
OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 1 / 125

Bundle Resolving Model

0 尤埃与产品简介

西安尤埃信息技术有限公司（http://www.uishell.com）成立于 2008 年 5 月份，

专注于尤埃开放服务平台和尤埃 SaaS 引擎云计算产品开发。

尤埃开放服务平台（XAUI Open Service Platform，UIOSP）是一个移植了

OSGi 规范的动态插件化与模块化平台，支持插件化与模块化、SOA 和模块扩展。

尤埃 SaaS 引擎（XAUI SaaS Engine，XSE）是一个 SaaS 应用商店开放平台。

该平台是面向 SaaS 运营商、SaaS 提供商和 SaaS 消费者三个角色的 PaaS 云计算平

台，其模式为“SaaS 运营商负责平台运营，SaaS 提供商利用平台提供的开发工具

包基于 VS2008SP1 开发 SaaS 应用并上传，SaaS 消费者在应用商店挑选、购买并使

用 SaaS 应用”。该平台由应用商店网站、应用开发工具包和应用虚拟运行环境构

成。

1 Resolving Model Example

A) Icons

I

R

E

H
I R E

H I

R

E

H

I R E

H I

R

E

H

B) Wiring Model

http://www.uishell.com/

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 2 / 125

E
Bundle

Export

Version

Supplier

(Bundle,

Export)

Version

Constraint

(Host,

Import,

Require)

AddSupplier
RemoveSupplier
GetSupplier

GetPossibleSupplier

I

R

H

C) State

K

I

R

E

H

I R E

H

B

H

I R E

C

I

R

E

H A

I R E

H

F

I

R

E

HE

I

R

E

HD

I

R

E

H H

I R E

H

G

OSGi 提供对系统状态的持久化。

2 Resolving Process in a simple scenario

1） 安装 Bundle H，系统状态 Resolved=false，当进行解析后，所有 Bundle 的状态

为{ H:0 }，因为 H 的 Import 和 Require 不能被满足，此时系统状态进入

Resolved=true。

2） 安装 Bundle K，系统状态 Resolved=false，当进行解析后，所有 Bundle 的状态

为{ H:0, K:1 }，因为 H 的 Import 不能被满足，但 K 能够被解析，此时系统状态进

入 Resolved=true。

3）同 2）。

4） 卸载了 Bundle G…。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 3 / 125

State 0

Bundles: { H:0 }

State 1

Bundles: { H:0, K:1 }

State 2

Bundles: { H:1, K:1, G:1 }

State 2

Bundles: { H:0, K:1 }

State 2

Bundles: { K:1 }

对于整个系统状态，Bundle 的安装、卸载、解析和反解析将引起其它 Bundle 状态

的变化，因此也将影响到系统状态。

3 Constraint and resolver layer codes

3.1 osgi.eclipse.osgi.service.resolver

该层定义的了约束和解析描述、系统状态与解析器接口。

3.1.1 BaseDescription

表示 Bundle 一个不需要被解析描述信息，比如导出描述和 Bundle 描述。

package org.eclipse.osgi.service.resolver;

import org.osgi.framework.Version;

public interface BaseDescription {

 //名称。

 public String getName();

 //版本。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 4 / 125

 public Version getVersion();

 //该Description拥有Bundle。

 public BundleDescription getSupplier();

}

3.1.2 ExportPackageDescription

表示一个 Export 描述。

package org.eclipse.osgi.service.resolver;

import java.util.Map;

public interface ExportPackageDescription extends BaseDescription {

 //标识是否Re-export。

 public boolean isRoot();

 public Map getAttributes();

 public Map getDirectives();

 public Object getDirective(String key);

 //导出的Bundle。

 public BundleDescription getExporter();

}

3.1.3 BundleDescription

表示一个 Bundle 的描述信息，包括：约束和描述。一个 Bundle 的约束有：Host 约

束、Require 约束、Import 约束等；描述有：Export 描述和 Bundle 描述。

package org.eclipse.osgi.service.resolver;

public interface BundleDescription extends BaseDescription {

 public String getSymbolicName();

 public String getLocation();

 //所有Require约束规范。

 public BundleSpecification[] getRequiredBundles();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 5 / 125

 //所有Export描述。

 public ExportPackageDescription[] getExportPackages();

 //所有Import约束规范。

 public ImportPackageSpecification[] getImportPackages();

 public GenericSpecification[] getGenericRequires();

 public GenericDescription[] getGenericCapabilities();

 //是否有动态Import。

 public boolean hasDynamicImports();

 //返回这个Bundle被解析器采用的Export，没有解析或没有共享包的话，返回空。

 public ExportPackageDescription[] getSelectedExports();

 //被解析的Require描述。

 public BundleDescription[] getResolvedRequires();

