
Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

1 / 204

Eclipse OSGi

0 尤埃与产品简介

西安尤埃信息技术有限公司（http://www.uishell.com）成立于 2008 年 5 月份，

专注于尤埃开放服务平台和尤埃 SaaS 引擎云计算产品开发。

尤埃开放服务平台（XAUI Open Service Platform，UIOSP）是一个移植了

OSGi 规范的动态插件化与模块化平台，支持插件化与模块化、SOA 和模块扩展。

尤埃 SaaS 引擎（XAUI SaaS Engine，XSE）是一个 SaaS 应用商店开放平台。

该平台是面向 SaaS 运营商、SaaS 提供商和 SaaS 消费者三个角色的 PaaS 云计算

平台，其模式为“SaaS 运营商负责平台运营，SaaS 提供商利用平台提供的开发

工具包基于 VS2008SP1 开发 SaaS 应用并上传，SaaS 消费者在应用商店挑选、

购买并使用 SaaS 应用”。该平台由应用商店网站、应用开发工具包和应用虚拟运

行环境构成。

1 osgi.framework

1.1 Bundle 相关

1.1.1 Bundle

Bundle 接口表示在框架中安装的一个 Bundle。每一个 Bundle 有一个由框架设置

的唯一标识。它提供以下功能：

（1）Bundle 操作，启动、停止、更新、卸载操作及 Bundle 状态。

（2）Bundle 信息，头信息、ID、Location、特征名称和上次更新时间。

（3）类和资源加载，获取服务引用。

（4）Bundle 上下文。

package org.osgi.framework;

http://www.uishell.com/

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

2 / 204

import java.io.IOException;

import java.io.InputStream;

import java.net.URL;

import java.util.Dictionary;

import java.util.Enumeration;

public interface Bundle {

 //已卸载状态。

 public static final int UNINSTALLED = 0x00000001;

 //已安装状态。

 public static final int INSTALLED = 0x00000002;

 //已解析状态。

 public static final int RESOLVED = 0x00000004;

 //正在启动状态。

 public static final int STARTING = 0x00000008;

 //正在停止状态。

 public static final int STOPPING = 0x00000010;

 //激活状态。

 public static final int ACTIVE = 0x00000020;

 //Bundle的autostart设置影响启动策略，这个持久设置可有：

//（1）Stopped——Bundle不可以被启动；

//（2）Started with eager activation——启动后立即激活；

//（3）Started with declared activation——启动后，第一个类加载时激活。

//这个值用于start函数，表示启动后立即激活，但不更改autostart设置。

 public static final int START_TRANSIENT = 0x00000001;

 //这个值用于start函数，表示使用Bundle-ActivationPolicy来启动，并设置

 //autostart为Started with declared activation。

 public static final int START_ACTIVATION_POLICY = 0x00000002;

 //用于stop函数，表示停止后不更改autostart设置。

 public static final int STOP_TRANSIENT = 0x00000001;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

3 / 204

 //返回Bundle当前状态。

 public int getState();

 //使用参数启动Bundle。这个参数可以是：

 //（1）0——启动后立即激活，并设置autostart为Started with eager activation。

 //（2）START_TRANSIENT——同0，但不更改autostart。

 //（3）START_ACTIVATION_POLICY——启动后根据Bundle-ActivationPolicy来

 //激活Bundle，并更改autostart为Started with declared activation。

 //（4）START_ACTIVATION_POLICY | START_TRANSIENT——同（3），但不更改

 //autostart设置。

 //如果Bundle状态时UNINSTALLED，则抛出IllegalStateException；

//如果框架实现了可选的启动级别且当前启动级别小于Bundle启动级别，

//若设置START_TRANSIENT，则抛出BundleException。

 public void start(int options) throws BundleException;

 //相当于start(0)。

 public void start() throws BundleException;

 //停止一个Bundle，参数options可为：

 //（1）0——停止并设置autostart为stopped。

 //（2）STOP_TRANSIENT——停止，不更改autostart。

 public void stop(int options) throws BundleException;

 //相当于stop(0)。

 public void stop() throws BundleException;

 //更新Bundle。

 public void update() throws BundleException;

 public void update(InputStream in) throws BundleException;

 //卸载一个Bundle。

 public void uninstall() throws BundleException;

 //获取这个Bundle的头信息。

 public Dictionary getHeaders();

 //Bundle ID。

 public long getBundleId();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

4 / 204

 //安装位置。

 public String getLocation();

 //获取这个Bundle注册的服务。

 public ServiceReference[] getRegisteredServices();

 //获取这个Bundle使用的服务。

 public ServiceReference[] getServicesInUse();

 public boolean hasPermission(Object permission);

 //获取资源。

 public URL getResource(String name);

 //获取本地化的头信息。

 public Dictionary getHeaders(String locale);

 //特征名。

 public String getSymbolicName();

 //装载类。

 public Class loadClass(String name) throws ClassNotFoundException;

 //获取所有资源。

 public Enumeration getResources(String name) throws IOException;

 public Enumeration getEntryPaths(String path);

 public URL getEntry(String path);

 //上次更新时间。

 public long getLastModified();

 //查找资源。

 public Enumeration findEntries(String path, String filePattern,

 boolean recurse);

 //获取上下文。

 public BundleContext getBundleContext();

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

5 / 204

1.1.2 BundleActivator

自定义启动和停止 Bundle。当 Bundle 在 Resolved<->Active 之间转换时，调用 start

和 stop。

package org.osgi.framework;

public interface BundleActivator {

 public void start(BundleContext context) throws Exception;

 public void stop(BundleContext context) throws Exception;

}

1.1.3 BundleContext

BundleContext 用于使关联 Bundle 与系统的其它功能进行交互。它提供的功能包

括：

（1）获取属性。

（2）检索和安装 Bundle。

（3）注册和获取服务引用。

（4）服务、Bundle 和框架的事件与监听器。

（5）过滤器和持久存储。

package org.osgi.framework;

import java.io.File;

import java.io.InputStream;

import java.util.Dictionary;

public interface BundleContext {

 //系统属性。

 public String getProperty(String key);

 //返回关联的Bundle。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

6 / 204

 public Bundle getBundle();

 //安装一个Bundle。

 public Bundle installBundle(String location)

 throws BundleException;

 public Bundle installBundle(String location, InputStream input)

 throws BundleException;

 //获取指定ID的Bundle。

 public Bundle getBundle(long id);

 //获取所有安装的Bundle。

 public Bundle[] getBundles();

 //服务监听器。

 public void addServiceListener(ServiceListener listener,

 String filter) throws InvalidSyntaxException;

 public void addServiceListener(ServiceListener listener);

 public void removeServiceListener(ServiceListener listener);

 //Bundle监听器。

 public void addBundleListener(BundleListener listener);

 public void removeBundleListener(BundleListener listener);

 //Framework监听器。

 public void addFrameworkListener(FrameworkListener listener);

 public void removeFrameworkListener(FrameworkListener listener);

 //注册服务。

 public ServiceRegistration registerService(String[] clazzes,

 Object service, Dictionary properties);

 public ServiceRegistration registerService(String clazz,

 Object service, Dictionary properties);

 //获取服务。

 public ServiceReference[] getServiceReferences(String clazz,

 String filter) throws InvalidSyntaxException;

 public ServiceReference[] getAllServiceReferences(String clazz,

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

7 / 204

 String filter) throws InvalidSyntaxException;

 public ServiceReference getServiceReference(String clazz);

 public Object getService(ServiceReference reference);

 //取消使用服务。

 public boolean ungetService(ServiceReference reference);

 //在持久化存储中创建一个文件。如果不支持文件系统，则返回null。

 public File getDataFile(String filename);

 //创建过滤器。

 public Filter createFilter(String filter)

 throws InvalidSyntaxException;

}

1.1.4 BundleEvent

描述 Bundle 声明周期变更的事件。需要注意的是，这个事件是异步传输的。

package org.osgi.framework;

import java.util.EventObject;

public class BundleEvent extends EventObject {

 //变更的Bundle。

 private final Bundle bundle;

 //声明周期变更类型。

 private final int type;

 //类型：已安装、已启动、已停止、已更新、已卸载、已解析、未解析、

 //正在启动、正在停止、将被晚激活。

 public final static int INSTALLED = 0x00000001;

 public final static int STARTED = 0x00000002;

 public final static int STOPPED = 0x00000004;

 public final static int UPDATED = 0x00000008;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

8 / 204

 public final static int UNINSTALLED = 0x00000010;

 public final static int RESOLVED = 0x00000020;

 public final static int UNRESOLVED = 0x00000040;

 public final static int STARTING = 0x00000080;

 public final static int STOPPING = 0x00000100;

 public final static int LAZY_ACTIVATION = 0x00000200;

 public BundleEvent(int type, Bundle bundle) {

 super(bundle);

 this.bundle = bundle;

 this.type = type;

 }

 public Bundle getBundle() {

 return bundle;

 }

 public int getType() {

 return type;

 }

}

1.1.5 BundleException

一个 BundleException 用于指示发生了一个 Bundle 生命周期问题。

package org.osgi.framework;

public class BundleException extends Exception {

 static final long serialVersionUID = 3571095144220455665L;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

9 / 204

 private final Throwable cause;

 public BundleException(String msg, Throwable cause) {

 super(msg);

 this.cause = cause;

 }

 public BundleException(String msg) {

 super(msg);

 this.cause = null;

 }

 public Throwable getNestedException() {

 return cause;

 }

 public Throwable getCause() {

 return cause;

 }

 public Throwable initCause(Throwable cause) {

 throw new IllegalStateException();

 }

}

1.1.6 BundleListener

package org.osgi.framework;

import java.util.EventListener;

public interface BundleListener extends EventListener {

 public void bundleChanged(BundleEvent event);

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

10 / 204

1.1.7 SynchronousBundleListener

同步处理，即 Bundle 的生命周期处理中必须同步的处理完监听器后，才可以执

行其它操作。

package org.osgi.framework;

public interface SynchronousBundleListener extends BundleListener {

}

1.2 服务相关

1.2.1 ServiceReference

表示对一个服务的引用。BundleContext.getServiceReference 将返回该对象。它可

以在 Bundle 间共享，用于检索服务属性和获取服务对象。在框架注册的每一个

服务有一个唯一的 ServiceRegistration 和多个引用它的 ServiceReference 对象。关

联相同 ServiceRegistration 的服务引用有相同的哈希值。

package org.osgi.framework;

public interface ServiceReference extends Comparable {

 //获取服务的属性。

 public Object getProperty(String key);

 //获取所有属性键。

 public String[] getPropertyKeys();

 //获取注册服务的Bundle。

 public Bundle getBundle();

 //获取通过这个服务引用使用服务的Bundle。

 public Bundle[] getUsingBundles();

 //判断注册当前服务引用对应的服务的Bundle和指定的Bundle，

//对于指定的类是否使用相同的包。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

11 / 204

 public boolean isAssignableTo(Bundle bundle, String className);

 //比较。

 public int compareTo(Object reference);

}

1.2.2 ServiceRegistration

表示一个已经被注册的服务。当 BundleContext.registerService 方法调用成功时，

框架返回一个该对象。这个对象由注册服务的 Bundle 拥有且不与其它 Bundle 共

享。它用于更新服务和卸载服务。

package org.osgi.framework;

import java.util.Dictionary;

public interface ServiceRegistration {

 //获取一个引用。

 public ServiceReference getReference();

 //设置服务属性。

 public void setProperties(Dictionary properties);

 //卸载服务。

 public void unregister();

}

1.2.3 ServiceFactory

允许在 OSGi 环境提供自定义的服务对象。当注册服务时，一个 ServiceFactory

可以用于替代服务对象。可以根据需要返回真正的服务对象，类似于服务代理。

package org.osgi.framework;

public interface ServiceFactory {

 //获取服务对象，将被缓存。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

12 / 204

 public Object getService(Bundle bundle,

ServiceRegistration registration);

 //释放一个服务对象。

 public void ungetService(Bundle bundle,

ServiceRegistration registration, Object service);

}

1.2.4 ServiceEvent

用于描述服务生命周期的变更。这个事件被同步传输。

package org.osgi.framework;

import java.util.EventObject;

public class ServiceEvent extends EventObject {

 private final ServiceReference reference;

 private final int type;

 public final static int REGISTERED = 0x00000001;

 public final static int MODIFIED = 0x00000002;

 public final static int UNREGISTERING = 0x00000004;

 public ServiceEvent(int type, ServiceReference reference) {

 super(reference);

 this.reference = reference;

 this.type = type;

 }

 public ServiceReference getServiceReference() {

 return reference;

 }

 public int getType() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

13 / 204

 return type;

 }

}

1.2.5 ServiceListener

监听器会根据权限过滤。

package org.osgi.framework;

import java.util.EventListener;

public interface ServiceListener extends EventListener {

 public void serviceChanged(ServiceEvent event);

}

1.2.6 AllServicesListener

package org.osgi.framework;

public interface AllServiceListener extends ServiceListener {

}

1.3 Framework 相关

1.3.1 FrameworkUtil

package org.osgi.framework;

import org.eclipse.osgi.framework.internal.core.FilterImpl;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

14 / 204

public class FrameworkUtil {

 private FrameworkUtil() {}

 //创建一个过滤器。

 public static Filter createFilter(String filter)

 throws InvalidSyntaxException

{

 return new FilterImpl(filter);

 }

}

1.3.2 FrameworkEvent

框架的普通事件，它是一个异步事件。

package org.osgi.framework;

import java.util.EventObject;

public class FrameworkEvent extends EventObject {

 private final Bundle bundle;

 private final Throwable throwable;

 private final int type;

 public final static int STARTED = 0x00000001;

 public final static int ERROR = 0x00000002;

 public final static int PACKAGES_REFRESHED = 0x00000004;

 public final static int STARTLEVEL_CHANGED = 0x00000008;

 public final static int WARNING = 0x00000010;

 public final static int INFO = 0x00000020;

 public FrameworkEvent(int type, Object source)

{

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

15 / 204

 super(source);

 this.type = type;

 this.bundle = null;

 this.throwable = null;

 }

 public FrameworkEvent(int type, Bundle bundle, Throwable throwable)

 {

 super(bundle);

 this.type = type;

 this.bundle = bundle;

 this.throwable = throwable;

 }

 public Throwable getThrowable() {

 return throwable;

 }

 public Bundle getBundle() {

 return bundle;

 }

 public int getType() {

 return type;

 }

}

1.3.3 FrameworkListener

package org.osgi.framework;

import java.util.EventListener;

public interface FrameworkListener extends EventListener {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

16 / 204

 public void frameworkEvent(FrameworkEvent event);

}

1.4 其它

1.4.1 AdminPermission（略）

1.4.2 PackagePermission（略）

1.4.3 ServicePermission（略）

1.4.4 Constants

package org.osgi.framework;

public interface Constants {

 public static final String SYSTEM_BUNDLE_LOCATION

 = "System Bundle";

 public static final String SYSTEM_BUNDLE_SYMBOLICNAME

 = "system.bundle";

 public static final String BUNDLE_CATEGORY

 = "Bundle-Category";

 public static final String BUNDLE_CLASSPATH

= "Bundle-ClassPath";

 public static final String BUNDLE_COPYRIGHT

= "Bundle-Copyright";

 public static final String BUNDLE_DESCRIPTION

 = "Bundle-Description";

 public static final String BUNDLE_NAME

 = "Bundle-Name";

 public static final String BUNDLE_NATIVECODE

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

17 / 204

= "Bundle-NativeCode";

 public static final String EXPORT_PACKAGE

 = "Export-Package";

 public static final String EXPORT_SERVICE

 = "Export-Service";

 public static final String IMPORT_PACKAGE

 = "Import-Package";

 public static final String DYNAMICIMPORT_PACKAGE

 = "DynamicImport-Package";

 public static final String IMPORT_SERVICE

 = "Import-Service";

 public static final String BUNDLE_VENDOR

= "Bundle-Vendor";

 public static final String BUNDLE_VERSION

 = "Bundle-Version";

 public static final String BUNDLE_DOCURL

= "Bundle-DocURL";

 public static final String BUNDLE_CONTACTADDRESS

 = "Bundle-ContactAddress";

 public static final String BUNDLE_ACTIVATOR

= "Bundle-Activator";

 public static final String BUNDLE_UPDATELOCATION

 = "Bundle-UpdateLocation";

 public static final String PACKAGE_SPECIFICATION_VERSION

 = "specification-version";

 public static final String BUNDLE_NATIVECODE_PROCESSOR

 = "processor";

 public static final String BUNDLE_NATIVECODE_OSNAME

= "osname";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

18 / 204

 public static final String BUNDLE_NATIVECODE_OSVERSION

 = "osversion";

 public static final String BUNDLE_NATIVECODE_LANGUAGE

 = "language";

 public static final String BUNDLE_REQUIREDEXECUTIONENVIRONMENT

 = "Bundle-RequiredExecutionEnvironment";

 public static final String FRAMEWORK_VERSION

= "org.osgi.framework.version";

 public static final String FRAMEWORK_VENDOR

= "org.osgi.framework.vendor";

 public static final String FRAMEWORK_LANGUAGE

 = "org.osgi.framework.language";

 public static final String FRAMEWORK_OS_NAME

= "org.osgi.framework.os.name";

 public static final String FRAMEWORK_OS_VERSION

= "org.osgi.framework.os.version";

 public static final String FRAMEWORK_PROCESSOR

 = "org.osgi.framework.processor";

 public static final String FRAMEWORK_EXECUTIONENVIRONMENT

 = "org.osgi.framework.executionenvironment";

 public static final String FRAMEWORK_BOOTDELEGATION

= "org.osgi.framework.bootdelegation";

 public static final String FRAMEWORK_SYSTEMPACKAGES

= "org.osgi.framework.system.packages";

 public static final String SUPPORTS_FRAMEWORK_EXTENSION

 = "org.osgi.supports.framework.extension";

 public static final String SUPPORTS_BOOTCLASSPATH_EXTENSION

 = "org.osgi.supports.bootclasspath.extension";

 public static final String SUPPORTS_FRAMEWORK_FRAGMENT

 = "org.osgi.supports.framework.fragment";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

19 / 204

 public static final String SUPPORTS_FRAMEWORK_REQUIREBUNDLE

 = "org.osgi.supports.framework.requirebundle";

 public static final String OBJECTCLASS

 = "objectClass";

 public static final String SERVICE_ID

= "service.id";

 public static final String SERVICE_PID

 = "service.pid";

 public static final String SERVICE_RANKING

 = "service.ranking";

 public static final String SERVICE_VENDOR

 = "service.vendor";

 public static final String SERVICE_DESCRIPTION

 = "service.description";

 public final static String BUNDLE_SYMBOLICNAME

 = "Bundle-SymbolicName";

 public final static String SINGLETON_DIRECTIVE

 = "singleton";

 public final static String FRAGMENT_ATTACHMENT_DIRECTIVE

 = "fragment-attachment";

 public final static String FRAGMENT_ATTACHMENT_ALWAYS

 = "always";

 public final static String FRAGMENT_ATTACHMENT_RESOLVETIME

 = "resolve-time";

 public final static String FRAGMENT_ATTACHMENT_NEVER

 = "never";

 public final static String BUNDLE_LOCALIZATION

 = "Bundle-Localization";

 public final static String BUNDLE_LOCALIZATION_DEFAULT_BASENAME

 = "OSGI-INF/l10n/bundle";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

20 / 204

 public final static String REQUIRE_BUNDLE

 = "Require-Bundle";

 public static final String BUNDLE_VERSION_ATTRIBUTE

= "bundle-version";

 public final static String FRAGMENT_HOST

= "Fragment-Host";

 public final static String SELECTION_FILTER_ATTRIBUTE

 = "selection-filter";

 public final static String BUNDLE_MANIFESTVERSION

 = "Bundle-ManifestVersion";

 public final static String VERSION_ATTRIBUTE

= "version";

 public final static String BUNDLE_SYMBOLICNAME_ATTRIBUTE

 = "bundle-symbolic-name";

 public final static String RESOLUTION_DIRECTIVE

= "resolution";

 public final static String RESOLUTION_MANDATORY

= "mandatory";

 public final static String RESOLUTION_OPTIONAL

 = "optional";

 public final static String USES_DIRECTIVE

 = "uses";

 public final static String INCLUDE_DIRECTIVE

= "include";

 public final static String EXCLUDE_DIRECTIVE

= "exclude";

 public final static String MANDATORY_DIRECTIVE

 = "mandatory";

 public final static String VISIBILITY_PRIVATE

 = "private";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

21 / 204

 public final static String VISIBILITY_REEXPORT

 = "reexport";

 public final static String EXTENSION_DIRECTIVE

 = "extension";

 public final static String EXTENSION_FRAMEWORK

 = "framework";

 public final static String EXTENSION_BOOTCLASSPATH

 = "bootclasspath";

 public final static String BUNDLE_ACTIVATIONPOLICY

 = "Bundle-ActivationPolicy";

 public final static String ACTIVATION_LAZY

 = "lazy";

}

1.4.5 Filter

基于 RFC1960 的过滤器。

package org.osgi.framework;

import java.util.Dictionary;

public interface Filter {

 public boolean match(ServiceReference reference);

 public boolean match(Dictionary dictionary);

 public String toString();

 public boolean equals(Object obj);

 public int hashCode();

 public boolean matchCase(Dictionary dictionary);

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

22 / 204

1.4.6 InvalidSyntaxException

package org.osgi.framework;

public class InvalidSyntaxException extends Exception {

 private final String filter;

 private final Throwable cause;

 public InvalidSyntaxException(String msg, String filter) {

 super(msg);

 this.filter = filter;

 this.cause = null;

 }

 public InvalidSyntaxException(String msg, String filter,

Throwable cause) {

 super(msg);

 this.filter = filter;

 this.cause = cause;

 }

 public String getFilter() {

 return filter;

 }

 public Throwable getCause() {

 return cause;

 }

 public Throwable initCause(Throwable cause) {

 throw new IllegalStateException();

 }

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

23 / 204

1.4.7 Version

表示 Bundle 和包的版本。由 Major、Minor、Micro、Qualifier 组成。

package org.osgi.framework;

import java.util.NoSuchElementException;

import java.util.StringTokenizer;

public class Version implements Comparable {

 private final int major;

 private final int minor;

 private final int micro;

 private final String qualifier;

 private static final String SEPARATOR = ".";

 public static final Version emptyVersion = new Version(0, 0, 0);

 public Version(int major, int minor, int micro) {

 this(major, minor, micro, null);

 }

 public Version(int major, int minor, int micro, String qualifier) {

 if (qualifier == null) {

 qualifier = "";

