

Edge Monitor

Node

Center

Controller

Video Capture

Data

Video Analyze

DB

Optimized TCP

Stack

DMM DMM

Optimized TCP stack in DMM can achieve 90% bandwidth

usage and low latency, easy to deploy.

CDN CDN

Hybrid Video Platform
OTT、IPTV、DVB

DMM

Optimized TCP stack in DMM can support mass concurrent

connections and achieve smooth user experience even

12% packet loss rate.

DMM

DMM

DMM

DMM

24

Stack integration example 1: vpp hoststack

Host 1

DPDK

VPP Host Stack

Session

TCP

IP

DMM adaptor

VCL adaptor

APP
Server

App

dmm

framework

Host 2

DPDK

VPP Host Stack

Session

TCP

IP

DMM adaptor

VCL adaptor

APP
Client

App

dmm

framework

• module_config.json:

{

...

{

“stack_name”: “vpp_host_stack”,

“function_name”: “vpphs_stack_register”,

“libname”: “libdmm_vcl.so”,

...

}

}

• dmm_vcl_adpt.c is built into libdmm_vcl.so.

vpphs_stack_register()

{

// load symbol from “libname”

nstack_proc_cb->socket_ops.pf##fn = dlsym(val->handle, #fn);

nstack_proc_cb->extern_ops.ep_ctl = vpphs_fd_ep_trigger;

nstack_proc_cb->extern_ops.ep_getEvt = vpphs_fd_ep_getEvt;

...

}

VPP process

VPP Host Stack

DPDK

DMM

adaptor

nsocket API

framework LRD

Application process

Socket API

redirection

25

Stack integration example 2: LWIP+dpdk

• Pipeline mode

APP nSocket SBR

nStackMain

spl_tcpip_thread

Msg_queue

Shared Memory

Pcb_new()_do_newconn()

tcpip_netif_recv()

dpdk_send()

APP

dpdk_recv()
Write in global mbuf ring

 _do_write()

Recv_task() ->
spl_hal_buf_convert()

tcpip_thread()
[This code belongs to
nStackMain not lwip]

API_EVENT(conn,
NETCONN_EVT_RCVPLUS, 1) ->

nstack_event_callback()

HAL DPDKLwip

spl_netconn_t

mring_handle
recv_ringrecvfrom()

do_write() hal_send_packet()

spl_hal_recv

Pass only payload (After
address translation)

Malloc spl_pbuf, Convert and
Copy pbuf to mt_tx (spl_pbuf)

and send to dpdk,

Recv spl_pbuf, malloc pbuf
(type PBUF_POOL, and

PBUF_RAW), pass to lwip

Copy pbuf to spl_pbuf, can
malloc spl_pbuf from mp_tx

pool.

Read spl_pbuf from
recv_ring

spl_hal_output()

Lwip pbuf

sbr buf

spl_netconn_t

common_pcb_t

tcp_pcb_t

nStack

26

Stack integration example 3: rsocket

• RTC mode

27

Agenda

• What protocol stack face today

• DMM introduction

• Use cases and stack integration example

• Roadmap

28

DMM: Roadmap

• v18.07

 Integrate rsocket stack

 Initial support for pipeline userspace LWIP(DPDK) and vpp hoststack

 Manual on how to integrate a stack into DMM framework

 DMM pkg release in rpm and deb

• v18.10

 RTC F-Stack、vpp hoststack、LWIP example into DMM

 Support“Fork”example

 provide“SBR”example

 DMM Performance optimization

 Enhance the“contactless” for APP

29

Join us

FD.io DMM project

• https://wiki.fd.io/view/DMM

Repo

• https://git.fd.io/dmm

Involved in

• Maillist: dmm-dev@lists.fd.io

• IRC: #fdio-dmm

Wechat code

mailto:dmm-dev@lists.fd.io

Copyright©2016 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without

limitation, statements regarding the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that could cause actual

results and developments to differ materially from those expressed or implied in the

predictive statements. Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei may change the

information at any time without notice.

Thank You.