 //被解析的Import描述。

 public ExportPackageDescription[] getResolvedImports();

 //是否已经解析。

 public boolean isResolved();

 //保存该Bundle的State。

 public State getContainingState();

 public String toString();

 //解析的Host。

 public HostSpecification getHost();

 public long getBundleId();

 //所有片段描述。

 public BundleDescription[] getFragments();

 public boolean isSingleton();

 //是否正在删除。

 public boolean isRemovalPending();

 //所有依赖的Bundle。

 public BundleDescription[] getDependents();

 public Object getUserObject();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 6 / 125

 public void setUserObject(Object userObject);

 public String getPlatformFilter();

 //是否已经附加了Fragments。

 public boolean attachFragments();

 //是否允许动态附加片段。

 public boolean dynamicFragments();

 //要求的执行环境。

 public String[] getExecutionEnvironments();

}

3.1.4 VersionConstraint

表示一个约束的描述信息。

package org.eclipse.osgi.service.resolver;

public interface VersionConstraint extends Cloneable {

 //约束的名称。比如，Require约束的名称就是所需要的Bundle特征名。

 public String getName();

 //约束指定的版本范围。

 public VersionRange getVersionRange();

 //声明该约束的Bundle。

 public BundleDescription getBundle();

 //是否解析。

 public boolean isResolved();

 //判断一个描述是否满足该约束。

 public boolean isSatisfiedBy(BaseDescription supplier);

 //返回满足约束的描述。

 public BaseDescription getSupplier();

}

3.1.5 BundleSpecification

表示一个 Require-Bundle 约束规格。

package org.eclipse.osgi.service.resolver;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 7 / 125

public interface BundleSpecification extends VersionConstraint {

 public boolean isExported();

 //是否为Optional。

 public boolean isOptional();

}

3.1.6 HostSpecification

表示一个 Host 约束规格。

package org.eclipse.osgi.service.resolver;

public interface HostSpecification extends VersionConstraint {

 //满足约束的Hosts。

 public BundleDescription[] getHosts();

 //是否有多个Host。

 public boolean isMultiHost();

}

3.1.7 ImportPackageSpecification

表示一个 Import 约束规格。

package org.eclipse.osgi.service.resolver;

import java.util.Map;

public interface ImportPackageSpecification extends VersionConstraint {

 public static final String RESOLUTION_STATIC = "static";

 public static final String RESOLUTION_OPTIONAL = "optional";

 public static final String RESOLUTION_DYNAMIC = "dynamic";

 //Import的Bundle的特征名。

 public String getBundleSymbolicName();

 //Import的Bundle版本范围。

 public VersionRange getBundleVersionRange();

 public Map getAttributes();

 public Map getDirectives();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 8 / 125

 public Object getDirective(String key);

}

3.1.8 ResolverError

//解析过程发生的错误。

package org.eclipse.osgi.service.resolver;

public interface ResolverError {

 //缺少Import、Require或片段。

 public static final int MISSING_IMPORT_PACKAGE = 0x0001;

 public static final int MISSING_REQUIRE_BUNDLE = 0x0002;

 public static final int MISSING_FRAGMENT_HOST = 0x0004;

 //单件错误。

 public static final int SINGLETON_SELECTION = 0x0008;

 //片段冲突。

 public static final int FRAGMENT_CONFLICT = 0x0010;

 //Use Import冲突。

 public static final int IMPORT_PACKAGE_USES_CONFLICT = 0x0020;

 //Require-Bundle冲突。

 public static final int REQUIRE_BUNDLE_USES_CONFLICT = 0x0040;

 //Import权限错误。

 public static final int IMPORT_PACKAGE_PERMISSION = 0x0080;

 //Export权限错误。

 public static final int EXPORT_PACKAGE_PERMISSION = 0x0100;

 //Require权限错误。

 public static final int REQUIRE_BUNDLE_PERMISSION = 0x0200;

 //Bundle提供商权限错误。

 public static final int PROVIDE_BUNDLE_PERMISSION = 0x0400;

 //Host-Bundle权限错误。

 public static final int HOST_BUNDLE_PERMISSION = 0x0800;

 //片段权限错误。

 public static final int FRAGMENT_BUNDLE_PERMISSION = 0x1000;

 //平台过滤。

 public static final int PLATFORM_FILTER = 0x2000;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 9 / 125

 //执行环境不符。

 public static final int MISSING_EXECUTION_ENVIRONMENT = 0x4000;

 public static final int MISSING_GENERIC_CAPABILITY = 0x8000;

 //引发解析错误的Bundle。

 public BundleDescription getBundle();

 //错误的类型。

 public int getType();

 //关联的数据信息。

 public String getData();