 }

 this.major = major;

 this.minor = minor;

 this.micro = micro;

 this.qualifier = qualifier;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

24 / 204

 validate();

 }

 //解析字符串。

 public Version(String version) {

 int major = 0;

 int minor = 0;

 int micro = 0;

 String qualifier = "";

 try {

 StringTokenizer st = new StringTokenizer(

version, SEPARATOR, true);

 major = Integer.parseInt(st.nextToken());

 if (st.hasMoreTokens()) {

 st.nextToken(); // consume delimiter

 minor = Integer.parseInt(st.nextToken());

 if (st.hasMoreTokens()) {

 st.nextToken(); // consume delimiter

 micro = Integer.parseInt(st.nextToken());

 if (st.hasMoreTokens()) {

 st.nextToken(); // consume delimiter

 qualifier = st.nextToken();

 if (st.hasMoreTokens()) {

 throw new IllegalArgumentException(

"invalid format");

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

25 / 204

 }

 }

 }

 }

 catch (NoSuchElementException e) {

 throw new IllegalArgumentException("invalid format");

 }

 this.major = major;

 this.minor = minor;

 this.micro = micro;

 this.qualifier = qualifier;

 validate();

 }

 //验证有效性。

 private void validate() {

 if (major < 0) {

 throw new IllegalArgumentException("negative major");

 }

 if (minor < 0) {

 throw new IllegalArgumentException("negative minor");

 }

 if (micro < 0) {

 throw new IllegalArgumentException("negative micro");

 }

 int length = qualifier.length();

 for (int i = 0; i < length; i++) {

 if ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde

fghijklmnopqrstuvwxyz0123456789_-".

indexOf(qualifier.charAt(i)) == -1) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

26 / 204

 throw new IllegalArgumentException("invalid qualifier");

 }

 }

 }

 //解析。

 public static Version parseVersion(String version) {

 if (version == null) {

 return emptyVersion;

 }

 version = version.trim();

 if (version.length() == 0) {

 return emptyVersion;

 }

 return new Version(version);

 }

 public int getMajor() {

 return major;

 }

 public int getMinor() {

 return minor;

 }

 public int getMicro() {

 return micro;

 }

 public String getQualifier() {

 return qualifier;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

27 / 204

 public String toString() {

 String base = major + SEPARATOR + minor + SEPARATOR + micro;

 if (qualifier.length() == 0) {

 return base;

 }

 else {

 return base + SEPARATOR + qualifier;

 }

 }

 public int hashCode() {

 return (major << 24) + (minor << 16) + (micro << 8)

 + qualifier.hashCode();

 }

 public boolean equals(Object object) {

 if (object == this) {

 return true;

 }

 if (!(object instanceof Version)) {

 return false;

 }

 Version other = (Version) object;

 return (major == other.major) && (minor == other.minor)

 && (micro == other.micro)

&& qualifier.equals(other.qualifier);

 }

 //比较，前3部分数字，最后一部分是字母。

 public int compareTo(Object object) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

28 / 204

 if (object == this) {

 return 0;

 }

 Version other = (Version) object;

 int result = major - other.major;

 if (result != 0) {

 return result;

 }

 result = minor - other.minor;

 if (result != 0) {

 return result;

 }

 result = micro - other.micro;

 if (result != 0) {

 return result;

 }

 return qualifier.compareTo(other.qualifier);

 }

}

1.4.8 IConfigurable

支持可配置服务的 Bundle 使用，用于测试服务对象是否实现 IConfigurable，已

被废除。

package org.osgi.framework;

public interface Configurable {

 public Object getConfigurationObject();

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

29 / 204

2 osgi.eclipse.framework.launch

2.1 Launch

这个类提供了运行 OSGi 框架的入口。它根据命令参数配置 OSGi 框架。它支持

的参数有：

（1）-con[sole]:[:port]——表示使用一个控制台窗口启动 OSGi 框架。如果指定

了 Port 了，则控制台将从指定端口获取命令，否则佛那个 System.in 和 System.out。

（2）-adaptor[:adaptor-name] [adaptor-args]——指定使用的 FrameworkApdater 的

实现类。

（3）-app[lication]:application-args——指定启动时间指定应用系统参数。

如果没有指定参数，则默认是使用默认 FrameworkAdapter、没有控制台、没有远

程 Agent。

package org.eclipse.osgi.framework.launcher;

import java.lang.reflect.Constructor;

import java.util.*;

import org.eclipse.osgi.framework.adaptor.FrameworkAdaptor;

import org.eclipse.osgi.framework.internal.core.*;

import org.eclipse.osgi.util.NLS;

public class Launcher {

 protected String consolePort = "";

 protected boolean console = false;

 protected String adaptorClassName =

 "org.eclipse.osgi.baseadaptor.BaseAdaptor";

 protected final String osgiConsoleClazz

= "org.eclipse.osgi.framework.internal.core.FrameworkConsole";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

30 / 204

 protected String[] adaptorArgs = null;

 private static final String OSGI_CONSOLE_COMPONENT_NAME = "OSGi

Console";

 private static final String OSGI_CONSOLE_COMPONENT = "console.jar";

 //启动OSGi框架。

 public static void main(String args[]) {

 new Launcher().doIt(args);

 }

 public Launcher() {

 }

 protected void doIt(String[] args) {

 if (FrameworkProperties.getProperty(

Constants.OSGI_COMPATIBILITY_BOOTDELEGATION) == null)

 FrameworkProperties.setProperty(

Constants.OSGI_COMPATIBILITY_BOOTDELEGATION, "false");

 String[] consoleArgs = parseArgs(args);

 //创佳FrameworkAdapter。

 FrameworkAdaptor adaptor = null;

 try {

 adaptor = doAdaptor();

 } catch (Exception e) {

 System.out.println(Msg.LAUNCHER_ADAPTOR_ERROR);

 e.printStackTrace();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

31 / 204

 return;

 }

 //创建OSGi，并启动。

 OSGi osgi = doOSGi(adaptor);

 if (osgi != null) {

 if (console) {

 doConsole(osgi, consoleArgs);

 } else {

 osgi.launch();

 }

 }

 }

 //解析OSGi启动参数。

 protected String[] parseArgs(String[] args) {

 Vector consoleArgsVector = new Vector();

 for (int i = 0; i < args.length; i++) {

 boolean match = false;

 String fullarg = args[i];

 int quoteidx = fullarg.indexOf("\"");

 if (quoteidx > 0) {

 if (quoteidx == fullarg.lastIndexOf("\"")) {

 boolean stillparsing = true;

 i++;

 while (i < args.length && stillparsing) {

 fullarg = fullarg + " " + args[i];

 i++;

 if (quoteidx < fullarg.lastIndexOf("\"")) {

 stillparsing = false;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

32 / 204

 }

 }

 } else {

 quoteidx = fullarg.indexOf("'");

 if (quoteidx > 0) {

 if (quoteidx == fullarg.lastIndexOf("'")) {

 boolean stillparsing = true;

 i++;

 while (i < args.length && stillparsing) {

 fullarg = fullarg + " " + args[i];

 i++;

 if (quoteidx < fullarg.lastIndexOf("'")) {

 stillparsing = false;

 }

 }

 }

 fullarg = fullarg.replace('\'', '\"');

 }

 }

 Tokenizer tok = new Tokenizer(fullarg);

 if (tok.hasMoreTokens()) {

 String command = tok.getString(" ");

 StringTokenizer subtok = new StringTokenizer(

command, ":");

 String subcommand = subtok.nextToken().toLowerCase();

 if (matchCommand("-console", subcommand, 4)) {

 _console(command);

 match = true;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

33 / 204

 }

 if (matchCommand("-adaptor", subcommand, 2)) {

 _adaptor(command);

 match = true;

 }

 if (match == false) {

 consoleArgsVector.addElement(fullarg);

 }

 }

 }

 String[] consoleArgsArray =

new String[consoleArgsVector.size()];

 Enumeration e = consoleArgsVector.elements();

 for (int i = 0; i < consoleArgsArray.length; i++) {

 consoleArgsArray[i] = (String) e.nextElement();

 }

 return consoleArgsArray;

 }

 public static boolean matchCommand(

String command, String input, int minLength) {

 if (minLength <= 0) {

 minLength = command.length();

 }

 int length = input.length();

 if (minLength > length) {

 length = minLength;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

34 / 204

 return (command.regionMatches(0, input, 0, length));

 }

 //解析Console命令。

 protected void _console(String command) {

 console = true;

 StringTokenizer tok = new StringTokenizer(command, ":");

 tok.nextToken();

 if (tok.hasMoreTokens()) {

 consolePort = tok.nextToken();

 }

 }

 //解析Adapter命令。

 protected void _adaptor(String command) {

 Tokenizer tok = new Tokenizer(command);

 tok.getToken(":");

 tok.getChar();

 String adp = tok.getToken(":");

 if (adp != null && adp.length() > 0) {

 adaptorClassName = adp;

 }

 Vector v = new Vector();

 parseloop: while (true) {

 tok.getChar();

 String arg = tok.getString(":");

 if (arg == null)

 break parseloop;

 v.addElement(arg);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

35 / 204

 }

 if (v != null) {

 int numArgs = v.size();

 adaptorArgs = new String[numArgs];

 Enumeration e = v.elements();

 for (int i = 0; i < numArgs; i++) {

 adaptorArgs[i] = (String) e.nextElement();

 }

 }

 }

 //初始化一个FrameworkAdapter。

 protected FrameworkAdaptor doAdaptor() throws Exception {

 Class adaptorClass = Class.forName(adaptorClassName);

 Class[] constructorArgs = new Class[] {String[].class};

 Constructor constructor = adaptorClass.getConstructor(

constructorArgs);

 return (FrameworkAdaptor) constructor.newInstance(new Object[]

{adaptorArgs});

 }

 //创建一个OSGi对象。

 private OSGi doOSGi(FrameworkAdaptor adaptor) {

 return new OSGi(adaptor);

 }

 //启动一个线程来运行控制台。

 private void doConsole(OSGi osgi, String[] consoleArgs) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

36 / 204

 Constructor consoleConstructor;

 Object osgiconsole;

 Class[] parameterTypes;

 Object[] parameters;

 try {

 Class osgiconsoleClass = Class.forName(osgiConsoleClazz);

 if (consolePort.length() == 0) {

 parameterTypes = new Class[] {OSGi.class, String[].class};

 parameters = new Object[] {osgi, consoleArgs};

 } else {

 parameterTypes = new Class[] {

OSGi.class, int.class, String[].class};

 parameters = new Object[] {

osgi, new Integer(consolePort), consoleArgs};

 }

 consoleConstructor = osgiconsoleClass.getConstructor(

parameterTypes);

 osgiconsole = consoleConstructor.newInstance(parameters);

 Thread t = new Thread(

((Runnable) osgiconsole), OSGI_CONSOLE_COMPONENT_NAME);

 t.start();

 } catch (NumberFormatException nfe) {

 System.err.println(

NLS.bind(Msg.LAUNCHER_INVALID_PORT, consolePort));

 } catch (Exception ex) {

 informAboutMissingComponent(

OSGI_CONSOLE_COMPONENT_NAME, OSGI_CONSOLE_COMPONENT);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

37 / 204

 }

 //通知丢失一个组件的消息。

 void informAboutMissingComponent(String component, String jar) {

 System.out.println();

 System.out.print(NLS.bind(

Msg.LAUNCHER_COMPONENT_MISSING, component));

 System.out.println(NLS.bind(Msg.LAUNCHER_COMPONENT_JAR, jar));

 System.out.println();

 }

}

3 osgi.eclipse.framework.internal

3.1 osgi.eclipse.framework.internal.core

3.1.1 OSGi

OSGi 主类。这个用于启动框架。

package org.eclipse.osgi.framework.internal.core;

import org.eclipse.osgi.framework.adaptor.FrameworkAdaptor;

public class OSGi {

 //框架。

 protected Framework framework;

 //框架适配器。

 public OSGi(FrameworkAdaptor adaptor) {

 framework = createFramework(adaptor);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

38 / 204

 //销毁OSGi框架，释放框架资源。

 public void close() {

 framework.close();

 }

 public void launch() {

 framework.launch();

 }

 public void shutdown() {

 framework.shutdown();

 }

 public boolean isActive() {

 return (framework.isActive());

 }

 public org.osgi.framework.BundleContext getBundleContext() {

 return (framework.systemBundle.getContext());

 }

 protected Framework createFramework(FrameworkAdaptor adaptor) {

 return (new Framework(adaptor));

 }

 protected void displayBanner() {

 System.out.println();

 System.out.print(Msg.ECLIPSE_OSGI_NAME);

 System.out.print(" ");

 System.out.println(Msg.ECLIPSE_OSGI_VERSION);

 System.out.println();

 System.out.println(Msg.OSGI_VERSION);

 System.out.println();

 System.out.println(Msg.ECLIPSE_COPYRIGHT);

 }

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

39 / 204

3.1.2 Framework

核心 OSGi 框架类。

package org.eclipse.osgi.framework.internal.core;

import java.io.*;

import java.lang.reflect.*;

import java.net.*;

import java.security.*;

import java.util.*;

import org.eclipse.core.runtime.internal.adaptor.ContextFinder;

import org.eclipse.osgi.framework.adaptor.*;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.eventmgr.*;

import org.eclipse.osgi.framework.internal.protocol.

ContentHandlerFactory;

import org.eclipse.osgi.framework.internal.protocol.

StreamHandlerFactory;

import org.eclipse.osgi.framework.log.FrameworkLog;

import org.eclipse.osgi.framework.log.FrameworkLogEntry;

import org.eclipse.osgi.framework.util.SecureAction;

import org.eclipse.osgi.internal.profile.Profile;

import org.eclipse.osgi.util.ManifestElement;

import org.eclipse.osgi.util.NLS;

import org.osgi.framework.*;

public class Framework implements EventDispatcher, EventPublisher {

 //用于设置上下文类型加载器父加载器类型的系统属性。

 private static final String PROP_CONTEXTCLASSLOADER_PARENT =

 "osgi.contextClassLoaderParent";

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

40 / 204

 private static final String CONTEXTCLASSLOADER_PARENT_APP = "app";

 private static final String CONTEXTCLASSLOADER_PARENT_EXT = "ext";

 private static final String CONTEXTCLASSLOADER_PARENT_BOOT = "boot";

 private static final String CONTEXTCLASSLOADER_PARENT_FWK = "fwk";

 private static String J2SE = "J2SE-";

 private static String JAVASE = "JavaSE-";

 private static String PROFILE_EXT = ".profile";

 //框架适配器。

 protected FrameworkAdaptor adaptor;

 //框架属性集合。

 protected Properties properties;

 //框架是否启动。

 protected boolean active;

 //Bundle仓库。

 protected BundleRepository bundles;

//包管理。

 protected PackageAdminImpl packageAdmin;

 //权限管理。

 protected PermissionAdminImpl permissionAdmin;

 //启动级别管理器。

 protected StartLevelManager startLevelManager;

 //服务注册表。

 protected ServiceRegistry serviceRegistry;

 //下一个服务ID。

 protected long serviceid;

 //事件。

 protected EventListeners bundleEvent;

 protected static final int BUNDLEEVENT = 1;

 protected EventListeners bundleEventSync;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

41 / 204

 protected static final int BUNDLEEVENTSYNC = 2;

 protected EventListeners serviceEvent;

 protected static final int SERVICEEVENT = 3;

 protected EventListeners frameworkEvent;

 protected static final int FRAMEWORKEVENT = 4;

 protected static final int BATCHEVENT_BEGIN = Integer.MIN_VALUE + 1;

 protected static final int BATCHEVENT_END = Integer.MIN_VALUE;

 protected EventManager eventManager;

 //同步安装。

 protected Hashtable installLock;

 //系统Bundle。

 protected SystemBundle systemBundle;

 //启动代理。

 String[] bootDelegation;

 String[] bootDelegationStems;

 boolean bootDelegateAll = false;

 boolean contextBootDelegation = "true".equals(

FrameworkProperties.getProperty(

"osgi.context.bootdelegation", "true"));

 boolean compatibiltyBootDelegation = false;

 protected static AliasMapper aliasMapper = new AliasMapper();

 protected ConditionalPermissionAdminImpl condPermAdmin;

 SecureAction secureAction =

(SecureAction) AccessController.doPrivileged(

SecureAction.createSecureAction());

 private HashMap adminPermissions = new HashMap();

 private StreamHandlerFactory streamHandlerFactory;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

42 / 204

 private ContentHandlerFactory contentHandlerFactory;

 static {

 Class c;

 c = GetDataFileAction.class;

 c.getName();

 }

 static class GetDataFileAction implements PrivilegedAction {

 private AbstractBundle bundle;

 private String filename;

 public GetDataFileAction(

AbstractBundle bundle, String filename)

 {

 this.bundle = bundle;

 this.filename= filename;

 }

 public Object run() {

 return bundle.getBundleData().getDataFile(filename);

 }

 }

 //使用一个适配器创建一个Framewok。

 public Framework(FrameworkAdaptor adaptor) {

 initialize(adaptor);

 }

 //初始化框架到unlaunched状态。

 protected void initialize(FrameworkAdaptor adaptor) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

43 / 204

 long start = System.currentTimeMillis();

 //设置适配器。

 this.adaptor = adaptor;

 active = false;

 installSecurityManager();

 setNLSFrameworkLog();

 initializeContextFinder();

 //初始化适配器。

 adaptor.initialize(this);

 try {

 //初始化存储器。

 adaptor.initializeStorage();

 } catch (IOException e) //致命错误。

{

 e.printStackTrace();

 throw new RuntimeException(e.getMessage());

 }

 //使用适配器初始化属性。

 initializeProperties(adaptor.getProperties());

 packageAdmin = new PackageAdminImpl(this);

 SecurityManager sm = System.getSecurityManager();

 if (sm != null) {

 try {

 permissionAdmin = new PermissionAdminImpl(

this, adaptor.getPermissionStorage());

 } catch (IOException e) //致命错误。

{

 e.printStackTrace();

 throw new RuntimeException(e.getMessage());

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

44 / 204

 }

 try {

 condPermAdmin = new ConditionalPermissionAdminImpl(

this, adaptor.getPermissionStorage());

 } catch (IOException e) //致命错误。

{

 e.printStackTrace();

 throw new RuntimeException(e.getMessage());

 }

 }

 //启动级别管理器。

 startLevelManager = new StartLevelManager(this);

 //事件初始化。

 eventManager = new EventManager("Framework Event Dispatcher");

 bundleEvent = new EventListeners();

 bundleEventSync = new EventListeners();

 serviceEvent = new EventListeners();

 frameworkEvent = new EventListeners();

 //创建服务注册表。

 serviceid = 1;

 serviceRegistry = adaptor.getServiceRegistry();

 //初始化安装锁。

 installLock = new Hashtable(10);

 //创建系统Bundle。

 createSystemBundle();

 loadVMProfile();

 setBootDelegation();

 installURLStreamHandlerFactory(systemBundle.context, adaptor);

 installContentHandlerFactory(systemBundle.context, adaptor);

 //为所有安装的Bundle创建Bundle数据对象。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

45 / 204

 BundleData[] bundleDatas = adaptor.getInstalledBundles();

 //初始化Bundle仓库。

 bundles = new BundleRepository(

bundleDatas == null ? 10 : bundleDatas.length + 1);

 //添加系统Bundle。

 bundles.add(systemBundle);

 //为每一个Bundle数据创建Bundle，并添加到Bundle仓库中。

 if (bundleDatas != null) {

 for (int i = 0; i < bundleDatas.length; i++) {

 try {

 AbstractBundle bundle =

AbstractBundle.createBundle(

bundleDatas[i], this);

 bundles.add(bundle);

 } catch (BundleException be) {

 publishFrameworkEvent(

FrameworkEvent.ERROR, systemBundle, be);

 }

 }

 }

 //初始化完毕。

 }

 private void setNLSFrameworkLog() {

 try {

 Field frameworkLogField = NLS.class.getDeclaredField(

"frameworkLog");

 frameworkLogField.setAccessible(true);

 frameworkLogField.set(null, adaptor.getFrameworkLog());

 } catch (Exception e) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

46 / 204

 }

 }

 //创建系统Bundle。

 private void createSystemBundle() {

 try {

 systemBundle = new SystemBundle(this);

 } catch (BundleException e) { //致命错误。

 e.printStackTrace();

 throw new RuntimeException(

NLS.bind(Msg.OSGI_SYSTEMBUNDLE_CREATE_EXCEPTION,

e.getMessage()));

 }

 }

 protected void initializeProperties(Properties adaptorProperties) {

 properties = FrameworkProperties.getProperties();

 Enumeration enumKeys = adaptorProperties.propertyNames();

 while (enumKeys.hasMoreElements()) {

 String key = (String) enumKeys.nextElement();

 if (properties.getProperty(key) == null) {

 properties.put(

key, adaptorProperties.getProperty(key));

 }

 }

 properties.put(Constants.FRAMEWORK_VENDOR,

 Constants.OSGI_FRAMEWORK_VENDOR);

 properties.put(Constants.FRAMEWORK_VERSION,

 Constants.OSGI_FRAMEWORK_VERSION);

 String value = properties.getProperty(

Constants.FRAMEWORK_PROCESSOR);

 if (value == null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

47 / 204

 value = properties.getProperty(Constants.JVM_OS_ARCH);

 if (value != null) {

 properties.put(Constants.FRAMEWORK_PROCESSOR, value);

 }

 }

 value = properties.getProperty(Constants.FRAMEWORK_OS_NAME);

 if (value == null) {

 value = properties.getProperty(Constants.JVM_OS_NAME);

 try {

 String canonicalValue = (String) aliasMapper.aliasOSName(

value);

 if (canonicalValue != null) {

 value = canonicalValue;

 }

 } catch (ClassCastException ex) {

 }

 if (value != null) {

 properties.put(Constants.FRAMEWORK_OS_NAME, value);

 }

 }

 value = properties.getProperty(Constants.FRAMEWORK_OS_VERSION);

 if (value == null) {

 value = properties.getProperty(Constants.JVM_OS_VERSION);

 if (value != null) {

 int space = value.indexOf(' ');

 if (space > 0) {

 value = value.substring(0, space);

 }

 properties.put(Constants.FRAMEWORK_OS_VERSION, value);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

48 / 204

 }

 value = properties.getProperty(Constants.FRAMEWORK_LANGUAGE);

 if (value == null)

 properties.put(Constants.FRAMEWORK_LANGUAGE,

 Locale.getDefault().getLanguage());

 properties.put(Constants.SUPPORTS_FRAMEWORK_FRAGMENT, "true");

 properties.put(

Constants.SUPPORTS_FRAMEWORK_REQUIREBUNDLE, "true");