31

32

33

DMM: Benefit To Stack/Protocol Developers

Friendly interfaces to integrate

 Mechanisms for socket redirect

 Flexible I/O APIs including NIC/L2/L3/L4 APIs

Accelerate innovation of new stacks

 Concentrate on the core function of the stack

 Easy to be deployed

 Easy to be adopted/tested by applications

34

DMM: Benefit To Application Developers

 Extended POSIX socket APIs which is backward compatible for legacy applications

 ‘Protocol Routing’ based on network env, application requirements and host information

 Rapidly benefit from the new stacks/protocols without any changes on the application code

‘Protocol Routing’ workflow

35

DMM-Demo-2: Dual mode support for Nginx Server

Nginx application

• kernel stack vs user-space stack ?

DMM nRD Policy (Example):

• Internet connection ---> kernel stack

• LAN connection ---> user-space stack

Using DMM Nginx application server could switch between kernel stack and

user-space stack adaptively to use their advantages respectively under different

scenario

36

DMM: Protocol Routing Workflow

socket(), bind()

Application server

socket()

Application client

Application server and client calls socket

interface.
1

37

DMM: Protocol Routing Workflow

socket(), bind()

Application server

LD_PRELOAD

socket()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

1

2

38

DMM: Protocol Routing Workflow

socket(), bind(), listen()

Application server

LD_PRELOAD

socket()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

C-RD

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

Server call listen() triggers L-RD to

publish capacity policies and preference

policies to C-RD.

1

2

3

39

DMM: Protocol Routing Workflow

socket(), bind(), listen(), accept()

Application server

LD_PRELOAD

socket(), connect()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

C-RD

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

Server call listen() triggers L-RD to

publish capacity policies and preference

policies to C-RD.

Server call accept() and client call

connect() trigger L-RD to retrieve and

resolve protocol stack mapping.

1

2

3

4

40

DMM: Protocol Routing Workflow

VPP

socket(), bind(), listen(), accept(), send(), recv()

Application server

LD_PRELOAD

vppcom_session_...()

vppcom_session_...()

socket(), connect(), send(), recv()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

C-RD

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

Server call listen() triggers L-RD to

publish capacity policies and preference

policies to C-RD.

Server call accept() and client call

connect() trigger L-RD to retrieve and

resolve protocol stack mapping.

According to the mapping, the socket is

instantiated to one protocol stack

1

2

3

4

5

41

DMM: Protocol Routing Workflow

Another protocol stack

socket(), bind(), listen(), accept(), send(), recv()

Application server

LD_PRELOAD

stackx-socket_...()

stackx-socket_...()

socket(), connect(), send(), recv()

Application client

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

C-RD

Application server and client calls socket

interface.

Socket APIs are hijacked to DMM nSocket

APIs.

Server call listen() triggers L-RD to

publish capacity policies and preference

policies to C-RD.

Server call accept() and client call

connect() trigger L-RD to retrieve and

resolve protocol stack mapping.

According to the mapping, the socket is

instantiated to one protocol stack or another.

1

2

3

4

5

42

DMM: provide fd management

• Every userspace protocol stack got FD management problem

Routed Protocol fd 2

nstack_fd_Inf

rlfd = 2

rmidx = 3

fd = 8

ops

protoFD

…

…

nstack_fd_Inf 7

nstack_fd_Inf 8

nstack_fd_Inf 9

Protocol kernel fd 8=>index

Protocol kernel

Protocol F-stack

Protocol rdma

Protocol LWIP

Routed Protocol

index 3

Kernel Protocol fd 8

Fd=2

Fd=8

...

…

nsep_epollInfo_t 7

nsep_epollInfo_t 8

…

Protocol kernel fd 8=>index

DMM + protocol protocol stack

Modify the APP no yes

LD_PRELOAD yes yes

Fork yes no

Nic share grab

43

DMM: Fd Management

• Distinguish fd

• Monitor app lifecycle

• Support poll/select both on protocol fd and normal fd

Routed Protocol fd 2

nstack_fd_Inf

rlfd = 2

rmidx = 3

fd = 8

ops

protoFD

…

…

nstack_fd_Inf 7

nstack_fd_Inf 8

nstack_fd_Inf 9

Protocol kernel fd 8=>index

Protocol kernel

Protocol F-stack

Protocol rdma

Protocol LWIP

Routed Protocol index 3

Kernel Protocol fd 8

Fd=2

Fd=8

...