 //没有被满足的约束。

 public VersionConstraint getUnsatisfiedConstraint();

}

3.1.9 Resolver

OSGi 的 Bundle 约束解析器。

package org.eclipse.osgi.service.resolver;

import java.util.Comparator;

import java.util.Dictionary;

public interface Resolver {

 //解析系统状态并返回在Changes描述的BundleDelta。这个方法尽在用户调用

//State.resolve方法后调用，若Resolve方法没有被调用，State不会更新解析池。

 public void resolve(BundleDescription[] discard,

Dictionary[] platformProperties);

 //清空所有的缓存数据。当更改Resolver的State对象改变了，进行次操作。

 public void flush();

 //返回关联的系统状态。

 public State getState();

 //设置关联的状态。只能设置一次。

 public void setState(State value);

 //通知解析器，一个Bundle添加到系统状态了。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 10 / 125

 public void bundleAdded(BundleDescription bundle);

 //通知解析器，一个Bundle从系统状态删除。

 public void bundleRemoved(BundleDescription bundle,

boolean pending);

 public void bundleUpdated(BundleDescription newDescription,

BundleDescription existingDescription, boolean pending);

 //解析一个动态Import。

 public ExportPackageDescription resolveDynamicImport(

BundleDescription importingBundle, String requestedPackage);

 //选择策略用于排序满足约束的描述。

 public void setSelectionPolicy(Comparator selectionPolicy);

 public Comparator getSelectionPolicy();

}

3.1.10 StateDelta

表示系统状态的变化。

package org.eclipse.osgi.service.resolver;

//State变更包含了在一个系统状态下所有Bundle变更。

public interface StateDelta {

 //所有Bundle变更。

 public BundleDelta[] getChanges();

 //查找变更。

 public BundleDelta[] getChanges(int mask, boolean exact);

 //关联的状态。

 public State getState();

}

3.1.11 BundleDelta

表示一个 Bundle 状态变化。

package org.eclipse.osgi.service.resolver;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 11 / 125

public interface BundleDelta extends Comparable {

 //添加到系统状态、从系统状态删除、更新、解析、反解析、正在删除、删除完成。

 public static final int ADDED = 0x1;

 public static final int REMOVED = 0x2;

 public static final int UPDATED = 0x4;

 public static final int RESOLVED = 0x8;

 public static final int UNRESOLVED = 0x10;

 public static final int REMOVAL_PENDING = 0x80;

 public static final int REMOVAL_COMPLETE = 0x100;

 //关联的Bundle。

 public BundleDescription getBundle();

 //变更类型。

 public int getType();

 //比较。

 public int compareTo(Object obj);

}

3.1.12 State

表示报告给解析器的系统状态。它包括所有的 Bundle——解析的和未解析的。

package org.eclipse.osgi.service.resolver;

import java.util.Dictionary;

import org.osgi.framework.BundleException;

import org.osgi.framework.Version;

public interface State {

 //添加一个Bundle到系统状态。

 public boolean addBundle(BundleDescription description);

 //与一个状态相比的变化。

 public StateDelta compare(State baseState) throws BundleException;

 //从系统状态中删除一个Bundle。

 public BundleDescription removeBundle(long bundleId);

 public boolean removeBundle(BundleDescription bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 12 / 125

 //更新一个Bundle。

 public boolean updateBundle(BundleDescription newDescription);

 //返回从上次解析时间到现在发生的变化。

 public StateDelta getChanges();

 //返回系统状态所有Bundle。

 public BundleDescription[] getBundles();

 //返回指定ID的Bundle

 public BundleDescription getBundle(long id);

 public BundleDescription getBundle(String symbolicName,

Version version);

 public BundleDescription getBundleByLocation(String location);

 //时间戳。

 public long getTimeStamp();

 public void setTimeStamp(long newTimeStamp);

 //如果和上次调用Resolve()方法开始到现在，系统状态没有任何变更，则返回true。

 public boolean isResolved();

 //使用提供的描述解析给定的约束。如果Supplier为null，则将反解析这个约束。

 public void resolveConstraint(VersionConstraint constraint,

BaseDescription supplier);

 //解析一个Bundle，用于决定哪些Supplier满足哪些约束。

 public void resolveBundle(BundleDescription bundle,

boolean status, BundleDescription[] hosts,

ExportPackageDescription[] selectedExports,

BundleDescription[] resolvedRequires,

ExportPackageDescription[] resolvedImports);

 //删除一个Bundle。

 public void removeBundleComplete(BundleDescription bundle);

 //添加一个错误的系统状态。

 public void addResolverError(BundleDescription bundle, int type,

String data, VersionConstraint unsatisfied);

 //删除一个Bundle关联的所有错误。

 public void removeResolverErrors(BundleDescription bundle);