 }

 //设置启动代理。

 private void setBootDelegation() {

 compatibiltyBootDelegation = "true".equals(

FrameworkProperties.getProperty(

Constants.OSGI_COMPATIBILITY_BOOTDELEGATION));

 String bootDelegationProp = properties.getProperty(

Constants.OSGI_BOOTDELEGATION);

 if (bootDelegationProp == null)

 return;

 if (bootDelegationProp.trim().length() == 0)

 return;

 String[] bootPackages = ManifestElement.getArrayFromList(

bootDelegationProp);

 ArrayList exactMatch = new ArrayList(bootPackages.length);

 ArrayList stemMatch = new ArrayList(bootPackages.length);

 for (int i = 0; i < bootPackages.length; i++) {

 if (bootPackages[i].equals("*")) {

 bootDelegateAll = true;

 return;

 } else if (bootPackages[i].endsWith("*")) {

 if (bootPackages[i].length() > 2 &&

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

49 / 204

 bootPackages[i].endsWith(".*"))

 stemMatch.add(bootPackages[i].substring(0,

 bootPackages[i].length() - 1));

 } else {

 exactMatch.add(bootPackages[i]);

 }

 }

 if (exactMatch.size() > 0)

 bootDelegation = (String[]) exactMatch.toArray(

new String[exactMatch.size()]);

 if (stemMatch.size() > 0)

 bootDelegationStems = (String[]) stemMatch.toArray(

new String[stemMatch.size()]);

 }

 //装载虚拟机配置。

 private void loadVMProfile() {

 Properties profileProps = findVMProfile();

 String systemExports = properties.getProperty(

Constants.OSGI_FRAMEWORK_SYSTEM_PACKAGES);

 if (systemExports == null) {

 systemExports = profileProps.getProperty(

Constants.OSGI_FRAMEWORK_SYSTEM_PACKAGES);

 if (systemExports != null)

 properties.put(

Constants.OSGI_FRAMEWORK_SYSTEM_PACKAGES,

systemExports);

 }

 String type = properties.getProperty(

Constants.OSGI_JAVA_PROFILE_BOOTDELEGATION);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

50 / 204

 String profileBootDelegation =

 profileProps.getProperty(Constants.OSGI_BOOTDELEGATION);

 if (Constants.OSGI_BOOTDELEGATION_OVERRIDE.equals(type)) {

 if (profileBootDelegation == null)

 properties.remove(Constants.OSGI_BOOTDELEGATION);

 else

 properties.put(Constants.OSGI_BOOTDELEGATION,

 profileBootDelegation);

 } else if (Constants.OSGI_BOOTDELEGATION_NONE.equals(type))

 properties.remove(Constants.OSGI_BOOTDELEGATION);

 if (properties.getProperty(

Constants.FRAMEWORK_EXECUTIONENVIRONMENT) == null) {

 String ee = profileProps.getProperty(

Constants.FRAMEWORK_EXECUTIONENVIRONMENT,

profileProps.getProperty

(Constants.OSGI_JAVA_PROFILE_NAME));

 if (ee != null)

 properties.put(

Constants.FRAMEWORK_EXECUTIONENVIRONMENT, ee);

 }

 }

 private Properties findVMProfile() {

 ……

 }

 private URL findNextBestProfile(

String javaEdition, Version javaVersion) {

 URL result = null;

 int minor = javaVersion.getMinor();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

51 / 204

 do {

 result = findInSystemBundle(

javaEdition + javaVersion.getMajor() + "." + minor +

PROFILE_EXT);

 minor = minor - 1;

 } while (result == null && minor > 0);

 return result;

 }

 private URL findInSystemBundle(String entry) {

 URL result = systemBundle.getEntry(entry);

 if (result == null) {

 ClassLoader loader=getClass().getClassLoader();

 result = loader==null ?

ClassLoader.getSystemResource(entry) :

loader.getResource(entry);

 }

 return result;

 }

 protected boolean isActive() {

 return (active);

 }

 //管理OSGi框架。

 public synchronized void close() {

 //关闭框架。

 if (active) {

 shutdown();

 }

 //关闭Bundle仓库。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

52 / 204

 synchronized (bundles) {

 List allBundles = bundles.getBundles();

 int size = allBundles.size();

 for (int i = 0; i < size; i++) {

 AbstractBundle bundle =

(AbstractBundle) allBundles.get(i);

 bundle.close();

 }

 bundles.removeAllBundles();

 }

 serviceRegistry = null;

 //移除监听器。

 if (bundleEvent != null) {

 bundleEvent.removeAllListeners();

 bundleEvent = null;

 }

 if (bundleEventSync != null) {

 bundleEventSync.removeAllListeners();

 bundleEventSync = null;

 }

 if (serviceEvent != null) {

 serviceEvent.removeAllListeners();

 serviceEvent = null;

 }

 if (frameworkEvent != null) {

 frameworkEvent.removeAllListeners();

 frameworkEvent = null;

 }

 if (eventManager != null) {

 eventManager.close();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

53 / 204

 eventManager = null;

 }

 //释放其它资源。

 permissionAdmin = null;

 condPermAdmin = null;

 packageAdmin = null;

 adaptor = null;

 uninstallURLStreamHandlerFactory();

 uninstallContentHandlerFactory();

 }

 //启动框架。

 public synchronized void launch() {

 if (active) {

 return;

 }

 active = true;

 //回复系统Bundle。

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 Debug.println("Trying to launch framework");

 }

 systemBundle.resume();

 }

 //停止框架。

 public synchronized void shutdown() {

 if (!active) {

 return;

 }

 //设置系统Bundle状态，发布事件。

 systemBundle.state = AbstractBundle.STOPPING;

 publishBundleEvent(BundleEvent.STOPPING, systemBundle);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

54 / 204

 //开始停止。

 try {

 adaptor.frameworkStopping(systemBundle.getContext());

 } catch (Throwable t) {

 publishFrameworkEvent(FrameworkEvent.ERROR,

systemBundle, t);

 }

 //挂起系统Bundle。

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 Debug.println("Trying to shutdown Framework");

 }

 systemBundle.suspend();

 try {

 adaptor.compactStorage();

 } catch (IOException e) {

 publishFrameworkEvent(FrameworkEvent.ERROR,

systemBundle, e);

 }

 //标记框架停止。

 active = false;

 }

 //创建并验证一个Bundle。

 AbstractBundle createAndVerifyBundle(BundleData bundledata)

throws BundleException {

 //验证Bundle。

 if (bundledata.getSymbolicName() != null) {

 AbstractBundle installedBundle = getBundleBySymbolicName(

bundledata.getSymbolicName(), bundledata.getVersion());

 if (installedBundle != null &&

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

55 / 204

 installedBundle.getBundleId() !=

 bundledata.getBundleID()) {

 throw new BundleException(NLS.bind(

Msg.BUNDLE_INSTALL_SAME_UNIQUEID,

new Object[] {installedBundle.getSymbolicName(),

installedBundle.getVersion().toString(),

installedBundle.getLocation()}));

 }

 }

 //验证执行环境。

 verifyExecutionEnvironment(bundledata.getManifest());

 //创建Bundle。

 return AbstractBundle.createBundle(bundledata, this);

 }

 //验证执行环境。

 protected boolean verifyExecutionEnvironment(Dictionary manifest)

 throws BundleException {

 if (!Boolean.valueOf(FrameworkProperties.getProperty(

Constants.ECLIPSE_EE_INSTALL_VERIFY,

Boolean.TRUE.toString())).booleanValue())

 return true;

 String headerValue = (String) manifest.get(

Constants.BUNDLE_REQUIREDEXECUTIONENVIRONMENT);

 if (headerValue == null) {

 return true;

 }

 ManifestElement[] bundleRequiredEE =

 ManifestElement.parseHeader(

Constants.BUNDLE_REQUIREDEXECUTIONENVIRONMENT,

headerValue);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

56 / 204

 if (bundleRequiredEE.length == 0) {

 return true;

 }

 String systemEE = FrameworkProperties.getProperty(

Constants.FRAMEWORK_EXECUTIONENVIRONMENT);

 if (systemEE != null && !systemEE.equals("")) {

 ManifestElement[] systemEEs = ManifestElement.parseHeader(

Constants.BUNDLE_REQUIREDEXECUTIONENVIRONMENT,

systemEE);

 for (int i = 0; i < systemEEs.length; i++) {

 for (int j = 0; j < bundleRequiredEE.length; j++) {

 if (systemEEs[i].getValue().equals(

bundleRequiredEE[j].getValue())) {

 return true;

 }

 }

 }

 }

 StringBuffer bundleEE = new StringBuffer(25);

 for (int i = 0; i < bundleRequiredEE.length; i++) {

 if (i > 0) {

 bundleEE.append(",");

 }

 bundleEE.append(bundleRequiredEE[i].getValue());

 }

 throw new BundleException(

NLS.bind(Msg.BUNDLE_INSTALL_REQUIRED_EE_EXCEPTION,

bundleEE.toString()));

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

57 / 204

 public String getProperty(String key) {

 return properties.getProperty(key);

 }

 protected String getProperty(String key, String def) {

 return properties.getProperty(key, def);

 }

 protected Object setProperty(String key, String value) {

 return properties.put(key, value);

 }

 //从Bundle位置安装一个Bundle。

 public AbstractBundle installBundle(final String location)

throws BundleException {

 final AccessControlContext callerContext =

 AccessController.getContext();

 return installWorker(location, new PrivilegedExceptionAction()

 {

 public Object run() throws BundleException {

 URLConnection source =

 adaptor.mapLocationToURLConnection(location);

 return installWorkerPrivileged(

location, source, callerContext);

 }

 });

 }

 protected AbstractBundle installBundle(final String location,

final InputStream in) throws BundleException {

 final AccessControlContext callerContext =

 AccessController.getContext();

 return installWorker(location, new PrivilegedExceptionAction() {

 public Object run() throws BundleException {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

58 / 204

 URLConnection source = new BundleSource(in);

 return installWorkerPrivileged(

location, source, callerContext);

 }

 });

 }

 //安装一个Bundle的方法。

 protected AbstractBundle installWorker(String location,

 PrivilegedExceptionAction action) throws BundleException {

 //加锁。

 synchronized (installLock) {

 while (true) {

 //判断Bundle是否已经存在，如果存在直接返回。

 AbstractBundle bundle = getBundleByLocation(location);

 if (bundle != null) {

 return bundle;

 }

 Thread current = Thread.currentThread();

 //检查是否有现成申请保护。

 Thread reservation = (Thread) installLock.put(

location, current);

 if (reservation == null) { //没有保护。

 break;

 }

 //如果保护是当前线程，则抛出重复安装异常。

 if (current.equals(reservation)) {

 throw new BundleException(

Msg.BUNDLE_INSTALL_RECURSION_EXCEPTION);

 }

 try {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

59 / 204

 //等待释放锁。

 installLock.wait();

 } catch (InterruptedException e) {

 }

 }

 }

 try {

 //使用一个PrivilegedExceptionAction创建Bundle。

 //它将调用installWorkerPrivileged。

 AbstractBundle bundle =

(AbstractBundle) AccessController.doPrivileged(action);

 publishBundleEvent(BundleEvent.INSTALLED, bundle);

 return bundle;

 } catch (PrivilegedActionException e) {

 if (e.getException() instanceof RuntimeException)

 throw (RuntimeException) e.getException();

 throw (BundleException) e.getException();

 } finally {

 synchronized (installLock) {

 //释放。

 installLock.remove(location);

 //通知。

 installLock.notifyAll();

 }

 }

 }

 //调用FrameworkAdapter在持久存储安装一个Bundle。

 protected AbstractBundle installWorkerPrivileged(String location,

URLConnection source, AccessControlContext callerContext)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

60 / 204

throws BundleException {

//获取BundleOperation。

 BundleOperation storage = adaptor.installBundle(

location, source);

 final AbstractBundle bundle;

 try {

 //获取BundleData。

 BundleData bundledata = storage.begin();

 //验证BundleData。

 bundle = createAndVerifyBundle(bundledata);

 if (Debug.DEBUG) {

 BundleWatcher bundleStats = adaptor.getBundleWatcher();

 if (bundleStats != null)

 bundleStats.watchBundle(

bundle, BundleWatcher.START_INSTALLING);

 }

 try {

 String[] nativepaths = selectNativeCode(bundle);

 if (nativepaths != null) {

 bundledata.installNativeCode(nativepaths);

 }

 //装载Bundel。

 bundle.load();

 //权限检查。

 if (System.getSecurityManager() != null) {

 final boolean extension = (bundledata.getType() &

 (BundleData.TYPE_BOOTCLASSPATH_EXTENSION |

 BundleData.TYPE_FRAMEWORK_EXTENSION)) != 0;

 if (extension && !bundle.hasPermission(

new AllPermission()))

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

61 / 204

 throw new BundleException(

Msg.BUNDLE_EXTENSION_PERMISSION,

new SecurityException(

Msg.BUNDLE_EXTENSION_PERMISSION));

 try {

 AccessController.doPrivileged(

new PrivilegedExceptionAction() {

 public Object run() throws Exception {

 checkAdminPermission(bundle,

 AdminPermission.LIFECYCLE);

 if (extension)

 checkAdminPermission(bundle,

 AdminPermission.EXTENSIONLIFECYCLE);

 return null;

 }

 }, callerContext);

 } catch (PrivilegedActionException e) {

 throw e.getException();

 }

 }

 storage.commit(false);

 } catch (Throwable error) {

 synchronized (bundles) {

 bundle.unload();

 }

 bundle.close();

 throw error;

 } finally {

 if (Debug.DEBUG) {

 BundleWatcher bundleStats =

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

62 / 204

 adaptor.getBundleWatcher();

 if (bundleStats != null)

 bundleStats.watchBundle(

bundle, BundleWatcher.END_INSTALLING);

 }

 }

 //Bundle成功安装。

 bundles.add(bundle);

 } catch (Throwable t) {//撤销安装，发布事件。

 try {

 storage.undo();

 } catch (BundleException ee) {

 publishFrameworkEvent(

FrameworkEvent.ERROR, systemBundle, ee);

 }

 if (t instanceof SecurityException)

 throw (SecurityException) t;

 if (t instanceof BundleException)

 throw (BundleException) t;

 throw new BundleException(t.getMessage(), t);

 }

 return bundle;

 }

 String[] selectNativeCode(org.osgi.framework.Bundle bundle)

throws BundleException {

 ……

 }

 private boolean isBncGreaterThan(BundleNativeCode candidate,

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

63 / 204

 BundleNativeCode highestRanking,

Version version, String language) {

 Version currentHigh = highestRanking.matchOSVersion(version);

 Version candidateHigh = candidate.matchOSVersion(version);

 if (currentHigh.compareTo(candidateHigh) < 0)

 return true;

 if (highestRanking.matchLanguage(language) <

 candidate.matchLanguage(language))

 return true;

 return false;

 }

 //获取指定ID的Bundle。

 public AbstractBundle getBundle(long id) {

 synchronized (bundles) {

 return bundles.getBundle(id);

 }

 }

 //通过特征名称、版本号获取Bundle。

 public AbstractBundle getBundleBySymbolicName(

String symbolicName, Version version) {

 synchronized (bundles) {

 return bundles.getBundle(symbolicName, version);

 }

 }

 //获取所有Bundle。

 protected BundleRepository getBundles() {

 return (bundles);

 }

 protected AbstractBundle[] getAllBundles() {

 synchronized (bundles) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

64 / 204

 List allBundles = bundles.getBundles();

 int size = allBundles.size();

 if (size == 0) {

 return (null);

 }

 AbstractBundle[] bundlelist = new AbstractBundle[size];

 allBundles.toArray(bundlelist);

 return (bundlelist);

 }

 }

 //恢复一个Bundle。

 protected void resumeBundle(AbstractBundle bundle) {

 if (bundle.isActive()) {

 return;

 }

 try {

 bundle.resume();

 } catch (BundleException be) {

 publishFrameworkEvent(FrameworkEvent.ERROR, bundle, be);

 }

 }

 //挂起一个Bundle。

 protected boolean suspendBundle(AbstractBundle bundle, boolean lock)

 {

 boolean changed = false;

 if (!bundle.isActive() || bundle.isFragment()) {

 return changed;

 }

 try {

 bundle.suspend(lock);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

65 / 204

 } catch (BundleException be) {

 publishFrameworkEvent(FrameworkEvent.ERROR, bundle, be);

 }

 if (!bundle.isActive()) {

 changed = true;

 }

 return (changed);

 }

 //获取指定Location的Bundle。

 protected AbstractBundle getBundleByLocation(String location) {

 synchronized (bundles) {

 final String finalLocation = location;

 return (AbstractBundle) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 List allBundles = bundles.getBundles();

 int size = allBundles.size();

 for (int i = 0; i < size; i++) {

 AbstractBundle bundle =

(AbstractBundle) allBundles.get(i);

 if (finalLocation.equals(bundle.getLocation())) {

 return (bundle);

 }

 }

 return (null);

 }

 });

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

66 / 204

 //按特征名称获取Bundle。

 protected AbstractBundle[] getBundleBySymbolicName(

String symbolicName) {

 synchronized (bundles) {

 return bundles.getBundles(symbolicName);

 }

 }

 //获取服务引用。

 protected ServiceReference[] getServiceReferences(String clazz,

 String filterstring, BundleContextImpl context,

boolean allservices) throws InvalidSyntaxException {

 FilterImpl filter = (filterstring == null) ?

null : new FilterImpl(filterstring);

 ServiceReference[] services = null;

 if (clazz != null) {

 try { //测试访问权限。

 checkGetServicePermission(clazz);

 } catch (SecurityException se) {

 return (null);

 }

 }

 synchronized (serviceRegistry) {

 //查询服务引用。

 services = serviceRegistry.lookupServiceReferences(

clazz, filter);

 if (services == null) {

 return null;

 }

 int removed = 0;

 for (int i = services.length - 1; i >= 0; i--) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

67 / 204

 ServiceReferenceImpl ref =

(ServiceReferenceImpl) services[i];

 String[] classes = ref.getClasses();

 //接口兼容判断。

 if (allservices || context.isAssignableTo(

(ServiceReferenceImpl) services[i])) {

 if (clazz == null)

 try {

 checkGetServicePermission(classes);

 } catch (SecurityException se) {

 services[i] = null;

 removed++;

 }

 } else {

 services[i] = null;

 removed++;

 }

 }

 //删除不兼容的服务。

 if (removed > 0) {

 ServiceReference[] temp = services;

 services = new ServiceReference[temp.length - removed];

 for (int i = temp.length - 1; i >= 0; i--) {

 if (temp[i] == null)

 removed--;

 else

 services[i - removed] = temp[i];

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

68 / 204

 }

 return services == null || services.length == 0 ? null : services;

 }

 protected long getNextServiceId() {

 long id = serviceid;

 serviceid++;

 return (id);

 }

 protected File getDataFile(final AbstractBundle bundle,

final String filename) {

 return (File) AccessController.doPrivileged(

new GetDataFileAction(bundle, filename));

 }

 //

 //检查权限。

 //

 //传送框架事件。

 public void publishFrameworkEvent(int type,

 org.osgi.framework.Bundle bundle, Throwable throwable) {

 if (frameworkEvent != null) {

 if (bundle == null)

 bundle = systemBundle;

 final FrameworkEvent event = new FrameworkEvent(

type, bundle, throwable);

 if (System.getSecurityManager() == null) {

 publishFrameworkEventPrivileged(event);

 } else {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

69 / 204

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 publishFrameworkEventPrivileged(event);

 return null;

 }

 });

 }

 }

 }

 //发布框架事件。

 public void publishFrameworkEventPrivileged(FrameworkEvent event) {

 if (event.getType() == FrameworkEvent.ERROR) {

 FrameworkLog frameworkLog = adaptor.getFrameworkLog();

 if (frameworkLog != null)

 frameworkLog.log(event);

 }

 ListenerQueue listeners = new ListenerQueue(eventManager);

 ListenerQueue contexts = new ListenerQueue(eventManager);

 synchronized (frameworkEvent) {

 //将BundleContext的监听器添加到队列。

 contexts.queueListeners(frameworkEvent, this);

 contexts.dispatchEventSynchronous(FRAMEWORKEVENT,

 listeners);

 }

 listeners.dispatchEventAsynchronous(FRAMEWORKEVENT, event);

 }

 //发布Bundle事件。

 public void publishBundleEvent(int type,

org.osgi.framework.Bundle bundle) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

70 / 204

 if ((bundleEventSync != null) || (bundleEvent != null)) {

 final BundleEvent event = new BundleEvent(type, bundle);

 if (System.getSecurityManager() == null) {

 publishBundleEventPrivileged(event);

 } else {

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 publishBundleEventPrivileged(event);

 return null;

 }

 });

 }

 }

 }

 //验证后发布Bundle事件。

 public void publishBundleEventPrivileged(BundleEvent event) {

 //获取同步和异步监听器。

 ListenerQueue listenersSync = null;

 if (bundleEventSync != null) {

 listenersSync = new ListenerQueue(eventManager);

 ListenerQueue contexts = new ListenerQueue(eventManager);

 synchronized (bundleEventSync) {

 contexts.queueListeners(bundleEventSync, this);

 contexts.dispatchEventSynchronous(

BUNDLEEVENTSYNC, listenersSync);

 }

 }

 ListenerQueue listenersAsync = null;

 if (bundleEvent != null && (event.getType() &

 (BundleEvent.STARTING | BundleEvent.STOPPING |

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

71 / 204

 BundleEvent.LAZY_ACTIVATION)) == 0) {

 listenersAsync = new ListenerQueue(eventManager);

 ListenerQueue contexts = new ListenerQueue(eventManager);

 synchronized (bundleEvent) {

 contexts.queueListeners(bundleEvent, this);

 contexts.dispatchEventSynchronous(

BUNDLEEVENT, listenersAsync);

 }

 }

 //派发事件。

 if (listenersSync != null) {

 listenersSync.dispatchEventSynchronous(

BUNDLEEVENTSYNC, event);

 }

 if (listenersAsync != null) {

 listenersAsync.dispatchEventAsynchronous(

BUNDLEEVENT, event);

 }

 }

 //发布服务事件。

 public void publishServiceEvent(

int type, org.osgi.framework.ServiceReference reference) {

 if (serviceEvent != null) {

 final ServiceEvent event = new ServiceEvent(type, reference);

 if (System.getSecurityManager() == null) {

 publishServiceEventPrivileged(event);

 } else {

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 publishServiceEventPrivileged(event);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

72 / 204

 return null;

 }

 });

 }

 }

 }

 //权限验证通过后，真正开始发布事件。

 public void publishServiceEventPrivileged(ServiceEvent event) {

 ListenerQueue listeners = new ListenerQueue(eventManager);

 ListenerQueue contexts = new ListenerQueue(eventManager);

 synchronized (serviceEvent) {

 contexts.queueListeners(serviceEvent, this);

 contexts.dispatchEventSynchronous(SERVICEEVENT, listeners);

 }

 listeners.dispatchEventSynchronous(SERVICEEVENT, event);

 }

 //框架顶层事件发布。

 public void dispatchEvent(Object l, Object lo,

int action, Object object) {

 try {

 BundleContextImpl context = (BundleContextImpl) l;

 if (context.isValid())//如果上下文可用。

{

 ListenerQueue queue = (ListenerQueue) object;

 switch (action) {

 case BUNDLEEVENT : {

 queue.queueListeners(

context.bundleEvent, context);

 break;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

73 / 204

 case BUNDLEEVENTSYNC : {

 queue.queueListeners(

context.bundleEventSync, context);

 break;

 }

 case SERVICEEVENT : {

 queue.queueListeners(

context.serviceEvent, context);

 break;

 }

 case FRAMEWORKEVENT : {

 queue.queueListeners(

context.frameworkEvent, context);

 break;

 }

 }

 }

 } catch (Throwable t) {

 adaptor.handleRuntimeError(t);

 publisherror: {

 if (action == FRAMEWORKEVENT) {

 FrameworkEvent event = (FrameworkEvent) object;

 if (event.getType() == FrameworkEvent.ERROR) {

 break publisherror;

 }

 }

 BundleContextImpl context = (BundleContextImpl) l;

 publishFrameworkEvent(

FrameworkEvent.ERROR, context.bundle, t);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

74 / 204

 }

 }

 private String[] noMatches(boolean optional)

throws BundleException {

 if (optional) {

 return null;

 }

 throw new BundleException(

Msg.BUNDLE_NATIVECODE_MATCH_EXCEPTION);

 }

 //设置上下文类加载器。

 private void initializeContextFinder() {

 Thread current = Thread.currentThread();

 Throwable error = null;

 try {

 ClassLoader parent = null;

 String type = FrameworkProperties.getProperty(

PROP_CONTEXTCLASSLOADER_PARENT);

 if (CONTEXTCLASSLOADER_PARENT_APP.equals(type))

 parent = ClassLoader.getSystemClassLoader();

 else if (CONTEXTCLASSLOADER_PARENT_BOOT.equals(type))

 parent = null;

 else if (CONTEXTCLASSLOADER_PARENT_FWK.equals(type))

 parent = Framework.class.getClassLoader();

 else if (CONTEXTCLASSLOADER_PARENT_EXT.equals(type)) {

 ClassLoader appCL = ClassLoader.getSystemClassLoader();

 if (appCL != null)

 parent = appCL.getParent();

 } else { //默认是CCL。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

75 / 204

 Method getContextClassLoader = Thread.class.getMethod(

"getContextClassLoader", null);

 parent = (ClassLoader) getContextClassLoader.invoke(

current, null);

 }

 Method setContextClassLoader = Thread.class.getMethod(

"setContextClassLoader",

new Class[] {ClassLoader.class});

 Object[] params = new Object[] {new ContextFinder(parent)};

 setContextClassLoader.invoke(current, params);

 return;

 } catch (SecurityException e) {

 error = e;

 } catch (NoSuchMethodException e) {

 //忽略。

 return;

 } catch (IllegalArgumentException e) {

 error = e;

 } catch (IllegalAccessException e) {

 error = e;

 } catch (InvocationTargetException e) {

 error = e.getTargetException();

 }

 }

 //

 //其它方法，ContextFactoryHandler、URLStreamHandler等。

 //

}

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

76 / 204

3.1.3 AbstractBundle

这个对象用于封装一个内部 Bundle 对象。当一个 Bundle 被卸载后，它被销毁；

当被更新后，它可以重用。这个类是抽象类，由 BundleHost 和 BundleFragment

扩展。

package org.eclipse.osgi.framework.internal.core;

import java.io.IOException;

import java.io.InputStream;

import java.net.URL;

import java.net.URLConnection;

import java.security.*;

import java.util.*;

import org.eclipse.osgi.framework.adaptor.*;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.util.KeyedElement;

import org.eclipse.osgi.service.resolver.*;

import org.eclipse.osgi.util.NLS;

import org.osgi.framework.*;

public abstract class AbstractBundle implements Bundle, Comparable,

KeyedElement {

 protected Framework framework;

 protected volatile int state;

 //标识状态正在改变。

 protected volatile Thread stateChanging;

 //Bundle数据对象。

 protected BundleData bundledata;

 //状态更改锁。

 protected Object statechangeLock = new Object();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

77 / 204

 protected BundleProtectionDomain domain;

 protected ManifestLocalization manifestLocalization = null;

 //构建一个Bundle。新建一个BundleHost或BundleFragment。

 protected static AbstractBundle createBundle(

BundleData bundledata, Framework framework)

throws BundleException {

 if ((bundledata.getType() & BundleData.TYPE_FRAGMENT) > 0)

 return new BundleFragment(bundledata, framework);

 return new BundleHost(bundledata, framework);

 }

 //构造器。

 protected AbstractBundle(BundleData bundledata, Framework framework)

 {

 state = INSTALLED;

 stateChanging = null;

 this.bundledata = bundledata;

 this.framework = framework;

 bundledata.setBundle(this);

 }

//装载Bundle。

 protected abstract void load();

 //重新加载新Bundle。必须在拥有Bundle锁时调用。

 protected abstract boolean reload(AbstractBundle newBundle);

 //刷新Bundle，由Framework.refershPackages调用。

 protected abstract void refresh();

 //卸载Bundle。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

78 / 204

 protected abstract boolean unload();

 //关闭Bundle。

 protected void close() {

 state = UNINSTALLED;

 }

 //装载和初始化激活器。

 protected BundleActivator loadBundleActivator()

throws BundleException {

 String activatorClassName = bundledata.getActivator();

 if (activatorClassName != null) {

 try {

 Class activatorClass = loadClass(

activatorClassName, false);

 return (BundleActivator) (activatorClass.newInstance());

 } catch (Throwable t) { //激活器创建异常。

 throw new BundleException(NLS.bind(

Msg.BUNDLE_INVALID_ACTIVATOR_EXCEPTION,

activatorClassName,

bundledata.getSymbolicName()), t);

 }

 }

 return (null);

 }

 //装载类。

 protected abstract Class loadClass(

String name, boolean checkPermission)

throws ClassNotFoundException;

 //获取状态。

 public int getState() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

79 / 204

 return (state);

 }

 //是否激活。

 protected boolean isActive() {

 return ((state & (ACTIVE | STARTING)) != 0);

 }

 //是否解析。

 protected boolean isResolved() {

 return (state & (INSTALLED | UNINSTALLED)) == 0;

 }

 //启动当前Bundle。

 //如果当前启动级别小于Bundle启动级别，那么框架必须框架必须持久标记该Bundle

 //为started且推迟Bundle启动直到框架当前启动级别大于或等于Bundle启动级别。

 //否则，需要完成以下步骤来启动Bundle：

 //（1）如果Bundle处于UNINSTALLED状态，则抛出IllegalStateException。

 //（2）如果Bundle是ACTIVE或STARTING，那么这个方法直接返回。

 //（3）如果这个Bundle是STOPPING，那么这个方法将等待Bundle回到RESOLVED状态

 //后再继续。

 //（4）如果它发生在一个不合适时机，将抛出一个BundleException。

 //（5）如果Bundle不是RESOLVED，则尝试解析Bundle。如果不能解析，则抛出

//BundleException。

//（6）设置状态为STARTTING，调用BundleActivator.start，如果激活器调用失败，

//则状态设回RESOLVED，并调用stop方法，然后抛出BundleException。

//（7）Bundle启动成功后，将记录，如果Framework重启，它将自动重启。

//（8）修改状态为ACTIVE，发布BundleEvent。

//前提条件：getState()为INSTALLED或RESOLVED；

//结果：getState()为ACTIVE，若不为STARTING或ACTIVE，抛出异常。

 public void start() throws BundleException {

 start(0);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

80 / 204

 public void start(int options) throws BundleException {

 framework.checkAdminPermission(this, AdminPermission.EXECUTE);

 checkValid();

 beginStateChange();

 try {

 startWorker(options);

 } finally {

 completeStateChange();

 }

 }

 //内部启动工作。

 protected abstract void startWorker(int options)

throws BundleException;

 //如果Bundle是片段、不是正确启动级别、没有启动持久标记，返回false；

//激活策略为持久忽略、没有定义激活政策返回true。

 protected boolean readyToResume() {

 return false;

 }

 //启动Bundle，而不需要设置持久启动标记。

 protected void resume() throws BundleException {

 if (state == UNINSTALLED) {

 return;

 }

 beginStateChange();

 try {

 if (readyToResume())

 startWorker(START_TRANSIENT);

 } finally {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

81 / 204

 completeStateChange();

 }

 }

 //停止Bundle。

 //（1）如果Bundle是UNINSTALLED，抛出IllegalStateException。

 //（2）如果Bundle是STOPPING、RESOLVED或INSTALLED，直接返回。

 //（3）如果Bundle是STARTING，则等待，并继续。

 //（4）如果停止时机不合适，则抛出BundleException。

 //（5）状态设置为STOPPING，记录Bundle已经被停止，

//因此当框架重启后，它不会被启动。

//（6）调用BundleActivator.stop，如果异常，则抛出BundleException。

//（7）卸载监听器、服务和其它使用资源。

 public void stop() throws BundleException {

 stop(0);

 }

 public void stop(int options) throws BundleException {

 framework.checkAdminPermission(this, AdminPermission.EXECUTE);

 checkValid();

 beginStateChange();

 try {

 stopWorker(options);

 } finally {

 completeStateChange();

 }

 }

 //停止Bundle的工作器。

 protected abstract void stopWorker(int options)

throws BundleException;

 //设置持久状态。State为true，则设置，否则为清理状态位。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

82 / 204

 protected void setStatus(final int mask, final boolean state) {

 try {

 AccessController.doPrivileged(

new PrivilegedExceptionAction() {

 public Object run() throws BundleException, IOException {

 int status = bundledata.getStatus();

 boolean test = ((status & mask) != 0);

 if (test != state) {

 bundledata.setStatus(

state ? (status | mask) : (status & ~mask));

 bundledata.save();

 }

 return null;

 }

 });

 } catch (PrivilegedActionException pae) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, pae.getException());

 }

 }

 //停止这个Bundle而不进行标记。

 protected void suspend(boolean lock) throws BundleException {

 if (state == UNINSTALLED) {

 return;

 }

 beginStateChange();

 try {

 stopWorker(STOP_TRANSIENT);

 } finally {

 if (!lock) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

83 / 204

 completeStateChange();

 }

 }

 }

 //更新Bundle。如果Bundle处于激活状态，Bundle将自动停止且更新成功后自动启动。

 //（1）如果Bundle处于UINISTALLED状态，则抛出IllegalStateException。

 //（2）如果Bundle处于ACTIVE或STARTING，Bundle将先stop；

//如果stop异常，则直接抛出异常。

//（3）获取新版本，并安装。如果框架不能安装新版本，那么将恢复原Bundle，且在完

//成以下步骤后抛出异常：状态设置INSTALLED；如果安装成功新版本后，

//发布BundleEvent；如果原Bundle为ACTIVE，则start它。如果抛出异常，而发布

//FrameworkEvent事件。

 public void update() throws BundleException {

 framework.checkAdminPermission(

this, AdminPermission.LIFECYCLE);

if ((bundledata.getType() &

 (BundleData.TYPE_BOOTCLASSPATH_EXTENSION |

BundleData.TYPE_FRAMEWORK_EXTENSION)) != 0)

 //权限。

 framework.checkAdminPermission(

this, AdminPermission.EXTENSIONLIFECYCLE);

 checkValid();

 beginStateChange();

 try {

 final AccessControlContext callerContext =

 AccessController.getContext();

updateWorker(new PrivilegedExceptionAction() {

 public Object run() throws BundleException {

 String updateLocation = bundledata.getLocation();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

84 / 204

 if (bundledata.getManifest().get(

Constants.BUNDLE_UPDATELOCATION) != null) {

 updateLocation = (String) bundledata.getManifest(

).get(Constants.BUNDLE_UPDATELOCATION);

 }

 URLConnection source = framework.adaptor.

mapLocationToURLConnection(updateLocation);

 //执行更新。

 updateWorkerPrivileged(source, callerContext);

 return null;

 }

 });

 } finally {

 completeStateChange();

 }

 }

 public void update(final InputStream in) throws BundleException {

 framework.checkAdminPermission(

this, AdminPermission.LIFECYCLE);

 if ((bundledata.getType() &

 (BundleData.TYPE_BOOTCLASSPATH_EXTENSION |

BundleData.TYPE_FRAMEWORK_EXTENSION)) != 0)

 framework.checkAdminPermission(this,

 AdminPermission.EXTENSIONLIFECYCLE);

 checkValid();

 beginStateChange();

 try {

 final AccessControlContext callerContext =

 AccessController.getContext();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

85 / 204

 updateWorker(new PrivilegedExceptionAction() {

 public Object run() throws BundleException {

 URLConnection source = new BundleSource(in);

 updateWorkerPrivileged(source, callerContext);

 return null;

 }

 });

 } finally {

 completeStateChange();

 }

 }

 //更新工作器。假定已经获得状态变更锁。

 protected void updateWorker(PrivilegedExceptionAction action)

throws BundleException {

//停止Bundle。

 boolean bundleActive = false;

 if (!isFragment())

 bundleActive = (state & (ACTIVE | STARTING)) != 0;

 if (bundleActive) {

 try {

 stopWorker(STOP_TRANSIENT);

 } catch (BundleException e) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, e);

 if ((state & (ACTIVE | STARTING)) != 0) //如果停止失败。

{

 throw e;

 }

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

86 / 204

 //执行更新。

 try {

 AccessController.doPrivileged(action);

 framework.publishBundleEvent(BundleEvent.UPDATED, this);

 } catch (PrivilegedActionException pae) {

 if (pae.getException() instanceof RuntimeException)

 throw (RuntimeException) pae.getException();

 throw (BundleException) pae.getException();

 } finally {

 if (bundleActive) {//启动Bundle。

 try {

 startWorker(START_TRANSIENT);

 } catch (BundleException e) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, e);

 }

 }

 }

 }

 //更新。

 protected void updateWorkerPrivileged(URLConnection source,

 AccessControlContext callerContext) throws BundleException {

 AbstractBundle oldBundle = AbstractBundle.createBundle(

bundledata, framework);

 boolean reloaded = false;

 BundleOperation storage = framework.adaptor.updateBundle(

this.bundledata, source);

 BundleRepository bundles = framework.getBundles();

 try {

 BundleData newBundleData = storage.begin();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

87 / 204

 final AbstractBundle newBundle = framework.

createAndVerifyBundle(newBundleData);

 String[] nativepaths = framework.

selectNativeCode(newBundle);

 if (nativepaths != null) {

 newBundleData.installNativeCode(nativepaths);

 }

 boolean exporting;

 int st = getState();

 //装载新Bundle。

 synchronized (bundles) {

 exporting = reload(newBundle);

 manifestLocalization = null;

 }

 reloaded = true;

 if (System.getSecurityManager() != null) {

 final boolean extension = (bundledata.getType() &

 (BundleData.TYPE_BOOTCLASSPATH_EXTENSION |

 BundleData.TYPE_FRAMEWORK_EXTENSION)) != 0;

 if (extension && !hasPermission(new AllPermission()))

 throw new BundleException(

Msg.BUNDLE_EXTENSION_PERMISSION,

new SecurityException(

Msg.BUNDLE_EXTENSION_PERMISSION));

 try {

 AccessController.doPrivileged(

new PrivilegedExceptionAction() {

 public Object run() throws Exception {

 framework.checkAdminPermission(

newBundle, AdminPermission.LIFECYCLE);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

88 / 204

 if (extension)

 framework.checkAdminPermission(

newBundle,

AdminPermission.EXTENSIONLIFECYCLE);

 return null;

 }

 }, callerContext);

 } catch (PrivilegedActionException e) {

 throw e.getException();

 }

 }

 if (st == RESOLVED)

 framework.publishBundleEvent(

BundleEvent.UNRESOLVED, this);

 storage.commit(exporting);

 } catch (Throwable t) {

 try {

 storage.undo();

 if (reloaded)

 synchronized (bundles) {

 reload(oldBundle);

 }

 }

 } catch (BundleException ee) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, ee);

 }

 if (t instanceof SecurityException)

 throw (SecurityException) t;

 if (t instanceof BundleException)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

89 / 204

 throw (BundleException) t;

 throw new BundleException(t.getMessage(), t);

 }

 }

 //卸载Bundle，删除Bundle所有痕迹，包括任何在持久存储区域的数据。

 //（1）如果Bundle在UNINSTALLED状态，抛出IllegalStateException。

 //（2）如果Bundle处于ACTIVE或STARTING，先调用stop方法，若其异常，则广播

 //FrameworkEvent.ERROR。

 //（3）状态设置为UNINSTALLED，删除痕迹。

 public void uninstall() throws BundleException {

 framework.checkAdminPermission(

this, AdminPermission.LIFECYCLE);

 if ((bundledata.getType() &

 (BundleData.TYPE_BOOTCLASSPATH_EXTENSION |

 BundleData.TYPE_FRAMEWORK_EXTENSION)) != 0)

 framework.checkAdminPermission(this,

 AdminPermission.EXTENSIONLIFECYCLE);

 checkValid();

 beginStateChange();

 try {

 uninstallWorker(new PrivilegedExceptionAction() {

 public Object run() throws BundleException {

 uninstallWorkerPrivileged();

 return null;

 }

 });

 } finally {

 completeStateChange();

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

90 / 204

 //卸载工作器。

 protected void uninstallWorker(PrivilegedExceptionAction action)

throws BundleException {

 boolean bundleActive = false;

 //停止Bundle。

 if (!isFragment())

 bundleActive = (state & (ACTIVE | STARTING)) != 0;

 if (bundleActive) {

 try {

 stopWorker(STOP_TRANSIENT);

 } catch (BundleException e) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, e);

 }

 }

 //执行卸载活动。

 try {

 AccessController.doPrivileged(action);

 } catch (PrivilegedActionException pae) {

 if (bundleActive) { //如果卸载失败，则恢复。

 try {

 startWorker(START_TRANSIENT);

 } catch (BundleException e) {

 //如果启动失败，则麻烦了。

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, e);

 }

 }

 throw (BundleException) pae.getException();

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

91 / 204

 framework.publishBundleEvent(BundleEvent.UNINSTALLED, this);

 }

 //执行卸载活动。

 protected void uninstallWorkerPrivileged() throws BundleException {

 boolean unloaded = false;

 //缓存头信息。

 getHeaders();

 BundleOperation storage = framework.adaptor.

uninstallBundle(this.bundledata);

 BundleRepository bundles = framework.getBundles();

 try {

 storage.begin(); //执行卸载。

 boolean exporting;

 int st = getState();

 synchronized (bundles) {

 bundles.remove(this); //删除Bundle。

 exporting = unload();

 }

 if (st == RESOLVED)

 framework.publishBundleEvent(

BundleEvent.UNRESOLVED, this);

 unloaded = true;

 storage.commit(exporting); //提交。

 close();

 } catch (BundleException e) {

 try {

 storage.undo();

 if (unloaded) {

 synchronized (bundles) {

 load();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

92 / 204

 bundles.add(this);

 }

 }

 } catch (BundleException ee) {

 //如果装载失败，则麻烦了。

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, ee);

 }

 throw e;

 } finally {

 }

 }

 //获取头信息。

 public Dictionary getHeaders() {

 return getHeaders(null);

 }

 public Dictionary getHeaders(String localeString) {

 framework.checkAdminPermission(

this, AdminPermission.METADATA);

 try {

 initializeManifestLocalization();

 } catch (BundleException e) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, this, e);

 return new Hashtable();

 }

 if (localeString == null)

 localeString = Locale.getDefault().toString();

 return manifestLocalization.getHeaders(localeString);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

93 / 204

 //Bundle ID是唯一的，只有UNINSTALLED后，它才销毁。

 public long getBundleId() {

 return (bundledata.getBundleID());

 }

 //获取Location标识。

 public String getLocation() {

 framework.checkAdminPermission(

this, AdminPermission.METADATA);

 return (bundledata.getLocation());

 }

 public boolean hasPermission(Object permission) {

 checkValid();

 if (domain != null) {

 if (permission instanceof Permission) {

 SecurityManager sm = System.getSecurityManager();

 if (sm instanceof FrameworkSecurityManager) {

 AccessControlContext acc = new AccessControlContext(

new ProtectionDomain[] {domain});

 try {

 sm.checkPermission((Permission) permission, acc);

 return true;

 } catch (Exception e) {

 return false;

 }

 }

 return domain.implies((Permission) permission);

 }

 return false;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

94 / 204

 return true;

 }

 //这个方法标记Bundle的状态为正在更改，因此，start/stop/suspend/update/

 //uninstall可以等待状态变更完成。如果调用时stateChanging不为空，则需要等待，

 //如果超时，则需要抛出BundleException。调用这个方法的线程，必须用finally

 //调用completeStateChange。

 protected void beginStateChange() throws BundleException {

 synchronized (statechangeLock) {

 boolean doubleFault = false;

 while (true) {

 if (stateChanging == null) {

 stateChanging = Thread.currentThread();

 return;

 }

 //抛出锁定异常。

 if (doubleFault ||

(stateChanging == Thread.currentThread())) {

 throw new BundleException(

NLS.bind(Msg.BUNDLE_STATE_CHANGE_EXCEPTION,

getBundleData().getLocation(),

stateChanging.getName()),

new BundleStatusException(null,

StatusException.CODE_WARNING, stateChanging));

 }

 try {

 long start = 0;

 start = System.currentTimeMillis();

 }

 statechangeLock.wait(5000); //等等其它线程。

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

95 / 204

 } catch (InterruptedException e) {

 }

 doubleFault = true;

 }

 }

 }

 //设置stateChanging为空。

 protected void completeStateChange() {

 synchronized (statechangeLock) {

 if (stateChanging != null) {

 stateChanging = null;

 statechangeLock.notify();

 }

 }

 }

 //Bundle表示。

 public String toString() {

 return (bundledata.getLocation() + " [" + getBundleId() + "]");

 }

 public int compareTo(Object obj) {

 int slcomp = getStartLevel() –

((AbstractBundle) obj).getStartLevel();

 if (slcomp != 0) {

 return slcomp;