 //返回一个Bundle的所有错误。

 public ResolverError[] getResolverErrors(

BundleDescription bundle);

 //关联的解析器。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 13 / 125

 public Resolver getResolver();

 public void setResolver(Resolver value);

 //解析当前系统状态。

 public StateDelta resolve(boolean incremental);

 public StateDelta resolve();

 public StateDelta resolve(BundleDescription[] discard);

 public void setOverrides(Object value);

 public BundleDescription[] getResolvedBundles();

 public boolean isEmpty();

 //返回系统状态所有Export描述。

 public ExportPackageDescription[] getExportedPackages();

 //返回系统状态所有Bundle。

 public BundleDescription[] getBundles(String symbolicName);

 public StateObjectFactory getFactory();

 //查找一个Import。

 public ExportPackageDescription linkDynamicImport(

BundleDescription importingBundle, String requestedPackage);

 public boolean setPlatformProperties(

Dictionary platformProperties);

 public boolean setPlatformProperties(

Dictionary[] platformProperties);

 public Dictionary[] getPlatformProperties();

 public ExportPackageDescription[] getSystemPackages();

 //关联的StateHelper。

 public StateHelper getStateHelper();

 //最大的BundleID。

 public long getHighestBundleId();

}

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 14 / 125

3.1.13 StateHelper

package org.eclipse.osgi.service.resolver;

public interface StateHelper {

 public static int ACCESS_ENCOURAGED = 0x01;

 public static int ACCESS_DISCOURAGED = 0x02;

 public static int VISIBLE_INCLUDE_EE_PACKAGES = 0x01;

//获取依赖Bundle。

 public BundleDescription[] getDependentBundles(

BundleDescription[] bundles);

 //必要的Bundle。

 public BundleDescription[] getPrerequisites(

BundleDescription[] bundles);

 //返回一个Bundel未满足的约束。

 public VersionConstraint[] getUnsatisfiedConstraints(

BundleDescription bundle);

 public VersionConstraint[] getUnsatisfiedLeaves(

BundleDescription[] bundles);

 //判断一个Import是否可以解析。

 public boolean isResolvable(

ImportPackageSpecification specification);

 public boolean isResolvable(BundleSpecification specification);

 public boolean isResolvable(HostSpecification specification);

 public Object[][] sortBundles(BundleDescription[] toSort);

 //所有的Export。

 public ExportPackageDescription[] getVisiblePackages(

BundleDescription bundle);

 public ExportPackageDescription[] getVisiblePackages(

BundleDescription bundle, int options);

 public int getAccessCode(

BundleDescription bundle, ExportPackageDescription export);

}

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 15 / 125

3.1.14 StateObjectFactory

package org.eclipse.osgi.service.resolver;

import java.io.*;

import java.util.Dictionary;

import java.util.Map;

import org.eclipse.osgi.internal.resolver.StateObjectFactoryImpl;

import org.osgi.framework.*;

public interface StateObjectFactory {

 public static final StateObjectFactory defaultFactory =

new StateObjectFactoryImpl();

 //创建一个State。

 public State createState(boolean resolver);

 public State createState(State state);

 //创建Bundle描述。

 public BundleDescription createBundleDescription(

long id, String symbolicName, Version version,

String location, BundleSpecification[] required,

HostSpecification host,

ImportPackageSpecification[] imports,

ExportPackageDescription[] exports, boolean singleton,

boolean attachFragments, boolean dynamicFragments,

String platformFilter, String[] executionEnvironments,

GenericSpecification[] genericRequires,

GenericDescription[] genericCapabilities);

 public BundleDescription createBundleDescription(

State state, Dictionary manifest, String location, long id)

throws BundleException;

 public BundleDescription createBundleDescription(

BundleDescription original);

 //创建Bundle约束规格。

 public BundleSpecification createBundleSpecification(

String requiredSymbolicName,

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 16 / 125

VersionRange requiredVersionRange, boolean export,

boolean optional);

 public BundleSpecification createBundleSpecification(

BundleSpecification original);

 //创建Host约束规格。

 public HostSpecification createHostSpecification(

String hostSymbolicName, VersionRange hostVersionRange);

 public HostSpecification createHostSpecification(

HostSpecification original);

 //创建Import约束规格。

 public ImportPackageSpecification

createImportPackageSpecification(String packageName,

VersionRange versionRange, String bundleSymbolicName,

VersionRange bundleVersionRange, Map directives,

Map attributes, BundleDescription importer);

 public ImportPackageSpecification

createImportPackageSpecification(

ImportPackageSpecification original);

 //创建Export描述。

 public ExportPackageDescription createExportPackageDescription(

String packageName, Version version, Map directives,

Map attributes, boolean root, BundleDescription exporter);

 public ExportPackageDescription createExportPackageDescription(

ExportPackageDescription original);

 //创建Generic描述。

 public GenericDescription createGenericDescription(String name,

String type, Version version, Map attributes);

 public GenericSpecification createGenericSpecification(

String name, String type, String matchingFilter,

boolean optional, boolean multiple)

throws InvalidSyntaxException;

 //持久化给定状态到一个目录。

 public void writeState(State state, File stateDirectory)

throws IOException;

 //从一个给定目录读取持久化信息。

 public State readState(File stateDirectory) throws IOException;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 17 / 125

}

3.1.15 PlatformAdmin

系统框架服务，允许 Bundle 编程人员检查框架所知的 Bundle 和包。

package org.eclipse.osgi.service.resolver;

import org.osgi.framework.BundleException;

/**

 * Framework service which allows bundle programmers to inspect the

bundles and

 * packages known to the Framework. The PlatformAdmin service also

allows bundles

 * with sufficient privileges to update the state of the framework by

committing a new

 * configuration of bundles and packages.

 *

 * If present, there will only be a single instance of this service

 * registered with the Framework.

 * <p>

 * Clients may implement this interface.

 * </p>

 * @since 3.1

 */

public interface PlatformAdmin {

 //返回一个当前系统易变的State。

 public State getState();

 //返回一个表示当前系统的状态，指定是否易变。

 public State getState(boolean mutable);

 //返回StateHelper类。

 public StateHelper getStateHelper();

 //提交当前状态与给定状态发生的变化。

 public void commit(State state) throws BundleException;

 //返回系统提供的解析器。

 public Resolver getResolver();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 18 / 125

 //返回StateObjectFactory实例。

 public StateObjectFactory getFactory();

}

3.2 osgi.eclipse.osgi.internal.module

3.2.1 ResolverConstraint

和约束关联的类，表示一个连线的起点。

package org.eclipse.osgi.internal.module;

import org.eclipse.osgi.service.resolver.BundleDescription;

import org.eclipse.osgi.service.resolver.VersionConstraint;

public abstract class ResolverConstraint {

 final protected ResolverBundle bundle;

 final protected VersionConstraint constraint;

 private VersionSupplier[] possibleSuppliers;

 private int selectedSupplierIndex = 0;

 ResolverConstraint(ResolverBundle bundle,

VersionConstraint constraint) {

 this.bundle = bundle;

 this.constraint = constraint;

 }

 //返回要求ResolverContraint约束的Bundle。

 // returns the Resolver bundle requiring the ResolverConstraint

 ResolverBundle getBundle() {

 return bundle;

 }

 //返回要求ResolverContainer的Description。

 BundleDescription getBundleDescription() {

 return bundle.getBundle();

 }

 //这个约束是否来自于一个片段。

 boolean isFromFragment() {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 19 / 125

 return constraint.getBundle().getHost() != null;

 }

 //与VersionContraint相同，但检查的权限。

 boolean isSatisfiedBy(VersionSupplier vs) {

 if (!bundle.getResolver().

getPermissionChecker().checkPermission(constraint,

vs.getBaseDescription()))

 return false;

 return constraint.isSatisfiedBy(vs.getBaseDescription());

 }

 //返回约束。

 VersionConstraint getVersionConstraint() {

 return constraint;

 }

 //返回约束的名称。

 public String getName() {

 return constraint.getName();

 }

 public String toString() {

 return constraint.toString();

 }

 //这个约束是否可选。

 abstract boolean isOptional();

 //设置候选Supplier。

 public void setPossibleSuppliers(

VersionSupplier[] possibleSuppliers) {

 this.possibleSuppliers = possibleSuppliers;

 }

 //添加候选Supplier。

 void addPossibleSupplier(VersionSupplier supplier) {

 if (supplier == null)

 return;

 //由于多个Supplier比较少，因此只用一个数组。

 if (possibleSuppliers == null) {

 possibleSuppliers = new VersionSupplier[] {supplier};

 return;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 20 / 125

 }

 VersionSupplier[] newSuppliers =

new VersionSupplier[possibleSuppliers.length + 1];

 System.arraycopy(possibleSuppliers, 0,

newSuppliers, 0, possibleSuppliers.length);

 newSuppliers[possibleSuppliers.length] = supplier;

 possibleSuppliers = newSuppliers;

 }

 public void removePossibleSupplier(VersionSupplier supplier) {

 if (possibleSuppliers == null || supplier == null)

 return;

 int index = -1;

 for (int i = 0; i < possibleSuppliers.length; i++) {

 if (possibleSuppliers[i] == supplier) {

 index = i;

 break;