 }

 long idcomp = getBundleId() - ((AbstractBundle)

 obj).getBundleId();

 return (idcomp < 0L) ? -1 : ((idcomp > 0L) ? 1 : 0);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

96 / 204

 //检查状态是否不为UNINSTALLED。

 protected void checkValid() {

 if (state == UNINSTALLED) {

 throw new IllegalStateException(

NLS.bind(Msg.BUNDLE_UNINSTALLED_EXCEPTION,

getBundleData().getLocation()));

 }

 }

 //保护域。

 protected BundleProtectionDomain getProtectionDomain() {

 return domain;

 }

 //销毁权限。

 protected void unresolvePermissions() {

 if (domain != null) {

 BundlePermissionCollection collection =

 (BundlePermissionCollection) domain.getPermissions();

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 Debug.println("Unresolving permissions in bundle " +

 this);

 }

 collection.unresolvePermissions();

 }

 }

 //获取片段。

 protected Bundle[] getFragments() {

 checkValid();

 return null;

 }

 //是否片段。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

97 / 204

 protected boolean isFragment() {

 return false;

 }

 //获取宿主。

 protected BundleLoaderProxy[] getHosts() {

 checkValid();

 return null;

 }

 //装载类。

 public Class loadClass(String classname) throws

ClassNotFoundException {

 return loadClass(classname, true);

 }

 //获取EntryPaths。

 public Enumeration getEntryPaths(final String path) {

 try {

 framework.checkAdminPermission(this,

 AdminPermission.RESOURCE);

 } catch (SecurityException e) {

 return null;

 }

 checkValid();

 return (Enumeration) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return bundledata.getEntryPaths(path);

 }

 });

 }

 //获取Entry。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

98 / 204

 public URL getEntry(String fileName) {

 try {

 framework.checkAdminPermission(this,

 AdminPermission.RESOURCE);

 } catch (SecurityException e) {

 return null;

 }

 checkValid();

 if (System.getSecurityManager() == null)

 return bundledata.getEntry(fileName);

 final String ffileName = fileName;

 return (URL) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return bundledata.getEntry(ffileName);

 }

 });

 }

 public String getSymbolicName() {

 return bundledata.getSymbolicName();

 }

 public long getLastModified() {

 return bundledata.getLastModified();

 }

 public BundleData getBundleData() {

 return bundledata;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

99 / 204

 public Version getVersion() {

 return bundledata.getVersion();

 }

 protected BundleDescription getBundleDescription() {

 return framework.adaptor.getState().getBundle(getBundleId());

 }

 protected int getStartLevel() {

 return bundledata.getStartLevel();

 }

 protected abstract BundleLoader getBundleLoader();

 //标记为RESOLVED。

 protected void resolve() {

 if (state == INSTALLED) {

 state = RESOLVED;

 //不发布时间。

 }

 }

 //获取上下文。

 public BundleContext getBundleContext() {

 framework.checkAdminPermission(this, AdminPermission.CONTEXT);

 return getContext();

 }

 abstract protected BundleContextImpl getContext();

 public String getResolutionFailureMessage() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

100 / 204

 BundleDescription bundleDescription = getBundleDescription();

 if (bundleDescription == null)

 return Msg.BUNDLE_UNRESOLVED_EXCEPTION;

 if (bundleDescription.isResolved())

 throw new IllegalStateException(

Msg.BUNDLE_UNRESOLVED_STATE_CONFLICT);

 return NLS.bind(

Msg.BUNDLE_UNRESOLVED_UNSATISFIED_CONSTRAINT_EXCEPTION,

getResolverError(bundleDescription));

 }

 private String getResolverError(BundleDescription bundleDesc) {

 ResolverError[] errors = framework.adaptor.getState(

).getResolverErrors(bundleDesc);

 if (errors == null || errors.length == 0)

 return Msg.BUNDLE_UNRESOLVED_EXCEPTION;

 StringBuffer message = new StringBuffer();

 for (int i = 0; i < errors.length; i++) {

 message.append(errors[i].toString());

 if (i < errors.length - 1)

 message.append(", ");

 }

 return message.toString();

 }

 public int getKeyHashCode() {

 return (int) getBundleId();

 }

 public boolean compare(KeyedElement other) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

101 / 204

 return getBundleId() == ((AbstractBundle) other).getBundleId();

 }

 public Object getKey() {

 return new Long(getBundleId());

 }

 //获取本地化RB。

 public ResourceBundle getResourceBundle(String localeString) {

 try {

 initializeManifestLocalization();

 } catch (BundleException ex) {

 return (null);

 }

 if (localeString == null) {

 localeString = Locale.getDefault().toString();

 }

 return manifestLocalization.getResourceBundle(localeString);

 }

 private void initializeManifestLocalization()

throws BundleException {

 if (manifestLocalization == null) {

 Dictionary rawHeaders;

 rawHeaders = bundledata.getManifest();

 manifestLocalization = new ManifestLocalization(

this, rawHeaders);

 }

 }

 public boolean testStateChanging(Object thread) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

102 / 204

 return stateChanging == thread;

 }

 public Thread getStateChanging() {

 return stateChanging;

 }

 //查找资源。

 public Enumeration findEntries(String path, String filePattern,

 boolean recurse) {

 try {

 framework.checkAdminPermission(this,

 AdminPermission.RESOURCE);

 } catch (SecurityException e) {

 return null;

 }

 checkValid();

 if (!isResolved())

 framework.packageAdmin.resolveBundles(

new Bundle[] {this});

 List pathList = new ArrayList();

 Filter patternFilter = null;

 Hashtable patternProps = null;

 if (filePattern != null)

 try {

 patternFilter = new FilterImpl("(filename=" +

filePattern + ")");

 patternProps = new Hashtable(2);

 } catch (InvalidSyntaxException e) {

 }

 //查找本地。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

103 / 204

 findLocalEntryPaths(path, patternFilter, patternProps, recurse,

 pathList);

 //查找片段。

 final Bundle[] fragments = getFragments();

 final int numFragments = fragments == null ? -1 : fragments.length;

 for (int i = 0; i < numFragments; i++)

 ((AbstractBundle) fragments[i]).findLocalEntryPaths(

path, patternFilter, patternProps, recurse, pathList);

 if (pathList.size() == 0)

 return null;

 final String[] pathArray = (String[]) pathList.toArray(

new String[pathList.size()]);

 return new Enumeration() {

 int curIndex = 0;

 int curFragment = -1;

 URL nextElement = null;

 public boolean hasMoreElements() {

 if (nextElement != null)

 return true;

 getNextElement();

 return nextElement != null;

 }

 public Object nextElement() {

 if (!hasMoreElements())

 throw new NoSuchElementException();

 URL result;

 result = nextElement;

 getNextElement();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

104 / 204

 return result;

 }

 private void getNextElement() {

 nextElement = null;

 if (curIndex >= pathArray.length)

 return;

 String curPath = pathArray[curIndex];

 if (curFragment == -1) {

 nextElement = getEntry(curPath);

 curFragment++;

 }

 while (nextElement == null && curFragment < numFragments)

 nextElement =

 fragments[curFragment++].getEntry(curPath);

 if (numFragments == -1 || curFragment >= numFragments) {

 curIndex++;

 curFragment = -1;

 }

 if (nextElement == null)

 getNextElement();

 }

 };

 }

 protected void findLocalEntryPaths(String path,

Filter patternFilter, Hashtable patternProps,

boolean recurse, List pathList) {

 Enumeration entryPaths = bundledata.getEntryPaths(path);

 if (entryPaths == null)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

105 / 204

 return;

 while (entryPaths.hasMoreElements()) {

 String entry = (String) entryPaths.nextElement();

 int lastSlash = entry.lastIndexOf('/');

 if (patternProps != null) {

 int secondToLastSlash = entry.lastIndexOf('/',

lastSlash - 1);

 int fileStart;

 int fileEnd = entry.length();

 if (lastSlash < 0)

 fileStart = 0;

 else if (lastSlash != entry.length() - 1)

 fileStart = lastSlash + 1;

 else {

 fileEnd = lastSlash;

 if (secondToLastSlash < 0)

 fileStart = 0;

 else

 fileStart = secondToLastSlash + 1;

 }

 String fileName = entry.substring(fileStart, fileEnd);

 patternProps.put("filename", fileName);

 }

 if (!pathList.contains(entry) && (patternFilter == null ||

 patternFilter.matchCase(patternProps)))

 pathList.add(entry);

 if (recurse && !entry.equals(path) && entry.length() > 0 &&

 lastSlash == (entry.length() - 1))

 findLocalEntryPaths(entry, patternFilter, patternProps,

 recurse, pathList);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

106 / 204

 }

 return;

 }

 class BundleStatusException extends Throwable

implements StatusException {

 private int code;

 private Object status;

 BundleStatusException(String message, int code, Object status) {

 super(message);

 this.code = code;

 this.status = status;

 }

 public Object getStatus() {

 return status;

 }

 public int getStatusCode() {

 return code;

 }

 }

}

3.1.4 BundleHost

package org.eclipse.osgi.framework.internal.core;

import java.io.IOException;

import java.net.URL;

import java.util.Enumeration;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

107 / 204

import org.eclipse.osgi.framework.adaptor.*;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.log.FrameworkLogEntry;

import org.eclipse.osgi.service.resolver.BundleDescription;

import org.eclipse.osgi.util.NLS;

import org.osgi.framework.*;

public class BundleHost extends AbstractBundle {

 //BundleLoader的代理，允许BundleLoader的晚创建。

 private BundleLoaderProxy proxy;

 //上下文。

 protected BundleContextImpl context;

 //片段。

 protected BundleFragment[] fragments;

 //新建一个BundleHost。

 public BundleHost(BundleData bundledata, Framework framework)

throws BundleException {

 super(bundledata, framework);

 context = null;

 fragments = null;

 }

 //装载Bundle。

 protected void load() {

 //框架为激活下装载。

 if (framework.isActive()) {

 SecurityManager sm = System.getSecurityManager();

 if (sm != null && framework.permissionAdmin != null) {

 domain = framework.permissionAdmin.

createProtectionDomain(this);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

108 / 204

 }

 proxy = null;

 }

 //重新加载。

 protected boolean reload(AbstractBundle newBundle) {

 boolean exporting = false;

 if (framework.isActive()) {

 if (state == RESOLVED) {

 BundleLoaderProxy curProxy = getLoaderProxy();

 exporting = curProxy.inUse();

 //如果正在使用，确保BundleLoader已经创建。

 if (exporting)

 curProxy.getBundleLoader().createClassLoader();

 else

 closeBundleLoader(proxy);

 state = INSTALLED;

 proxy = null;

 fragments = null;

 }

 } else {

 //关闭。

 try {

 this.bundledata.close();

 } catch (IOException e) {

 }

 }

 this.bundledata = newBundle.bundledata;

 this.bundledata.setBundle(this);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

109 / 204

 if (framework.isActive() && System.getSecurityManager() != null

 && framework.permissionAdmin != null)

 domain = framework.permissionAdmin.

createProtectionDomain(this);

 return (exporting);

 }

 //刷新Bundle，由Framework.refreshPackages调用。

 protected void refresh() {

 if (state == RESOLVED) {

 closeBundleLoader(proxy);

 proxy = null;

 fragments = null;

 state = INSTALLED;

 }

 manifestLocalization = null;

 }

 //Unload Bundle。关闭BundleData。

 protected boolean unload() {

 boolean exporting = false;

 if (framework.isActive()) {

 if (state == RESOLVED) {

 BundleLoaderProxy curProxy = getLoaderProxy();

 exporting = curProxy.inUse();

 if (exporting)

 curProxy.getBundleLoader().createClassLoader();

 else

 closeBundleLoader(proxy);

 state = INSTALLED;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

110 / 204

 proxy = null;

 fragments = null;

 domain = null;

 }

 }

 if (!exporting) {

 try {

 this.bundledata.close();

 } catch (IOException e) {

 }

 }

 return (exporting);

 }

 //检查是否解析，并返回Loader。

 private BundleLoader checkLoader() {

 checkValid();

 //检查Bundle是否已经解析。

 if (!isResolved()) {

 if (!framework.packageAdmin.resolveBundles(

new Bundle[] {this})) {

 return null; //解析失败。

 }

 }

 BundleLoader loader = getBundleLoader();

 if (loader == null) {

 return null;

 }

 return loader;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

111 / 204

 }

 //装载类。

 protected Class loadClass(String name, boolean checkPermission)

 throws ClassNotFoundException {

 if (checkPermission) {

 try {

 framework.checkAdminPermission(

this, AdminPermission.CLASS);

 } catch (SecurityException e) {

 throw new ClassNotFoundException();

 }

 }

 BundleLoader loader = checkLoader();

 if (loader == null)

 throw new ClassNotFoundException(

NLS.bind(Msg.BUNDLE_CNFE_NOT_RESOLVED, name,

getBundleData().getLocation()));

 try {

 //由Loader加载类。

 return (loader.loadClass(name));

 } catch (ClassNotFoundException e) {

 if (!(e instanceof StatusException) &&

(bundledata.getStatus() &

Constants.BUNDLE_LAZY_START) != 0

&& !testStateChanging(Thread.currentThread()))

 try {

 framework.secureAction.start(this, START_TRANSIENT);

 } catch (BundleException be) {

 framework.adaptor.getFrameworkLog().log(

new FrameworkLogEntry(

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

112 / 204

FrameworkAdaptor.FRAMEWORK_SYMBOLICNAME,

FrameworkLogEntry.WARNING, 0,

be.getMessage(), 0, be, null));

 }

 throw e;

 }

 }

 //获取资源。首先，检查权限；其次，调用Loader获取资源。

 public URL getResource(String name) {

 BundleLoader loader = null;

 try {

 framework.checkAdminPermission(

this, AdminPermission.RESOURCE);

 } catch (SecurityException ee) {

 return null;

 }

 loader = checkLoader();

 if (loader == null)

 return null;

 return (loader.findResource(name));

 }

 //同上。

 public Enumeration getResources(String name) throws IOException {

 BundleLoader loader = null;

 try {

 framework.checkAdminPermission(

this, AdminPermission.RESOURCE);

 } catch (SecurityException ee) {

 return null;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

113 / 204

 loader = checkLoader();

 if (loader == null)

 return null;

 Enumeration result = loader.getResources(name);

 if (result != null && result.hasMoreElements())

 return result;

 return null;

 }

 //启动Bundle。

 protected void startWorker(int options) throws BundleException {

 //首先，根据Options设置状态。

 if ((options & START_TRANSIENT) == 0) {

 setStatus(Constants.BUNDLE_STARTED, true);

 setStatus(Constants.BUNDLE_ACTIVATION_POLICY,

(options & START_ACTIVATION_POLICY) != 0);

 if (Debug.DEBUG && Debug.MONITOR_ACTIVATION)

 new Exception("A persistent start has been called on

bundle: " + getBundleData()).printStackTrace();

 }

 //如果框架没有激活或Bundle已经激活，则返回。

 if (!framework.active || (state & ACTIVE) != 0)

 return;

 //如果Bundle未解析，则开始解析。

 if (state == INSTALLED) {

 if (!framework.packageAdmin.resolveBundles(

new Bundle[] {this}))

 throw new BundleException(

getResolutionFailureMessage());

 }

 //检查启动级别

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

114 / 204

 if (getStartLevel() > framework.startLevelManager.

getStartLevel()){

 if ((options & START_TRANSIENT) != 0) {

 String msg = NLS.bind(

Msg.BUNDLE_TRANSIENT_START_ERROR, this);

 //晚启动将导致警告。

 throw new BundleException(msg, new BundleStatusException(

msg, StatusException.CODE_WARNING, this));

 }

 return;

 }

 //如果使用晚激活政策。

 if ((options & START_ACTIVATION_POLICY) != 0 &&

(state & STARTING) == 0) {

 //必须使用晚激活政策。

 if ((bundledata.getStatus() &

Constants.BUNDLE_LAZY_START) != 0) {

 //发布事件并返回。

 state = STARTING;

 framework.publishBundleEvent(

BundleEvent.LAZY_ACTIVATION, this);

 return;

 }

 }

 //发布正在启动事件。

 state = STARTING;

 framework.publishBundleEvent(BundleEvent.STARTING, this);

 context = getContext();

 //开始启动。

 long start = 0;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

115 / 204

 try {

 //启动。

 context.start();

 if (framework.active) {

 state = ACTIVE;

 //发布已经启动。

 framework.publishBundleEvent(

BundleEvent.STARTED, this);

 }

 } catch (BundleException e) {

 //发布正在停止事件。

 state = STOPPING;

 framework.publishBundleEvent(BundleEvent.STOPPING, this);

 //销毁上下文。

 context.close();

 context = null;

 //修改状态。

 state = RESOLVED;

 //发布事件。

 framework.publishBundleEvent(BundleEvent.STOPPED, this);

 throw e;

 } finally {

 }

 //如果装载变为卸载，则销毁上下文。

 if (state == UNINSTALLED) {

 context.close();

 context = null;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

116 / 204

 throw new BundleException(

NLS.bind(Msg.BUNDLE_UNINSTALLED_EXCEPTION,

getBundleData().getLocation()));

 }

 }

 //是否可以继续。

 protected boolean readyToResume() {

 //启动级别错误。

 if (getStartLevel() > framework.

startLevelManager.getStartLevel())

 return false;

 int status = bundledata.getStatus();

 //如果Bundle没有持久标记为启动，则返回false。

 // Return false if the bundle is not persistently marked for start

 if ((status & Constants.BUNDLE_STARTED) == 0)

 return false;

 if ((status & Constants.BUNDLE_ACTIVATION_POLICY) == 0

|| (status & Constants.BUNDLE_LAZY_START) == 0)

 return true;

 //如果未解析。

 if (!isResolved())

 //不能从UNRESOLVED变到STARTING。

 return false;

 //发布晚激活事件。

 state = STARTING;

 framework.publishBundleEvent(

BundleEvent.LAZY_ACTIVATION, this);

 return false;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

117 / 204

 //创建上下文。

 protected BundleContextImpl createContext() {

 return (new BundleContextImpl(this));

 }

 //获取上下文。

 protected synchronized BundleContextImpl getContext() {

 if (context == null) {

 //只在STARTING、ACTIVE和STOPPING时创建上下文。

 if ((state & (STARTING | ACTIVE | STOPPING)) != 0)

 context = createContext();

 }

 return (context);

 }

 //停止一个Bundle。

 protected void stopWorker(int options) throws BundleException {

 //设置状态。

 if ((options & STOP_TRANSIENT) == 0) {

 setStatus(Constants.BUNDLE_STARTED, false);

 setStatus(Constants.BUNDLE_ACTIVATION_POLICY, false);

 if (Debug.DEBUG && Debug.MONITOR_ACTIVATION)

 new Exception("A persistent start has been called

on bundle: " + getBundleData()).printStackTrace();

 }

 if (framework.active) {

 //直接返回。

 if ((state & (STOPPING | RESOLVED | INSTALLED)) != 0) {

 return;

 }

 state = STOPPING;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

118 / 204

 framework.publishBundleEvent(BundleEvent.STOPPING, this);

 try {

 //玩启动的Bundle的状态为STARTING时，上下文为空。

 if (context != null)

 context.stop();

 } finally {

 if (context != null) {

 context.close();

 context = null;

 }

 checkValid();

 //更改状态。

 state = RESOLVED;

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 Debug.println("->stopped " + this);

 }

 //发布事件。

 framework.publishBundleEvent(

BundleEvent.STOPPED, this);

 }

 }

 }

 //获取注册的服务的引用。

 public org.osgi.framework.ServiceReference[]

 getRegisteredServices() {

 checkValid();

 if (context == null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

119 / 204

 return (null);

 }

 return (context.getRegisteredServices());

 }

 //正在使用的服务。

 public org.osgi.framework.ServiceReference[] getServicesInUse() {

 checkValid();

 if (context == null) {

 return (null);

 }

 return (context.getServicesInUse());

 }

 //获取片段的拷贝。

 protected Bundle[] getFragments() {

 synchronized (framework.bundles) {

 if (fragments == null)

 return null;

 Bundle[] result = new Bundle[fragments.length];

 System.arraycopy(fragments, 0, result, 0, result.length);

 return result;

 }

 }

 //按ID顺序附加一个片段。

 protected void attachFragment(BundleFragment fragment)

throws BundleException {

 //获取Loader，但不强迫创建一个。

 BundleLoader loader = getLoaderProxy().getBasicBundleLoader();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

120 / 204

 //如果Loader已经创建，则使用Loader。

 if (loader != null)

 loader.attachFragment(fragment);

 if (fragments == null) {

 fragments = new BundleFragment[] {fragment};

 } else {

 boolean inserted = false;

 BundleFragment[] newFragments =

new BundleFragment[fragments.length + 1];

 for (int i = 0; i < fragments.length; i++) {

 //已经存在，则返回。

 if (fragment == fragments[i])

 return;

 //获取插入的顺序。

 if (!inserted && fragment.getBundleId() <

 fragments[i].getBundleId()) {

 //如果Loader已经创建，则不能附加到链的中间。

 if (loader != null) {

 throw new BundleException(NLS.bind(

Msg.BUNDLE_LOADER_ATTACHMENT_ERROR,

fragments[i].getSymbolicName(),

getSymbolicName()));

 }

 newFragments[i] = fragment;

 inserted = true;

 }

 newFragments[inserted ? i + 1 : i] = fragments[i];

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

121 / 204

 if (!inserted)

 newFragments[newFragments.length - 1] = fragment;

 fragments = newFragments;

 }

 }

 //获取Loader。

 protected BundleLoader getBundleLoader() {

 BundleLoaderProxy curProxy = getLoaderProxy();

 return curProxy == null ? null : curProxy.getBundleLoader();

 }

 //获取Loader代理。

 protected synchronized BundleLoaderProxy getLoaderProxy() {

 if (proxy != null)

 return proxy;

 BundleDescription bundleDescription = getBundleDescription();

 if (bundleDescription == null)

 return null;

 proxy = new BundleLoaderProxy(this, bundleDescription);

 bundleDescription.setUserObject(proxy);

 return proxy;

 }

 //关闭Loader。

 static void closeBundleLoader(BundleLoaderProxy proxy) {

 if (proxy == null)

 return;

 //关闭Bundle Loader。

 BundleLoader loader = proxy.getBasicBundleLoader();

 if (loader != null)

 loader.close();

 proxy.setStale();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

122 / 204

 //设置BundleDescription。

 BundleDescription description = proxy.getBundleDescription();

 description.setUserObject(null);

 }

}

3.1.5 BundleFragment

package org.eclipse.osgi.framework.internal.core;

import java.io.IOException;

import java.net.URL;

import java.util.Enumeration;

import org.eclipse.osgi.framework.adaptor.BundleData;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.util.NLS;

import org.osgi.framework.*;

public class BundleFragment extends AbstractBundle {

 //Hosts。

 protected BundleLoaderProxy[] hosts;

 public BundleFragment(BundleData bundledata, Framework framework)

 throws BundleException {

 super(bundledata, framework);

 hosts = null;

 }

 //装载。

 protected void load() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

123 / 204

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 if ((state & (INSTALLED)) == 0) {

 Debug.println("Bundle.load called when state != INSTALLED:

 " + this);

 Debug.printStackTrace(new Exception("Stack trace"));

 }

 }

 if (framework.isActive()) {

 SecurityManager sm = System.getSecurityManager();

 if (sm != null && framework.permissionAdmin != null) {

 domain = framework.permissionAdmin.

createProtectionDomain(this);

 }

 }

 }

 protected boolean reload(AbstractBundle newBundle) {

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 if ((state & (INSTALLED | RESOLVED)) == 0) {

 Debug.println("Bundle.reload called when state !=

 INSTALLED | RESOLVED: " + this);

 Debug.printStackTrace(new Exception("Stack trace"));

 }

 }

 boolean exporting = false;

 if (framework.isActive()) {

 if (hosts != null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

124 / 204

 if (state == RESOLVED) {

 exporting = true;

 hosts = null;

 state = INSTALLED;

 }

 }

 } else {

 try {

 this.bundledata.close();

 } catch (IOException e) {

 }

 }

 if (!exporting) {

 try {

 this.bundledata.close();

 } catch (IOException e) {

 }

 }

 this.bundledata = newBundle.bundledata;

 this.bundledata.setBundle(this);

 if (framework.isActive() && System.getSecurityManager() != null

 && framework.permissionAdmin != null)

 domain = framework.permissionAdmin.

createProtectionDomain(this);

 return (exporting);

 }

 //刷新。

 protected void refresh() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

125 / 204

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 if ((state & (UNINSTALLED | INSTALLED | RESOLVED)) == 0) {

 Debug.println("Bundle.refresh called when state !=

 UNINSTALLED | INSTALLED | RESOLVED: " + this);

 Debug.printStackTrace(new Exception("Stack trace"));

 }

 }

 if (state == RESOLVED) {

 hosts = null;

 state = INSTALLED;

 }

 manifestLocalization = null;

 }

 protected boolean unload() {

 if (Debug.DEBUG && Debug.DEBUG_GENERAL) {

 if ((state & (UNINSTALLED | INSTALLED | RESOLVED)) == 0) {

 Debug.println("Bundle.unload called when state !=

 UNINSTALLED | INSTALLED | RESOLVED: " + this);

 Debug.printStackTrace(new Exception("Stack trace"));

 }

 }

 boolean exporting = false;

 if (framework.isActive()) {

 if (hosts != null) {

 if (state == RESOLVED) {

 exporting = true;

 hosts = null;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

126 / 204

 state = INSTALLED;

 }

 domain = null;

 }

 }

 if (!exporting) {

 try {

 this.bundledata.close();

 } catch (IOException e) {

 }

 }

 return (exporting);

 }

 //以下操作对片段无效。

 protected Class loadClass(String name, boolean checkPermission)

 throws ClassNotFoundException {

 if (checkPermission) {

 try {

 framework.checkAdminPermission(

this, AdminPermission.CLASS);

 } catch (SecurityException e) {

 throw new ClassNotFoundException();

 }

 checkValid();

 }

 throw new ClassNotFoundException(

NLS.bind(Msg.BUNDLE_FRAGMENT_CNFE, name));

 }

 public URL getResource(String name) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

127 / 204

 checkValid();

 return (null);

 }

 public Enumeration getResources(String name) {

 checkValid();

 return null;

 }

 protected void startWorker(int options) throws BundleException {

 throw new BundleException(

NLS.bind(Msg.BUNDLE_FRAGMENT_START, this));

 }

 protected void stopWorker(int options) throws BundleException {

 throw new BundleException(

NLS.bind(Msg.BUNDLE_FRAGMENT_STOP, this));

 }

 public ServiceReference[] getRegisteredServices() {

 checkValid();

 return null;

 }

 public ServiceReference[] getServicesInUse() {

 checkValid();

 return null;

 }

 //获取宿主。

 protected BundleLoaderProxy[] getHosts() {

 return hosts;

 }

 //是否片段返回true。

 protected boolean isFragment() {

 return true;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

128 / 204

 }

 //添加Host。

 protected boolean addHost(BundleLoaderProxy host) {

 if (host == null)

 return false;

 try {

 ((BundleHost) host.getBundleHost()).attachFragment(this);

 } catch (BundleException be) {

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, host.getBundleHost(), be);

 return false;

 }

 if (hosts == null) {

 hosts = new BundleLoaderProxy[] {host};

 return true;

 }

 for (int i = 0; i < hosts.length; i++) {

 if (host.getBundleHost() == hosts[i].getBundleHost())

 return true; // 已经存在。

 }

 //添加新的Host。

 BundleLoaderProxy[] newHosts = new

 BundleLoaderProxy[hosts.length + 1];

 System.arraycopy(hosts, 0, newHosts, 0, hosts.length);

 newHosts[newHosts.length - 1] = host;

 hosts = newHosts;

 return true;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

129 / 204

 protected BundleLoader getBundleLoader() {

 return null;

 }

 protected BundleContextImpl getContext() {

 return null;

 }

}

3.1.6 BundleContextImpl

package org.eclipse.osgi.framework.internal.core;

import java.io.File;

import java.io.InputStream;

import java.security.*;

import java.util.*;

import org.eclipse.osgi.event.BatchBundleListener;

import org.eclipse.osgi.framework.debug.Debug;

import

org.eclipse.osgi.framework.eventmgr.EventDispatcher;

import org.eclipse.osgi.framework.eventmgr.EventListeners;

import org.eclipse.osgi.internal.profile.Profile;

import org.eclipse.osgi.util.NLS;

import org.osgi.framework.*;

//Bundle执行上下文。当Bundle停止时销毁。

public class BundleContextImpl

implements BundleContext, EventDispatcher {

 public static final String PROP_SCOPE_SERVICE_EVENTS

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

130 / 204

= "osgi.scopeServiceEvents";

 public static final boolean scopeEvents

= Boolean.valueOf(FrameworkProperties.getProperty(

PROP_SCOPE_SERVICE_EVENTS, "true")).booleanValue();

 //是否可用标识。

 private boolean valid;

//框架使用字段直接访问因为当上下文不可用时，它还需要访问。

 protected BundleHost bundle;

 protected Framework framework;

//Bundle使用的服务。主键是ServiceReference，值是ServiceUse。

 protected Hashtable servicesInUse;

//Bundle事件监听器。

 protected EventListeners bundleEvent;

 protected EventListeners bundleEventSync;

 protected EventListeners serviceEvent;

 protected EventListeners frameworkEvent;

//激活器。

 protected BundleActivator activator;

//锁对象。

 protected Object contextLock = new Object();

//为Bundle包装一个BundleContext。

 protected BundleContextImpl(BundleHost bundle) {

 this.bundle = bundle;

 valid = true;

 framework = bundle.framework;

 bundleEvent = null;

 bundleEventSync = null;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

131 / 204

 serviceEvent = null;

 frameworkEvent = null;

 servicesInUse = null;

 activator = null;

 }

//销毁，当Bundle停止时调用。

 protected void close() {

 valid = false; //标识无效。

//移除所有监听器。

 synchronized (framework.serviceEvent) {

 if (serviceEvent != null) {

 framework.serviceEvent.removeListener(this);

 serviceEvent = null;

 }

 }

 synchronized (framework.frameworkEvent) {

 if (frameworkEvent != null) {

 framework.frameworkEvent.removeListener(this);

 frameworkEvent = null;

 }

 }

 synchronized (framework.bundleEvent) {

 if (bundleEvent != null) {

 framework.bundleEvent.removeListener(this);

 bundleEvent = null;

 }

 }

 synchronized (framework.bundleEventSync) {

 if (bundleEventSync != null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

132 / 204

 framework.bundleEventSync.removeListener(this);

 bundleEventSync = null;

 }

 }

//卸载由当前Bundle注册的服务。

 ServiceReference[] publishedReferences = null;

 synchronized (framework.serviceRegistry) {

 publishedReferences = framework.serviceRegistry.

lookupServiceReferences(this);

 }

 if (publishedReferences != null) {

 for (int i = 0; i < publishedReferences.length; i++)

{

 try {

 ((ServiceReferenceImpl)

publishedReferences[i]).

registration.unregister();

 } catch (IllegalStateException e) {

 }

 }

 }

//如果该Bundle使用了服务，则需要释放。

 if (servicesInUse != null) {

 int usedSize;

 ServiceReference[] usedRefs = null;

 synchronized (servicesInUse) {

 usedSize = servicesInUse.size();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

133 / 204

 if (usedSize > 0) {

 if (Debug.DEBUG && Debug.DEBUG_SERVICES) {

 Debug.println("Releasing services");

 }

 usedRefs = new ServiceReference[usedSize];

 Enumeration refsEnum = servicesInUse.keys();

 for (int i = 0; i < usedSize; i++) {

 usedRefs[i] = (ServiceReference)

refsEnum.nextElement();

 }

 }

 }

//释放服务。

 for (int i = 0; i < usedSize; i++) {

 ((ServiceReferenceImpl)

usedRefs[i]).registration.

releaseService(this);

 }

 servicesInUse = null;

 }

 bundle = null;

 }

//获取系统属性。

 public String getProperty(String key) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

134 / 204

 SecurityManager sm = System.getSecurityManager();

 if (sm != null) {

 sm.checkPropertyAccess(key);

 }

 return (framework.getProperty(key));

 }

//获取Bundle。

 public org.osgi.framework.Bundle getBundle() {

 checkValid();

 return (bundle);

 }

//安装Bundle。

 public org.osgi.framework.Bundle installBundle(String

location)

 throws BundleException {

 checkValid();

 //使用Framework安装，它将创建一个Bundle，并调用Install方法。

 return framework.installBundle(location);

 }

 public org.osgi.framework.Bundle installBundle(

String location, InputStream in) throws

BundleException {

 checkValid();

 return framework.installBundle(location, in);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

135 / 204

//获取Bundle。

 public org.osgi.framework.Bundle getBundle(long id) {

 return (framework.getBundle(id));

 }

 public AbstractBundle getBundleByLocation(String

location) {

 return (framework.getBundleByLocation(location));

 }

 public org.osgi.framework.Bundle[] getBundles() {

 return framework.getAllBundles();

 }

 public void addServiceListener(ServiceListener listener,

String filter) throws InvalidSyntaxException {

 checkValid();

 ServiceListener filteredListener =

new FilteredServiceListener(filter, listener,

this);

 synchronized (framework.serviceEvent) {

 if (serviceEvent == null) {

 serviceEvent = new EventListeners();

 framework.serviceEvent.addListener(this,

this);

 }

 serviceEvent.addListener(listener,

filteredListener);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

136 / 204

 }

 }

 public void addServiceListener(ServiceListener listener)

{

 try {

 addServiceListener(listener, null);

 } catch (InvalidSyntaxException e) {

 }

 }

 public void removeServiceListener(ServiceListener

listener) {

 checkValid();

 synchronized (framework.serviceEvent) {

 if (serviceEvent != null) {

 serviceEvent.removeListener(listener);

 }

 }

 }

 public void addBundleListener(BundleListener listener) {

 checkValid();

 if (listener instanceof SynchronousBundleListener) {

 framework.checkAdminPermission(getBundle(),

AdminPermission.LISTENER);

 synchronized (framework.bundleEventSync) {

 if (bundleEventSync == null) {

 bundleEventSync = new EventListeners();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

137 / 204

 framework.bundleEventSync.addListener(this,

this);

 }

 bundleEventSync.addListener(listener,

listener);

 }

 } else {

 synchronized (framework.bundleEvent) {

 if (bundleEvent == null) {

 bundleEvent = new EventListeners();

 framework.bundleEvent.addListener(this,

this);

 }

 bundleEvent.addListener(listener, listener);

 }

 }

 }

 public void removeBundleListener(BundleListener listener)

{

 checkValid();

 if (listener instanceof SynchronousBundleListener) {

 framework.checkAdminPermission(getBundle(),

AdminPermission.LISTENER);

 synchronized (framework.bundleEventSync) {

 if (bundleEventSync != null) {

 bundleEventSync.removeListener(listener);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

138 / 204

 }

 }

 } else {

 synchronized (framework.bundleEvent) {

 if (bundleEvent != null) {

 bundleEvent.removeListener(listener);

 }

 }

 }

 }

 public void addFrameworkListener(FrameworkListener

listener) {

 checkValid();

 synchronized (framework.frameworkEvent) {

 if (frameworkEvent == null) {

 frameworkEvent = new EventListeners();

 framework.frameworkEvent.addListener(this,

this);

 }

 frameworkEvent.addListener(listener, listener);

 }

 }

 public void removeFrameworkListener(FrameworkListener

listener) {

 checkValid();

 synchronized (framework.frameworkEvent) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

139 / 204

 if (frameworkEvent != null) {

 frameworkEvent.removeListener(listener);

 }

 }

 }

 public org.osgi.framework.ServiceRegistration

registerService(

String[] clazzes, Object service, Dictionary

properties) {

 checkValid();

 if (service == null) {

 throw new IllegalArgumentException(

Msg.SERVICE_ARGUMENT_NULL_EXCEPTION);

 }

 int size = clazzes.length;

 if (size == 0) {

 throw new IllegalArgumentException(

Msg.SERVICE_EMPTY_CLASS_LIST_EXCEPTION);

 }

//拷贝以便操作。

 String[] copy = new String[clazzes.length];

 for (int i = clazzes.length - 1; i >= 0; i--)

 copy[i] = clazzes[i].intern();

 clazzes = copy;

//权限检查。

 framework.checkRegisterServicePermission(clazzes);

//检查服务是否实现接口。

 if (!(service instanceof ServiceFactory)) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

140 / 204

 String invalidService = checkServiceClass(

clazzes, service);

 if (invalidService != null) {

 throw new IllegalArgumentException(

NLS.bind(

Msg.SERVICE_NOT_INSTANCEOF_CLASS_EXCEPTI

ON,

invalidService));

 }

 }

 return (createServiceRegistration(

clazzes, service, properties));

 }

 static String checkServiceClass(

final String[] clazzes, final Object serviceObject) {

//获取ServiceObject的CL。

 ClassLoader cl =

(ClassLoader) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return

serviceObject.getClass().getClassLoader();

 }

 });

 for (int i = 0; i < clazzes.length; i++) {

 try {

 Class serviceClazz =

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

141 / 204

cl == null ? Class.forName(clazzes[i]) :

cl.loadClass(clazzes[i]);

 if (!serviceClazz.isInstance(serviceObject))

 return clazzes[i];

 } catch (ClassNotFoundException e) {

 //不太常见。

 if (extensiveCheckServiceClass(clazzes[i],

serviceObject.getClass()))

 return clazzes[i];

 }

 }

 return null;

 }

//显示判断继承关系。

 private static boolean extensiveCheckServiceClass(

String clazz, Class serviceClazz) {

 if (clazz.equals(serviceClazz.getName()))

 return false;

 Class[] interfaces = serviceClazz.getInterfaces();

 for (int i = 0; i < interfaces.length; i++)

 if (!extensiveCheckServiceClass(clazz,

interfaces[i]))

 return false;

 Class superClazz = serviceClazz.getSuperclass();

 if (superClazz != null)

 if (!extensiveCheckServiceClass(clazz,

superClazz))

 return false;

 return true;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

142 / 204

 }

//创建服务注册信息。

 protected ServiceRegistrationImpl

createServiceRegistration(

String[] clazzes, Object service, Dictionary

properties) {

 return (new ServiceRegistrationImpl(

this, clazzes, service, properties));

 }

 public org.osgi.framework.ServiceRegistration

registerService(

String clazz, Object service, Dictionary properties)

{

 String[] clazzes = new String[] {clazz};

 return (registerService(clazzes, service,

properties));

 }

//获取服务引用。

 public org.osgi.framework.ServiceReference[]

getServiceReferences(String clazz, String filter)

throws InvalidSyntaxException {

 checkValid();

 return (framework.getServiceReferences(

clazz, filter, this, false));

 }

 public ServiceReference[]

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

143 / 204

getAllServiceReferences(String clazz,

String filter) throws InvalidSyntaxException {

 checkValid();

 return (framework.getServiceReferences(

clazz, filter, this, true));

 }

 public org.osgi.framework.ServiceReference

getServiceReference(String clazz) {

 checkValid();

 try {

 ServiceReference[] references = framework.

getServiceReferences(clazz, null, this, false);

 if (references != null) {

 int index = 0;

 int length = references.length;

//选择优先级更高的。

 if (length > 1) {

 int rankings[] = new int[length];

 int count = 0;

 int maxRanking = Integer.MIN_VALUE;

 for (int i = 0; i < length; i++) {

 int ranking = ((ServiceReferenceImpl)

references[i]).getRanking();

 rankings[i] = ranking;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

144 / 204

 if (ranking > maxRanking) {

 index = i;

 maxRanking = ranking;

 count = 1;

 } else {

 if (ranking == maxRanking) {

 count++;

 }

 }

 }

//选择ID更低的。

 if (count > 1) {

 long minId = Long.MAX_VALUE;

 for (int i = 0; i < length; i++) {

 if (rankings[i] == maxRanking) {

 long id = ((ServiceReferenceImpl)

references[i]).getId();

 if (id < minId) {

 index = i;

 minId = id;

 }

 }

 }

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

145 / 204

 return (references[index]);

 }

 } catch (InvalidSyntaxException e) {

 }

 return (null);

 }

//获取服务对象和返回服务对象。

 public Object getService(

org.osgi.framework.ServiceReference reference) {

 checkValid();

 synchronized (contextLock) {

 if (servicesInUse == null)

 servicesInUse = new Hashtable(10);

 }

 ServiceRegistrationImpl registration =

((ServiceReferenceImpl) reference).registration;

 framework.checkGetServicePermission(registration.clazz

es);

 return

registration.getService(BundleContextImpl.this);

 }

 public boolean ungetService(

org.osgi.framework.ServiceReference reference) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

146 / 204

 checkValid();

 ServiceRegistrationImpl registration =

((ServiceReferenceImpl) reference).registration;

 return

registration.ungetService(BundleContextImpl.this);

 }

 public File getDataFile(String filename) {

 checkValid();

 return (framework.getDataFile(bundle, filename));

 }

//启动激活器。

 protected void start() throws BundleException {

 activator = bundle.loadBundleActivator();

 if (activator != null) {

 try {

 startActivator(activator);

 } catch (BundleException be) {

 activator = null;

 throw be;

 }

 }

 }

 protected void startActivator(

final BundleActivator bundleActivator)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

147 / 204

throws BundleException {

 try {

 AccessController.doPrivileged(

new PrivilegedExceptionAction() {

 public Object run() throws Exception {

 if (bundleActivator != null) {

 bundleActivator.start(BundleContextImpl.this);

 }

 return null;

 }

 });

 } catch (Throwable t) {

 if (t instanceof PrivilegedActionException) {

 t = ((PrivilegedActionException)

t).getException();

 }

 String clazz = null;

 clazz = bundleActivator.getClass().getName();

 throw new BundleException(

NLS.bind(Msg.BUNDLE_ACTIVATOR_EXCEPTION,

new Object[] {clazz, "start", 、

 bundle.getSymbolicName() == null ? "" +

bundle.getBundleId() :

bundle.getSymbolicName()}), t);

 } finally {

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

148 / 204

 }

//停止激活器。

 protected void stop() throws BundleException {

 try {

 AccessController.doPrivileged(

new PrivilegedExceptionAction() {

 public Object run() throws Exception {

 if (activator != null) {

 activator.stop(BundleContextImpl.this);

 }

 return null;

 }

 });

 } catch (Throwable t) {

 if (t instanceof PrivilegedActionException) {

 t = ((PrivilegedActionException)

t).getException();

 }

 String clazz = (activator == null) ? "" :

activator.getClass().getName();

 throw new BundleException(

NLS.bind(Msg.BUNDLE_ACTIVATOR_EXCEPTION,

new Object[] {clazz, "stop",

bundle.getSymbolicName() == null ? "" +

bundle.getBundleId() :

bundle.getSymbolicName()}), t);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

149 / 204

 } finally {

 activator = null;

 }

 }

//获取注册的服务。对于没有权限访问的服务，需要删除。

 protected ServiceReference[] getRegisteredServices() {

 ServiceReference[] services = null;

 synchronized (framework.serviceRegistry) {

 services = framework.serviceRegistry.

lookupServiceReferences(this);

 if (services == null) {

 return null;

 }

 int removed = 0;

 for (int i = services.length - 1; i >= 0; i--) {

 ServiceReferenceImpl ref =

(ServiceReferenceImpl) services[i];

 String[] classes = ref.getClasses();

 try {

 framework.checkGetServicePermission(classes);

 } catch (SecurityException se) {

 services[i] = null;

 removed++;

 }

 }

 if (removed > 0) {

 ServiceReference[] temp = services;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

150 / 204

 services = new ServiceReference[

temp.length - removed];

 for (int i = temp.length - 1; i >= 0; i--) {

 if (temp[i] == null)

 removed--;

 else

 services[i - removed] = temp[i];

 }

 }

 }

 return (services);

 }

 protected ServiceReferenceImpl[] getServicesInUse() {

 if (servicesInUse == null) {

 return (null);

 }

 synchronized (servicesInUse) {

 int size = servicesInUse.size();

 if (size == 0) {

 return (null);

 }

 ServiceReferenceImpl[] references =

new ServiceReferenceImpl[size];

 int refcount = 0;

 Enumeration refsEnum = servicesInUse.keys();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

151 / 204

 for (int i = 0; i < size; i++) {

 ServiceReferenceImpl reference =

(ServiceReferenceImpl)

refsEnum.nextElement();

 try {

 framework.checkGetServicePermission(

reference.registration.clazzes);

 } catch (SecurityException se) {

 continue;

 }

 references[refcount] = reference;

 refcount++;

 }

 if (refcount < size) {

 if (refcount == 0) {

 return (null);

 }

 ServiceReferenceImpl[] refs = references;

 references = new

ServiceReferenceImpl[refcount];

 System.arraycopy(refs, 0, references, 0,

refcount);