 }

 }

 if (index >= 0) {

 if (possibleSuppliers.length == 1) {

 possibleSuppliers = null;

 return;

 }

 VersionSupplier[] newSuppliers = new VersionSupplier[

possibleSuppliers.length - 1];

 System.arraycopy(possibleSuppliers, 0,

newSuppliers, 0, index);

 if (index < possibleSuppliers.length - 1)

 System.arraycopy(possibleSuppliers, index + 1,

 newSuppliers, index,

possibleSuppliers.length - index - 1);

 possibleSuppliers = newSuppliers;

 }

 }

 //候选Supplier长度。

 int getNumPossibleSuppliers() {

 if (possibleSuppliers == null)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 21 / 125

 return 0;

 return possibleSuppliers.length;

 }

 //选择下一个Supplier。

 boolean selectNextSupplier() {

 if (possibleSuppliers == null ||

selectedSupplierIndex >= possibleSuppliers.length)

 return false;

 selectedSupplierIndex += 1;

 return selectedSupplierIndex < possibleSuppliers.length;

 }

 //获取相应的Supplier。

 VersionSupplier getSelectedSupplier() {

 if (possibleSuppliers == null ||

selectedSupplierIndex >= possibleSuppliers.length)

 return null;

 return possibleSuppliers[selectedSupplierIndex];

 }

 //设置Supplier的索引。

 void setSelectedSupplier(int selectedSupplier) {

 this.selectedSupplierIndex = selectedSupplier;

 }

 int getSelectedSupplierIndex() {

 return this.selectedSupplierIndex;

 }

 //返回所有的Supplier。

 VersionSupplier[] getPossibleSuppliers() {

 return possibleSuppliers;

 }

 //清空所有的Supplier。

 void clearPossibleSuppliers() {

 possibleSuppliers = null;

 selectedSupplierIndex = 0;

 }

}

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 22 / 125

3.2.2 BundleConstraint

与 Require-Bundle 和 Host-Bundle 约束相关的类。连接线的起点。

package org.eclipse.osgi.internal.module;

import org.eclipse.osgi.service.resolver.*;

public class BundleConstraint extends ResolverConstraint {

 BundleConstraint(ResolverBundle bundle, VersionConstraint

bundleConstraint) {

 super(bundle, bundleConstraint);

 }

 boolean isOptional() {

 if (constraint instanceof HostSpecification)

 return false;

 return ((BundleSpecification) constraint).isOptional();

 }

}

3.2.3 ResolverImport

与 Import 约束关联的类，表示一个 Import 约束连接线的起点。

package org.eclipse.osgi.internal.module;

import org.eclipse.osgi.service.resolver.ImportPackageSpecification;

import org.osgi.framework.Constants;

public class ResolverImport extends ResolverConstraint {

 //仅由动态Import使用。

 private String name;

 //关联的Bundle和约束。

 ResolverImport(ResolverBundle bundle,

ImportPackageSpecification ips) {

 super(bundle, ips);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 23 / 125

 //是否可选Import。

 boolean isOptional() {

 return ImportPackageSpecification.RESOLUTION_OPTIONAL.

equals(((ImportPackageSpecification) constraint).

getDirective(Constants.RESOLUTION_DIRECTIVE));

 }

 //是否动态Import。

 boolean isDynamic() {

 return ImportPackageSpecification.RESOLUTION_DYNAMIC.

equals(((ImportPackageSpecification) constraint).

getDirective(Constants.RESOLUTION_DIRECTIVE));

 }

 //返回动态引用的包名。

 public String getName() {

 if (name != null)

 return name;

 return super.getName();

 }

 //设置动态Import的包名。

 void setName(String requestedPackage) {

 this.name = requestedPackage;

 }

}

3.2.4 VersionSupplier

一个 VersionSupplier 类用于匹配一个 BaseDescription（Bundle 和 Export）。它表示

一个连接线的终端。

package org.eclipse.osgi.internal.module;

import org.eclipse.osgi.service.resolver.BaseDescription;

import org.eclipse.osgi.service.resolver.BundleDescription;

import org.osgi.framework.Version;

//BaseDescription用于向Contraint提供解析源，VersionSupplier表示一个

BaseDescription对应的Supplier。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 24 / 125

public abstract class VersionSupplier {

 BaseDescription base;

 boolean dropped = false;

 //被匹配的BaseDescription。

 VersionSupplier(BaseDescription base) {

 this.base = base;

 }

 public Version getVersion() {

 return base.getVersion();

 }

 public String getName() {

 return base.getName();

 }

 public BaseDescription getBaseDescription() {

 return base;

 }

 //如果连接线被删除时，返回true。

 boolean isDropped() {

 return dropped;