 }

 return (references);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

152 / 204

 }

//派发事件。

 public void dispatchEvent(Object originalListener, Object

l, int action, Object object) {

 AbstractBundle tmpBundle = bundle;

 try {

 if (isValid()) {

 switch (action) {

 case Framework.BUNDLEEVENT :

 case Framework.BUNDLEEVENTSYNC : {

 BundleListener listener = (BundleListener)

l;

 BundleEvent event = (BundleEvent) object;

 switch (event.getType()) {

 case Framework.BATCHEVENT_BEGIN : {

 if (listener instanceof

BatchBundleListener)

 ((BatchBundleListener)

listener).

batchBegin();

 break;

 }

 case Framework.BATCHEVENT_END : {

 if (listener instanceof

BatchBundleListener)

 ((BatchBundleListener)

listener).batchEnd();

 break;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

153 / 204

 }

 default : {

 listener.bundleChanged(

(BundleEvent) object);

 }

 }

 break;

 }

 case Framework.SERVICEEVENT : {

 ServiceEvent event = (ServiceEvent)

object;

 ServiceListener listener =

(ServiceListener) l;

 listener.serviceChanged(event);

 break;

 }

 case Framework.FRAMEWORKEVENT : {

 FrameworkListener listener =

(FrameworkListener) l;

 listener.frameworkEvent(

(FrameworkEvent) object);

 break;

 }

 }

 }

 } catch (Throwable t) {

 //处理意外的异常。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

154 / 204

 framework.adaptor.handleRuntimeError(t);

 publisherror: {

 if (action == Framework.FRAMEWORKEVENT) {

 FrameworkEvent event = (FrameworkEvent)

object;

 if (event.getType() == FrameworkEvent.ERROR)

{

 break publisherror; //避免无限制循环。

 }

 }

 framework.publishFrameworkEvent(

FrameworkEvent.ERROR, tmpBundle, t);

 }

 }

 }

 protected boolean hasListenServicePermission(

ServiceEvent event) {

 ProtectionDomain domain =

bundle.getProtectionDomain();

 if (domain != null) {

 ServiceReferenceImpl reference =

(ServiceReferenceImpl)

event.getServiceReference();

 String[] names = reference.getClasses();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

155 / 204

 int len = names.length;

 for (int i = 0; i < len; i++) {

 if (domain.implies(new

ServicePermission(names[i],

ServicePermission.GET))) {

 return true;

 }

 }

 return false;

 }

 return (true);

 }

 public org.osgi.framework.Filter createFilter(String

filter)

throws InvalidSyntaxException {

 checkValid();

 return (new FilterImpl(filter));

 }

 protected void checkValid() {

 if (!isValid()) {

 throw new IllegalStateException(

Msg.BUNDLE_CONTEXT_INVALID_EXCEPTION);

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

156 / 204

 protected boolean isValid() {

 return valid;

 }

 boolean isAssignableTo(ServiceReferenceImpl reference) {

 if (!scopeEvents)

 return true;

 String[] clazzes = reference.getClasses();

 for (int i = 0; i < clazzes.length; i++)

 if (!reference.isAssignableTo(bundle, clazzes[i]))

 return false;

 return true;

 }

}

3.1.7 BundleLoaderProxy

package org.eclipse.osgi.framework.internal.core;

import java.io.IOException;

import java.net.URL;

import java.util.ArrayList;

import java.util.Enumeration;

import org.eclipse.osgi.framework.util.KeyedHashSet;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.*;

import org.osgi.service.packageadmin.RequiredBundle;

//为一个Bundle代理BundlerLoader对象。允许无需创建BundleLoader或

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

157 / 204

//BundlerClassLoader对象而连接Bundle的依赖。保持Bundle依赖关系。

public class BundleLoaderProxy implements RequiredBundle {

 //Loader。

 private BundleLoader loader;

 //所在Bundle。

 final private BundleHost bundle;

 final private BundleDescription description;

//指示代理过期。

 private boolean stale = false;

 //缓存Bundle包源。

 final private KeyedHashSet pkgSources;

 public BundleLoaderProxy(BundleHost bundle,

BundleDescription description) {

 this.bundle = bundle;

 this.description = description;

 this.pkgSources = new KeyedHashSet(false);

 }

//获取Loader。

 synchronized BundleLoader getBundleLoader() {

 if (loader != null) //直接返回。

 return loader;

 if (bundle.isResolved()) { //Bundle必须经过解析。

 try {

 if (bundle.getBundleId() == 0) //系统Bundle。

 loader = new SystemBundleLoader(bundle,

this);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

158 / 204

 else

 loader = new BundleLoader(bundle, this);

 } catch (BundleException e) {

 bundle.framework.publishFrameworkEvent(

FrameworkEvent.ERROR, bundle, e);

 return null;

 }

 }

 return loader;

 }

//直接返回Loader，不会尝试创建。

 BundleLoader getBasicBundleLoader() {

 return loader;

 }

 AbstractBundle getBundleHost() {

 return bundle;

 }

//设置代理过期。

 void setStale() {

 stale = true;

 }

 boolean isStale() {

 return stale;

 }

 public String toString() {

 String symbolicName = bundle.getSymbolicName();

 StringBuffer sb = new StringBuffer(symbolicName ==

null ?

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

159 / 204

bundle.getBundleData().getLocation() :

symbolicName);

 sb.append(";

").append(Constants.BUNDLE_VERSION_ATTRIBUTE);

 sb.append("=\"").append(

description.getVersion().toString()).append("\""

);

 return sb.toString();

 }

//如果过期的话，则返回空。

 public org.osgi.framework.Bundle getBundle() {

 if (isStale())

 return null;

 return bundle;

 }

 public org.osgi.framework.Bundle[] getRequiringBundles()

{

 if (isStale())

 return null;

 //这将很慢，因此不能在正常执行时调用。

 BundleDescription[] dependents =

description.getDependents();

 if (dependents == null || dependents.length == 0)

 return null;

 ArrayList result = new ArrayList(dependents.length);

 for (int i = 0; i < dependents.length; i++)

 addRequirers(dependents[i], result);

 return result.size() == 0 ? null :

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

160 / 204

(Bundle[]) result.toArray(

new org.osgi.framework.Bundle[result.size()]);

 }

 void addRequirers(BundleDescription dependent,

ArrayList result) {

 if (dependent.getHost() != null) //不管片段。

 return;

 BundleLoaderProxy dependentProxy =

getBundleLoader().getLoaderProxy(dependent);

 if (dependentProxy == null)

 return; //Bundle已经被卸载。

 if (result.contains(dependentProxy.bundle))

 return; //阻止循环。

 BundleLoader dependentLoader =

dependentProxy.getBundleLoader();

 BundleLoaderProxy[] requiredBundles =

dependentLoader.requiredBundles;

//返回Reexport表。

 int[] reexportTable = dependentLoader.reexportTable;

 if (requiredBundles == null)

 return;

 int size = reexportTable == null ? 0 :

reexportTable.length;

 int reexportIndex = 0;

 for (int i = 0; i < requiredBundles.length; i++) {

 if (requiredBundles[i] == this) {

 result.add(dependentProxy.bundle);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

161 / 204

 if (reexportIndex < size &&

reexportTable[reexportIndex] == i) {

 reexportIndex++;

 BundleDescription[] dependents =

dependent.getDependents();

 if (dependents == null)

 return;

 for (int j = 0; j < dependents.length; j++)

 dependentProxy.addRequirers(

dependents[j], result);

 }

 return;

 }

 }

 return;

 }

 public String getSymbolicName() {

 return description.getSymbolicName();

 }

 public Version getVersion() {

 return description.getVersion();

 }

 public boolean isRemovalPending() {

 return description.isRemovalPending();

 }

 BundleDescription getBundleDescription() {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

162 / 204

 return description;

 }

 PackageSource getPackageSource(String pkgName) {

 PackageSource pkgSource =

(PackageSource) pkgSources.getByKey(pkgName);

 if (pkgSource == null) {

 pkgSource = new SingleSourcePackage(pkgName, -1,

this);

 synchronized (pkgSources) {

 pkgSources.add(pkgSource);

 }

 }

 return pkgSource;

 }

 boolean inUse() {

 return description.getDependents().length > 0;

 }

 boolean forceSourceCreation(ExportPackageDescription

export) {

 if (!export.isRoot())

 return true;

 boolean strict = Constants.STRICT_MODE.equals(

bundle.framework.adaptor.getState().

getPlatformProperties()[0].get(

Constants.OSGI_RESOLVER_MODE));

 return (export.getDirective(

Constants.INCLUDE_DIRECTIVE) !=

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

163 / 204

null) || (export.getDirective(

Constants.EXCLUDE_DIRECTIVE) != null) ||

(strict && export.getDirective(

Constants.FRIENDS_DIRECTIVE) != null);

 }

 PackageSource createPackageSource(

ExportPackageDescription export, boolean storeSource)

{

 PackageSource pkgSource = null;

 if (!export.isRoot()) {

 pkgSource = new

ReexportPackageSource(export.getName());

 } else {

 String includes = (String) export.getDirective(

Constants.INCLUDE_DIRECTIVE);

 String excludes = (String) export.getDirective(

Constants.EXCLUDE_DIRECTIVE);

 String[] friends = (String[]) export.getDirective(

Constants.FRIENDS_DIRECTIVE);

 if (friends != null) {

 boolean strict = Constants.STRICT_MODE.equals(

bundle.framework.adaptor.getState().

getPlatformProperties()[0].get(

Constants.OSGI_RESOLVER_MODE));

 if (!strict)

 friends = null;

 }

 if (includes != null || excludes != null ||

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

164 / 204

friends != null) {

 ExportPackageDescription[] exports

= description.getExportPackages();

 int index = -1;

 int first = -1;

 for (int i = 0; i < exports.length; i++) {

 if (first == -1 &&

exports[i].getName().equals(export.getNa

me()))

 first = i;

 if (exports[i] == export && first != i) {

 index = i;

 break;

 }

 }

 pkgSource = new FilteredSourcePackage(

export.getName(), index, this, includes,

excludes,

friends);

 }

 }

 if (storeSource) {

 if (pkgSource != null &&

pkgSources.getByKey(export.getName()) == null)

 synchronized (pkgSources) {

 pkgSources.add(pkgSource);

 }

 } else {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

165 / 204

 if (pkgSource == null)

 pkgSource = getPackageSource(export.getName());

 }

 return pkgSource;

 }

 class ReexportPackageSource extends PackageSource {

 public ReexportPackageSource(String id) {

 super(id);

 }

 public synchronized SingleSourcePackage[]

getSuppliers() {

 PackageSource source =

getBundleLoader().getPackageSource(id);

 if (source == null)

 return null;

 return source.getSuppliers();

 }

 public Class loadClass(String name) {

 try {

 return getBundleLoader().findClass(name,

false);

 } catch (ClassNotFoundException e) {

 return null;

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

166 / 204

 public URL getResource(String name) {

 return getBundleLoader().findResource(name,

false);

 }

 public Enumeration getResources(String name)

throws IOException {

 return getBundleLoader().findResources(name);

 }

 }

}

3.1.8 BundleLoader

package org.eclipse.osgi.framework.internal.core;

import java.io.IOException;

import java.net.URL;

import java.security.AccessController;

import java.security.PrivilegedAction;

import java.util.*;

import org.eclipse.osgi.framework.adaptor.*;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.util.KeyedHashSet;

import org.eclipse.osgi.service.resolver.*;

import org.eclipse.osgi.util.ManifestElement;

import org.osgi.framework.BundleException;

import org.osgi.framework.FrameworkEvent;

//这个对象负责一个Bundle的类加载代理。它表示Bundle的装载状态。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

167 / 204

BundleLoader

//对象采用懒创建方式创建。除非必要，否则不要强迫创建一个

BundleLoader。

public class BundleLoader implements ClassLoaderDelegate {

 public final static String DEFAULT_PACKAGE = ".";

 public final static String JAVA_PACKAGE = "java.";

 public final static byte FLAG_IMPORTSINIT = 0x01;

 public final static byte FLAG_HASDYNAMICIMPORTS = 0x02;

 public final static byte FLAG_HASDYNAMICEIMPORTALL = 0x04;

 public final static byte FLAG_CLOSED = 0x08;

 public final static ClassContext CLASS_CONTEXT =

(ClassContext) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return new ClassContext();

 }

 });

 public final static ClassLoader FW_CLASSLOADER =

 getClassLoader(Framework.class);

 private static final boolean USE_GLOBAL_DEADLOCK_AVOIDANCE_LOCK =

 "true".equals(FrameworkProperties.getProperty(

"osgi.classloader.singleThreadLoads"));

 private static final List waitingList =

 USE_GLOBAL_DEADLOCK_AVOIDANCE_LOCK ? new ArrayList(0) : null;

 private static Object lockThread;

 private static int lockCount = 0;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

168 / 204

 //Proxy。

 final private BundleLoaderProxy proxy;

 //所在Bundle。

 final BundleHost bundle;

 final private PolicyHandler policy;

//导出包。

 final private Collection exportedPackages;

//必须Bundle。

 final BundleLoaderProxy[] requiredBundles;

 //Re-export表。

 final int[] reexportTable;

//必须包源缓存，【包名，PackageSource】。

 final private KeyedHashSet requiredSources;

//导入包缓存。

 private KeyedHashSet importedSources;

 private String[] dynamicImportPackageStems;

 private String[] dynamicImportPackages;

 //装载标记。

 private byte loaderFlags = 0;

 //这个Bundle的类加载器。

 private BundleClassLoader classloader;

//父类加载器。

 private ClassLoader parent;

//返回指定类名的包名。

 public final static String getPackageName(String name) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

169 / 204

 if (name != null) {

 int index = name.lastIndexOf('.'); //最后一个“.”之前部分。

 if (index > 0)

 return name.substring(0, index);

 }

 return DEFAULT_PACKAGE;

 }

//从指定的资源名称返回其包名。资源的名称由“/”分割。

 public final static String getResourcePackageName(String name) {

 if (name != null) {

 int begin = ((name.length() > 1) &&

(name.charAt(0) == '/')) ? 1 : 0;

 int end = name.lastIndexOf('/');

 if (end > begin)

 return name.substring(begin, end).replace('/', '.');

 }

 return DEFAULT_PACKAGE;

 }

//构造器，这个对象在对该Bundle第一次资源请求时创建。

//创建时将获取这个Bundle的描述信息，并初始化

 protected BundleLoader(BundleHost bundle, BundleLoaderProxy proxy)

throws BundleException {

 this.bundle = bundle;

 this.proxy = proxy;

 try {

 bundle.getBundleData().open(); //确保BundleData打开。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

170 / 204

 } catch (IOException e) {

 throw new BundleException(Msg.BUNDLE_READ_EXCEPTION, e);

 }

//Bundle描述信息。

 BundleDescription description = proxy.getBundleDescription();

 //Required描述信息。

 BundleDescription[] required =

description.getResolvedRequires();

//初始化Re-export表，RequireBundles信息。

 if (required.length > 0) {

 HashSet reExportSet = new HashSet(required.length);

 BundleSpecification[] requiredSpecs =

description.getRequiredBundles();

 if (requiredSpecs != null && requiredSpecs.length > 0)

 for (int i = 0; i < requiredSpecs.length; i++)

 if (requiredSpecs[i].isExported())

 reExportSet.add(requiredSpecs[i].getName());

 requiredBundles = new BundleLoaderProxy[required.length];

 int[] reexported = new int[required.length];

 int reexportIndex = 0;

 for (int i = 0; i < required.length; i++) {

 requiredBundles[i] = getLoaderProxy(required[i]);

 if

(reExportSet.contains(required[i].getSymbolicName()))

 reexported[reexportIndex++] = i;

 }

 if (reexportIndex > 0) {

 reexportTable = new int[reexportIndex];

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

171 / 204

 System.arraycopy(

reexported, 0, reexportTable, 0, reexportIndex);

 } else {

 reexportTable = null;

 }

 requiredSources = new KeyedHashSet(10, false);

 } else {

 requiredBundles = null;

 reexportTable = null;

 requiredSources = null;

 }

 //初始化导出包信息。

 ExportPackageDescription[] exports =

description.getSelectedExports();

 if (exports != null && exports.length > 0) {

 exportedPackages = exports.length > 10 ?

(Collection) new HashSet(exports.length) :

new ArrayList(exports.length);

 for (int i = 0; i < exports.length; i++) {

 if (proxy.forceSourceCreation(exports[i])) {

 if (!exportedPackages.contains(

exports[i].getName())) {

//必须强迫过滤和早创建Re-export源来阻止晚正常

包源

//创建。在第一个Export是做。

 proxy.createPackageSource(exports[i], true);

 }

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

172 / 204

 exportedPackages.add(exports[i].getName());

 }

 } else {

 exportedPackages = null;

 }

 //初始化片段。

 org.osgi.framework.Bundle[] fragmentObjects =

bundle.getFragments();

 BundleDescription[] fragments = new BundleDescription[

fragmentObjects == null ? 0 : fragmentObjects.length];

 for (int i = 0; i < fragments.length; i++)

 fragments[i] = ((AbstractBundle) fragmentObjects[i]).

getBundleDescription();

 if (description.hasDynamicImports())

 addDynamicImportPackage(description.getImportPackages());

 for (int i = 0; i < fragments.length; i++)

 if (fragments[i].isResolved() &&

fragments[i].hasDynamicImports())

 addDynamicImportPackage(

fragments[i].getImportPackages());

 //初始化PolicyHandler。

 String buddyList = null;

 try {

 buddyList = (String) bundle.getBundleData().

getManifest().get(Constants.BUDDY_LOADER);

 } catch (BundleException e) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

173 / 204

 }

 policy = buddyList != null ?

new PolicyHandler(this, buddyList) : null;

 }

 private synchronized KeyedHashSet getImportedSources() {

 if ((loaderFlags & FLAG_IMPORTSINIT) != 0)

 return importedSources;

 ExportPackageDescription[] packages =

proxy.getBundleDescription().getResolvedImports();

 if (packages != null && packages.length > 0) {

 if (importedSources == null)

 importedSources = new KeyedHashSet(

packages.length, false);

 for (int i = 0; i < packages.length; i++) {

 PackageSource source =

createExportPackageSource(packages[i]);

 if (source != null)

 importedSources.add(source);

 }

 }

 loaderFlags |= FLAG_IMPORTSINIT;

 return importedSources;

 }

 final PackageSource createExportPackageSource(

ExportPackageDescription export) {

 BundleLoaderProxy exportProxy =

getLoaderProxy(export.getExporter());

 if (exportProxy == null)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

174 / 204

 return null;

 PackageSource requiredSource = exportProxy.getBundleLoader().

findRequiredSource(export.getName());

 PackageSource exportSource = exportProxy.createPackageSource(

export, false);

 if (requiredSource == null)

 return exportSource;

 return createMultiSource(export.getName(),

new PackageSource[] {requiredSource, exportSource});

 }

 private static PackageSource createMultiSource(

String packageName, PackageSource[] sources) {

 if (sources.length == 1)

 return sources[0];

 ArrayList sourceList = new ArrayList(sources.length);

 for (int i = 0; i < sources.length; i++) {

 SingleSourcePackage[] innerSources =

sources[i].getSuppliers();

 for (int j = 0; j < innerSources.length; j++)

 if (!sourceList.contains(innerSources[j]))

 sourceList.add(innerSources[j]);

 }

 return new MultiSourcePackage(packageName,

(SingleSourcePackage[]) sourceList.toArray(

new SingleSourcePackage[sourceList.size()]));

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

175 / 204

//获取对应的BundleLoaderProxy。

 final BundleLoaderProxy getLoaderProxy(BundleDescription source) {

 BundleLoaderProxy sourceProxy = (BundleLoaderProxy)

source.getUserObject();

 if (sourceProxy == null) {

 long exportingID = source.getBundleId();

 BundleHost exportingBundle =

(BundleHost) bundle.framework.getBundle(exportingID);

 if (exportingBundle == null)

 return null;

 sourceProxy = exportingBundle.getLoaderProxy();

 }

 return sourceProxy;

 }

 //关闭。

 synchronized void close() {

 if ((loaderFlags & FLAG_CLOSED) != 0)

 return;

 if (classloader != null)

 classloader.close();

 if (policy != null)

 policy.close();

 loaderFlags |= FLAG_CLOSED;

 }

//装载类。从宿主、片段、Import、Require和本地资源搜索。

 final Class loadClass(String name) throws ClassNotFoundException

{

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

176 / 204

 return createClassLoader().loadClass(name);

 }

//搜索资源。

 final URL getResource(String name) {

 return createClassLoader().getResource(name);

 }

 final synchronized ClassLoader getParentClassLoader() {

 if (parent != null)

 return parent;

 createClassLoader();

 return parent;

 }

//创建类加载器。

 final synchronized BundleClassLoader createClassLoader() {

 if (classloader != null)

 return classloader;

 try {

 String[] classpath = bundle.getBundleData().getClassPath();

 if (classpath != null) {

 BundleClassLoader bcl = createBCLPrevileged(

bundle.getProtectionDomain(), classpath);

 parent = getParentPrivileged(bcl);

 classloader = bcl;

 } else {

 bundle.framework.publishFrameworkEvent(

FrameworkEvent.ERROR, bundle, new BundleException(

Msg.BUNDLE_NO_CLASSPATH_MATCH));

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

177 / 204

 }

 } catch (BundleException e) {

 bundle.framework.publishFrameworkEvent(

FrameworkEvent.ERROR, bundle, e);

 }

 return classloader;

 }

//查找Bundle本地的类。仅搜索这个Bundle的类加载器。

 Class findLocalClass(String name) throws ClassNotFoundException {

 try {

 Class clazz = createClassLoader().findLocalClass(name);

 return clazz;

 } catch (ClassNotFoundException e) {

 if (e instanceof StatusException) {

 if ((((StatusException) e).getStatusCode() &

StatusException.CODE_ERROR) != 0)

 throw e;

 }

 return null;

 }

 }

//查找一个Bundle的类。

 public Class findClass(String name) throws ClassNotFoundException

{

 return findClass(name, true);

 }

 Class findClass(String name, boolean checkParent)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

178 / 204

throws ClassNotFoundException {

 ClassLoader parentCL = getParentClassLoader();

//如果checkParent为真，父类加载器不为空且类名从java起。

 if (checkParent && parentCL != null &&

name.startsWith(JAVA_PACKAGE))

 // 1) 搜索第一步，如果该类类名由“java.”字符开始，则代理到父类。

 return parentCL.loadClass(name);

 try {

 if (USE_GLOBAL_DEADLOCK_AVOIDANCE_LOCK)

 lock(createClassLoader());

 return findClassInternal(name, checkParent, parentCL);

 } finally {

 if (USE_GLOBAL_DEADLOCK_AVOIDANCE_LOCK)

 unlock();

 }

 }

 private Class findClassInternal(String name, boolean checkParent,

ClassLoader parentCL) throws ClassNotFoundException {

 if (Debug.DEBUG && Debug.DEBUG_LOADER)

 Debug.println("BundleLoader[" + this + "].loadBundleClass("

+ name + ")"); //$NON-NLS-3$

 String pkgName = getPackageName(name);

 boolean bootDelegation = false;

 // 遵循OSGi代理模型。

 if (checkParent && parentCL != null &&

isBootDelegationPackage(pkgName))

 // 2) 如果是启动代理列表的一部分，则代理到父类加载器。

 try {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

179 / 204

 return parentCL.loadClass(name);

 } catch (ClassNotFoundException cnfe) {

 //继续。

 bootDelegation = true;

 }

 Class result = null;

 // 3) 搜索Import。

 PackageSource source = findImportedSource(pkgName);

 if (source != null) { //如果该类在Import中。

 // 3) 查找Import源，终止搜索。

 result = source.loadClass(name);

 if (result != null)

 return result;

//抛出异常。

 throw new ClassNotFoundException(name);

 }

 // 4) 搜索RequireBundles。

 source = findRequiredSource(pkgName);

 if (source != null)

 // 4) 尝试加载但失败时继续。

 result = source.loadClass(name);

 // 5) 搜索本地。

 if (result == null)

 result = findLocalClass(name);

 if (result != null)

 return result;

 // 6) 尝试查找动态引用。

 if (source == null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

180 / 204

 source = findDynamicSource(pkgName);

 if (source != null) {

 result = source.loadClass(name);

 if (result != null)

 return result;

 //如果在动态引用列表却加载失败，则抛出异常。

 throw new ClassNotFoundException(name);

 }

 }

 // 进行Buddy类加载策略。

 if (result == null && policy != null)

 result = policy.doBuddyClassLoading(name);

 // 向后兼容

 if (parentCL != null && checkParent && !bootDelegation &&

bundle.framework.compatibiltyBootDelegation &&

result == null && source == null &&

 !isExportedPackage(pkgName))

 return parentCL.loadClass(name);

 if (parentCL != null && result == null &&

!bootDelegation && isRequestFromVM())

 result = parentCL.loadClass(name);

 if (result == null)

 throw new ClassNotFoundException(name);

 return result;

 }

 private boolean isRequestFromVM() {

 if (bundle.framework.bootDelegateAll ||

!bundle.framework.contextBootDelegation)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

181 / 204

 return false;

 Class[] context = CLASS_CONTEXT.getClassContext();

 if (context == null || context.length < 2)

 return false;

 // 第一个类是ClassContext，忽略。

 for (int i = 1; i < context.length; i++)

 // 查找第一个不是BundleLoader或ClassLoader实例的Context。

 if (context[i] != BundleLoader.class &&

 !ClassLoader.class.isAssignableFrom(context[i])) {

 // 仅从Parent找。

 ClassLoader cl = getClassLoader(context[i]);

 if (cl != FW_CLASSLOADER) {

 if (Class.class != context[i] &&

!(cl instanceof BundleClassLoader))

 return true;

 break;

 }

 }

 return false;

 }

//获取类加载器。

 private static ClassLoader getClassLoader(final Class clazz) {

 if (System.getSecurityManager() == null)

 return clazz.getClassLoader();

 return (ClassLoader) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return clazz.getClassLoader();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

182 / 204

 }

 });

 }

//查找资源。

 public URL findResource(String name) {

 return findResource(name, true);

 }

 URL findResource(String name, boolean checkParent) {

//删除第一个'/'字符。

 if ((name.length() > 1) && (name.charAt(0) == '/'))

 name = name.substring(1);

//获取包源。

 String pkgName = getResourcePackageName(name);

 boolean bootDelegation = false;

 ClassLoader parentCL = getParentClassLoader();

 //遵循OSGi搜索模型。

 //首先为系统资源检查父类加载器。

 if (checkParent && parentCL != null) {

 if (pkgName.startsWith(JAVA_PACKAGE))

 // 1) 如果资源名称以'java.'开头，则交给父加载器其并终止搜索。

 return parentCL.getResource(name);

 else if (isBootDelegationPackage(pkgName)) {

 // 2) 如果是启动代理列表。

 URL result = parentCL.getResource(name);

 if (result != null) //若失败，继续。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

183 / 204

 return result;

 bootDelegation = true;

 }

 }

 URL result = null;

 // 3) 搜索Import。

 PackageSource source = findImportedSource(pkgName);

 if (source != null)

 // 3) 在Import源搜索并终止。

 return source.getResource(name);

 // 4) 搜索必须Bundle。

 source = findRequiredSource(pkgName);

 if (source != null)

 // 4) 尝试，若失败继续。

 result = source.getResource(name);

 // 5) 搜索本地。

 if (result == null)

 result = findLocalResource(name);

 if (result != null)

 return result;

 // 6) 动态引用。

 if (source == null) {

 source = findDynamicSource(pkgName);

 if (source != null)

 //返回并终止搜索。

 return source.getResource(name);

 }

 //兄弟策略状态。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

184 / 204

 if (result == null && policy != null)

 result = policy.doBuddyResourceLoading(name);

 //向后兼容。

 if (parentCL != null && checkParent && !bootDelegation &&

bundle.framework.compatibiltyBootDelegation &&

result == null && source == null &

 !isExportedPackage(pkgName))

 return parentCL.getResource(name);

 if (parentCL != null && result == null && !bootDelegation &&

isRequestFromVM())

 result = parentCL.getResource(name);

 return result;

 }

//判断是否为启动代理的包。

 boolean isBootDelegationPackage(String name) {

 if (bundle.framework.bootDelegateAll)

 return true;

 if (bundle.framework.bootDelegation != null)

 for (int i = 0; i < bundle.framework.bootDelegation.length;

i++)

 if (name.equals(bundle.framework.bootDelegation[i]))

 return true;

 if (bundle.framework.bootDelegationStems != null)

 for (int i = 0;

i < bundle.framework.bootDelegationStems.length; i++)

 if (name.startsWith(

bundle.framework.bootDelegationStems[i]))

 return true;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

185 / 204

 return false;

 }

//查找一个Bundle的资源。仅代理到Bundle的类加载器。

 public Enumeration findResources(String name) throws IOException

 {

 //不能代理到父加载器。

 if ((name.length() > 1) && (name.charAt(0) == '/'))

 name = name.substring(1);

//获取资源包名。

 String pkgName = getResourcePackageName(name);

 Enumeration result = null;

 // 从第三步开始，因为仅在Bundle类加载器找。

 // 3) 从Import找。

 PackageSource source = findImportedSource(pkgName);

 if (source != null)

 // 3) 终止搜索。

 return source.getResources(name);

 // 4) 搜索Require。

 source = findRequiredSource(pkgName);

 if (source != null)

 // 4) 继续。

 result = source.getResources(name);

 // 5) 搜索本地。

 // 组合本地。

 Enumeration localResults = findLocalResources(name);

 result = compoundEnumerations(result, localResults);

 // 6) 动态Import。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

186 / 204

 if (result == null && source == null) {

 source = findDynamicSource(pkgName);

 if (source != null)

 return source.getResources(name);

 }

//兄弟加载策略。

 if (policy != null) {

 Enumeration buddyResult =

policy.doBuddyResourcesLoading(name);

 result = compoundEnumerations(result, buddyResult);

 }

 return result;

 }

 //遵循OSGi模型搜索。

 Enumeration getResources(String name) throws IOException {

 if ((name.length() > 1) && (name.charAt(0) == '/'))

 name = name.substring(1);

 String pkgName = getResourcePackageName(name);

 Enumeration result = null;

 if (pkgName.startsWith(JAVA_PACKAGE) ||

isBootDelegationPackage(pkgName)) {

 ClassLoader parentCL = getParentClassLoader();

 result = parentCL == null ? null : parentCL.getResources(name);

 if (pkgName.startsWith(JAVA_PACKAGE))

 return result;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

187 / 204

 return compoundEnumerations(result, findResources(name));

 }

 static Enumeration compoundEnumerations(

Enumeration list1, Enumeration list2) {

 if (list2 == null || !list2.hasMoreElements())

 return list1;

 if (list1 == null || !list1.hasMoreElements())

 return list2;

 Vector compoundResults = new Vector();

 while (list1.hasMoreElements())

 compoundResults.add(list1.nextElement());

 while (list2.hasMoreElements()) {

 Object item = list2.nextElement();

 if (!compoundResults.contains(item))

 compoundResults.add(item);

 }

 return compoundResults.elements();

 }

 URL findLocalResource(final String name) {

 return createClassLoader().findLocalResource(name);

 }

 Enumeration findLocalResources(String name) {

 return createClassLoader().findLocalResources(name);

 }

 //查找Native库。

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

188 / 204

 public String findLibrary(final String name) {

 if (System.getSecurityManager() == null)

 return findLocalLibrary(name);

 return (String) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return findLocalLibrary(name);

 }

 });

 }

 final String findLocalLibrary(final String name) {

 String result = bundle.getBundleData().findLibrary(name);

 if (result != null)

 return result;

 org.osgi.framework.Bundle[] fragments = bundle.getFragments();

 if (fragments == null || fragments.length == 0)

 return null;

 //查找片段Import。

 for (int i = 0; i < fragments.length; i++) {

 result = ((AbstractBundle)

fragments[i]).getBundleData().findLibrary(name);

 if (result != null)

 return result;

 }

 return result;

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

189 / 204

 final AbstractBundle getBundle() {

 return bundle;

 }

 private BundleClassLoader createBCLPrevileged(

final BundleProtectionDomain pd, final String[] cp) {

 if (System.getSecurityManager() == null)

 return createBCL(pd, cp);

 return (BundleClassLoader) AccessController.doPrivileged(

new PrivilegedAction() {

 public Object run() {

 return createBCL(pd, cp);

 }

 });

 }

//创建Bundle类加载器器。

 BundleClassLoader createBCL(

final BundleProtectionDomain pd, final String[] cp) {

 BundleClassLoader bcl = bundle.getBundleData().

createClassLoader(BundleLoader.this, pd, cp);

 org.osgi.framework.Bundle[] fragments = bundle.getFragments();

 if (fragments != null)

 for (int i = 0; i < fragments.length; i++) {

 AbstractBundle fragment = (AbstractBundle) fragments[i];

 try {

 bcl.attachFragment(fragment.getBundleData(),

fragment.domain,

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

190 / 204

fragment.getBundleData().getClassPath());

 } catch (BundleException be) {

 bundle.framework.publishFrameworkEvent(

FrameworkEvent.ERROR, bundle, be);

 }

 }

 //初始化。

 bcl.initialize();

 return bcl;

 }

 public final String toString() {

 BundleData result = bundle.getBundleData();

 return result == null ? "BundleLoader.bundledata == null!" :

result.toString();

 }

 private final synchronized boolean isDynamicallyImported(

String pkgname) {

 if (this instanceof SystemBundleLoader)

 return false;

 //R3规范。

 if (pkgname.startsWith("java."))

 return true;

 if ((loaderFlags & FLAG_HASDYNAMICIMPORTS) == 0)

 return false;

 if ((loaderFlags & FLAG_HASDYNAMICEIMPORTALL) != 0)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

191 / 204

 return true;

 if (dynamicImportPackages != null)

 for (int i = 0; i < dynamicImportPackages.length; i++)

 if (pkgname.equals(dynamicImportPackages[i]))

 return true;

 if (dynamicImportPackageStems != null)

 for (int i = 0; i < dynamicImportPackageStems.length; i++)

 if (pkgname.startsWith(dynamicImportPackageStems[i]))

 return true;

 return false;

 }

 final void addExportedProvidersFor(String symbolicName,

String packageName, ArrayList result, KeyedHashSet visited) {

 if (!visited.add(bundle))

 return;

 // See if we locally provide the package.

 PackageSource local = null;

 if (isExportedPackage(packageName))

 local = proxy.getPackageSource(packageName);

 // Must search required bundles that are exported first.

 if (requiredBundles != null) {

 int size = reexportTable == null ? 0 : reexportTable.length;

 int reexportIndex = 0;

 for (int i = 0; i < requiredBundles.length; i++) {

 if (local != null) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

192 / 204

 // always add required bundles first if we locally

provide the package

 // This allows a bundle to provide a package from a

required bundle without

 // re-exporting the whole required bundle.

 requiredBundles[i].getBundleLoader().addExportedProvidersFor(symb

olicName, packageName, result, visited);

 } else if (reexportIndex < size &&

reexportTable[reexportIndex] == i) {

 reexportIndex++;

 requiredBundles[i].getBundleLoader().addExportedProvidersFor(symb

olicName, packageName, result, visited);

 }

 }

 }

 // now add the locally provided package.

 if (local != null && local.isFriend(symbolicName)) {

 if (local instanceof

BundleLoaderProxy.ReexportPackageSource)

 local = new SingleSourcePackage(packageName, -1, proxy);

 result.add(local);

 }

 }

 final boolean isExportedPackage(String name) {

 return exportedPackages == null ? false :

exportedPackages.contains(name);

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

193 / 204

 }

 private void addDynamicImportPackage(ImportPackageSpecification[]

packages) {

 if (packages == null)

 return;

 ArrayList dynamicImports = new ArrayList(packages.length);

 for (int i = 0; i < packages.length; i++)

 if

(ImportPackageSpecification.RESOLUTION_DYNAMIC.equals(packages[i].get

Directive(Constants.RESOLUTION_DIRECTIVE)))

 dynamicImports.add(packages[i].getName());

 if (dynamicImports.size() > 0)

 addDynamicImportPackage((String[])

dynamicImports.toArray(new String[dynamicImports.size()]));

 }

 /**

 * Adds a list of DynamicImport-Package manifest elements to the

dynamic

 * import tables of this BundleLoader. Duplicate packages are checked

and

 * not added again. This method is not thread safe. Callers should

ensure

 * synchronization when calling this method.

 * @param packages the DynamicImport-Package elements to add.

 */

 private void addDynamicImportPackage(String[] packages) {

 if (packages == null)

 return;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

194 / 204

 loaderFlags |= FLAG_HASDYNAMICIMPORTS;

 int size = packages.length;

 ArrayList stems;

 if (dynamicImportPackageStems == null) {

 stems = new ArrayList(size);

 } else {

 stems = new ArrayList(size +

dynamicImportPackageStems.length);

 for (int i = 0; i < dynamicImportPackageStems.length; i++) {

 stems.add(dynamicImportPackageStems[i]);

 }

 }

 ArrayList names;

 if (dynamicImportPackages == null) {

 names = new ArrayList(size);

 } else {

 names = new ArrayList(size + dynamicImportPackages.length);

 for (int i = 0; i < dynamicImportPackages.length; i++) {

 names.add(dynamicImportPackages[i]);

 }

 }

 for (int i = 0; i < size; i++) {

 String name = packages[i];

 if (isDynamicallyImported(name))

 continue;

 if (name.equals("*")) { /* shortcut *///$NON-NLS-1$

 loaderFlags |= FLAG_HASDYNAMICEIMPORTALL;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

195 / 204

 return;

 }

 if (name.endsWith(".*"))

 stems.add(name.substring(0, name.length() - 1));

 else

 names.add(name);

 }

 size = stems.size();

 if (size > 0)

 dynamicImportPackageStems = (String[]) stems.toArray(new

String[size]);

 size = names.size();

 if (size > 0)

 dynamicImportPackages = (String[]) names.toArray(new

String[size]);

 }

 /**

 * Adds a list of DynamicImport-Package manifest elements to the

dynamic

 * import tables of this BundleLoader. Duplicate packages are checked

and

 * not added again.

 * @param packages the DynamicImport-Package elements to add.

 */

 public final synchronized void

addDynamicImportPackage(ManifestElement[] packages) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

196 / 204

 if (packages == null)

 return;

 ArrayList dynamicImports = new ArrayList(packages.length);

 for (int i = 0; i < packages.length; i++)

 dynamicImports.add(packages[i].getValue());

 if (dynamicImports.size() > 0)

 addDynamicImportPackage((String[])

dynamicImports.toArray(new String[dynamicImports.size()]));

 }

 final synchronized void attachFragment(BundleFragment fragment)

throws BundleException {

 if (classloader == null)

 return;

 String[] classpath = fragment.getBundleData().getClassPath();

 if (classpath != null)

 classloader.attachFragment(fragment.getBundleData(),

fragment.domain, classpath);

 }

 /*

 * Finds a packagesource that is either imported or required from

another bundle.

 * This will not include an local package source

 */

 private PackageSource findSource(String pkgName) {

 if (pkgName == null)

 return null;

 PackageSource result = findImportedSource(pkgName);

 if (result != null)

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

197 / 204

 return result;

 // Note that dynamic imports are not checked to avoid aggressive

wiring (bug 105779)

 return findRequiredSource(pkgName);

 }

 private PackageSource findImportedSource(String pkgName) {

 KeyedHashSet imports = getImportedSources();

 if (imports == null)

 return null;

 synchronized (imports) {

 return (PackageSource) imports.getByKey(pkgName);

 }

 }

 private PackageSource findDynamicSource(String pkgName) {

 if (isDynamicallyImported(pkgName)) {

 ExportPackageDescription exportPackage =

bundle.framework.adaptor.getState().linkDynamicImport(proxy.getBundle

Description(), pkgName);

 if (exportPackage != null) {

 PackageSource source =

createExportPackageSource(exportPackage);

 synchronized (this) {

 if (importedSources == null)

 importedSources = new KeyedHashSet(false);

 }

 synchronized (importedSources) {

 importedSources.add(source);

 }

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

198 / 204

 return source;

 }

 }

 return null;

 }

 private PackageSource findRequiredSource(String pkgName) {

 if (requiredBundles == null)

 return null;

 synchronized (requiredSources) {

 PackageSource result = (PackageSource)

requiredSources.getByKey(pkgName);

 if (result != null)

 return result.isNullSource() ? null : result;

 }

 KeyedHashSet visited = new KeyedHashSet(false);

 visited.add(bundle); // always add ourselves so we do not recurse

back to ourselves

 ArrayList result = new ArrayList(3);

 for (int i = 0; i < requiredBundles.length; i++) {

 BundleLoader requiredLoader =

requiredBundles[i].getBundleLoader();

 requiredLoader.addExportedProvidersFor(proxy.getSymbolicName(),

pkgName, result, visited);

 }

 // found some so cache the result for next time and return

 PackageSource source;

 if (result.size() == 0) {

 // did not find it in our required bundles lets record the

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

199 / 204

failure

 // so we do not have to do the search again for this package.

 source = NullPackageSource.getNullPackageSource(pkgName);

 } else if (result.size() == 1) {

 // if there is just one source, remember just the single source

 source = (PackageSource) result.get(0);

 } else {

 // if there was more than one source, build a multisource and

cache that.

 PackageSource[] srcs = (PackageSource[]) result.toArray(new

PackageSource[result.size()]);

 source = createMultiSource(pkgName, srcs);

 }

 synchronized (requiredSources) {

 requiredSources.add(source);

 }

 return source.isNullSource() ? null : source;

 }

 /*

 * Gets the package source for the pkgName. This will include the local

package source

 * if the bundle exports the package. This is used to compare the

PackageSource of a

 * package from two different bundles.

 */

 final PackageSource getPackageSource(String pkgName) {

 PackageSource result = findSource(pkgName);

 if (!isExportedPackage(pkgName))

 return result;

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

200 / 204

 // if the package is exported then we need to get the local source

 PackageSource localSource = proxy.getPackageSource(pkgName);

 if (localSource instanceof

BundleLoaderProxy.ReexportPackageSource)

 localSource = new SingleSourcePackage(pkgName, -1, proxy);

 if (result == null)

 return localSource;

 if (localSource == null)

 return result;

 return createMultiSource(pkgName, new PackageSource[] {result,

localSource});

 }

 private ClassLoader getParentPrivileged(final BundleClassLoader bcl)

{

 if (System.getSecurityManager() == null)

 return bcl.getParent();

 return (ClassLoader) AccessController.doPrivileged(new

PrivilegedAction() {

 public Object run() {

 return bcl.getParent();

 }

 });

 }

 static final class ClassContext extends SecurityManager {

 // need to make this method public

 public Class[] getClassContext() {

 return super.getClassContext();

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

201 / 204

 }

 }

 /*

 * see bug 121737

 * To ensure that we do not enter a deadly embrace between classloader

cycles

 * we attempt to obtain a global lock before do normal osgi delegation.

 * This approach ensures that only one thread has a classloader locked

at a time

 */

 private static void lock(Object loader) {

 Thread currentThread = Thread.currentThread();

 boolean interrupted = false;

 synchronized (loader) {

 if (tryLock(currentThread, loader))

 return; // this thread has the lock

 do {

 try {

 // we wait on the loader object here to release its lock

incase we have it.

 // we do not way to wait while holding this lock because

that will cause deadlock

 loader.wait();

 } catch (InterruptedException e) {

 interrupted = true;

 // we still want to try again

 }

 } while (!tryLock(currentThread));

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

202 / 204

 }

 if (interrupted)

 currentThread.interrupt();

 }

 /*

 * returns true if this thread can obtain the global lock or already

has the lock;

 * otherwise this loader and thread are added to the waitingList

 */

 private synchronized static boolean tryLock(Thread currentThread,

Object loader) {

 if (lockThread == currentThread) {

 lockCount++;

 return true;

 }

 if (lockThread == null) {

 lockCount++;

 lockThread = currentThread;

 return true;

 }

 waitingList.add(new Object[] {currentThread, loader});

 return false;

 }

 /*

 * returns true if this thread already has the global lock

 */

 private synchronized static boolean tryLock(Thread currentThread) {

 if (lockThread == currentThread) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

203 / 204

 lockCount++;

 return true;

 }

 return false;

 }

 /*

 * unlocks the global lock and notifies the first waiting thread that

they

 * now have the lock

 */

 private static void unlock() {

 Thread waitingThread = null;

 Object loader = null;

 synchronized (BundleLoader.class) {

 lockCount--;

 if (lockCount != 0)

 return;

 if (waitingList.isEmpty()) {

 lockThread = null;

 return;

 }

 Object[] waiting = (Object[]) waitingList.get(0);

 waitingThread = (Thread) waiting[0];

 loader = waiting[1];

 }

 synchronized (loader) {

 synchronized (BundleLoader.class) {

Eclipse OSGi 内核源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

204 / 204

 lockThread = waitingThread;

 waitingList.remove(0);

 loader.notifyAll();

 }

 }

 }

}