 }

 //当提供者删除后设置连接线是否被删除。仅由VersionHashMap使用。

 void setDropped(boolean dropped) {

 this.dropped = dropped;

 }

 //返回提供VersionSupplier的Bundle。

 abstract public BundleDescription getBundle();

 public String toString() {

 return base.toString();

 }

}

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 25 / 125

3.2.5 ResolverExport

一个 Import 约束表示连线 Export 终端。

package org.eclipse.osgi.internal.module;

import org.eclipse.osgi.service.resolver.BundleDescription;

import org.eclipse.osgi.service.resolver.ExportPackageDescription;

import org.osgi.framework.Constants;

//对应一个Export的Supplier。一个Export的Supplier由ResolverBundle和

ExportNamespaceDescription组成。

public class ResolverExport extends VersionSupplier {

 private ResolverBundle resolverBundle;

 //所在Bundle和Export描述。

 ResolverExport(ResolverBundle resolverBundle,

 ExportPackageDescription epd) {

 super(epd);

 this.resolverBundle = resolverBundle;

 }

 public ExportPackageDescription getExportPackageDescription() {

 return (ExportPackageDescription) base;

 }

 public BundleDescription getBundle() {

 return getExportPackageDescription().getExporter();

 }

 ResolverBundle getExporter() {

 return resolverBundle;

 }

 String[] getUsesDirective() {

 return (String[]) getExportPackageDescription().

getDirective(Constants.USES_DIRECTIVE);

 }

}

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 26 / 125

3.2.6 ResolverBundle

一个 Require 或 Host 约束的连接线的终端。

package org.eclipse.osgi.internal.module;

import java.util.*;

import org.eclipse.osgi.internal.resolver.ExportPackageDescriptionImpl;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.Constants;

//与BundleDescription匹配的对象。

public class ResolverBundle extends VersionSupplier implements

Comparable{

 public static final int UNRESOLVED = 0;

 public static final int RESOLVING = 1;

 public static final int RESOLVED = 2;

 private Long bundleID;

 private BundleConstraint host;

 private ResolverImport[] imports;

 private ResolverExport[] exports;

 private BundleConstraint[] requires;

 private GenericCapability[] capabilities;

 private GenericConstraint[] genericReqiures;

 //片段支持。

 private ArrayList fragments;

 private HashMap fragmentExports;

 private HashMap fragmentImports;

 private HashMap fragmentRequires;

 private HashMap fragmentGenericRequires;

 //指定该Bundle是否可解析。

 private boolean resolvable = true;

 //这个Bundle的内部解析状态。

 private int state = UNRESOLVED;

 //解析器。

 private ResolverImpl resolver;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 27 / 125

 private boolean newFragmentExports;

 private ArrayList refs;

 ResolverBundle(BundleDescription bundle, ResolverImpl resolver) {

 super(bundle);

 this.bundleID = new Long(bundle.getBundleId());

 this.resolver = resolver;

 initialize(bundle.isResolved());

 }

 //初始化Host约束、Require-Bundle约束、Import约束和Export描述。

 void initialize(boolean useSelectedExports) {

 if (getBundle().isSingleton())

 refs = new ArrayList();

 //一般约束。

 GenericDescription[] actualCapabilities =

 getBundle().getGenericCapabilities();

 capabilities =

new GenericCapability[actualCapabilities.length];

 for (int i = 0; i < capabilities.length; i++)

 capabilities[i] = new GenericCapability(

this, actualCapabilities[i]);

 //如果该Bundle是一个片段，则建立Host约束，然后返回。

 if (getBundle().getHost() != null) {

 host = new BundleConstraint(

this, getBundle().getHost());//建立一个Host约束。

 exports = new ResolverExport[0];

 imports = new ResolverImport[0];

 requires = new BundleConstraint[0];

 genericReqiures = new GenericConstraint[0];

 return;

 }

 ImportPackageSpecification[] actualImports =

 getBundle().getImportPackages();

 //重新排列Import，将可选Import放到最后，建立Import约束。

 ArrayList importList = new ArrayList(actualImports.length);

 for (int i = actualImports.length - 1; i >= 0; i--)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 28 / 125

 if (ImportPackageSpecification.RESOLUTION_OPTIONAL.

equals(actualImports[i].getDirective(

Constants.RESOLUTION_DIRECTIVE)))

 importList.add(new ResolverImport(

this, actualImports[i]));

 else

 importList.add(0, new ResolverImport(

this, actualImports[i]));

 imports = (ResolverImport[]) importList.toArray(

new ResolverImport[importList.size()]);

 //建立所有的Export描述，包括UseExports。

 ExportPackageDescription[] actualExports =

 useSelectedExports ? getBundle().getSelectedExports()

: getBundle().getExportPackages();

 exports = new ResolverExport[actualExports.length];

 for (int i = 0; i < actualExports.length; i++)

 exports[i] = new ResolverExport(this,

 actualExports[i]);

 //建立所有的Require约束。

 BundleSpecification[] actualRequires =

 getBundle().getRequiredBundles();

 requires = new BundleConstraint[actualRequires.length];

 for (int i = 0; i < requires.length; i++)

 requires[i] = new BundleConstraint(this,

 actualRequires[i]);

 GenericSpecification[] actualGenericRequires =

 getBundle().getGenericRequires();

 genericReqiures = new GenericConstraint[

actualGenericRequires.length];

 for (int i = 0; i < genericReqiures.length; i++)

 genericReqiures[i] = new GenericConstraint(

this, actualGenericRequires[i]);

 fragments = null;

 fragmentExports = null;

 fragmentImports = null;

 fragmentRequires = null;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 29 / 125

 fragmentGenericRequires = null;

 }

 //获取一个指定包名的Export，所有Export的第一个。

 ResolverExport getExport(String name) {

 ResolverExport[] allExports = getExports(name);

 return allExports.length == 0 ? null : allExports[0];

 }

 //获取Resolver中所有可用的Export。

 ResolverExport[] getExports(String name) {

 ArrayList results = new ArrayList(1); //一般只有1个。

 Object[] resolverExports =

 resolver.getResolverExports().get(name);

 for (int i = 0; i < resolverExports.length; i++)

 if (((ResolverExport)resolverExports[i]).

getExporter() == this)

 results.add(resolverExports[i]);

 return (ResolverExport[]) results.toArray(

new ResolverExport[results.size()]);

 }

 //清空连接线。

 void clearWires() {

 //清空Import。

 ResolverImport[] allImports = getImportPackages();

 for (int i = 0; i < allImports.length; i++)

 allImports[i].clearPossibleSuppliers();

 //清空Host。

 if (host != null)

 host.clearPossibleSuppliers();

 //清空Require。

 BundleConstraint[] allRequires = getRequires();

 for (int i = 0; i < allRequires.length; i++)

 allRequires[i].clearPossibleSuppliers();

 //清空一般约束的Supplier。

 GenericConstraint[] allGenericRequires =

 getGenericRequires();

 for (int i = 0; i < allGenericRequires.length; i++)

 allGenericRequires[i].setMatchingCapability(null);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 30 / 125

 }

 //是否已经解析。

 boolean isResolved() {

 return getState() == ResolverBundle.RESOLVED;

 }

 //是否片段。

 boolean isFragment() {

 return host != null;

 }

 //返回解析状态，与Bundle状态不同。

 int getState() {

 return state;

 }

 void setState(int state) {

 this.state = state;

 }

 //获取Host或片段的Import。

 ResolverImport[] getImportPackages() {

 if (isFragment())//片段没有Import约束。

 return new ResolverImport[0];

 if (fragments == null || fragments.size() == 0)

 return imports;

 //如果是Host，其Import是所有片段的Import加上Host的Import。

 ArrayList resultList = new ArrayList(imports.length);

 for (int i = 0; i < imports.length; i++)

 resultList.add(imports[i]);

 for (Iterator iter = fragments.iterator(); iter.hasNext();)

 {

 ResolverBundle fragment = (ResolverBundle)

 iter.next();

 ArrayList fragImports = (ArrayList)

 fragmentImports.get(fragment.bundleID);

 if (fragImports != null)

 resultList.addAll(fragImports);

 }

 return (ResolverImport[]) resultList.toArray(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 31 / 125

new ResolverImport[resultList.size()]);

 }

 //获取Host或片段的Export。

 ResolverExport[] getExportPackages() {

 if (isFragment())//片段没有Export。

 return new ResolverExport[0];

 if (fragments == null || fragments.size() == 0)

 return exports;

 ArrayList resultList = new ArrayList(exports.length);

 for (int i = 0; i < exports.length; i++)

 resultList.add(exports[i]);

 for (Iterator iter = fragments.iterator(); iter.hasNext();)

 {

 ResolverBundle fragment = (ResolverBundle)

 iter.next();

 ArrayList fragExports = (ArrayList)

 fragmentExports.get(fragment.bundleID);

 if (fragExports != null)

 resultList.addAll(fragExports);

 }

 return (ResolverExport[]) resultList.toArray(

new ResolverExport[resultList.size()]);

 }

 //获取真实的Export，如果一个Bundle被解析了，则一些Export可能无效。

 //这个方法将删除无效的Export。

 ResolverExport[] getSelectedExports() {

 ResolverExport[] allExports = getExportPackages();

 int removedExports = 0;

 for (int i = 0; i < allExports.length; i++)

 if (allExports[i].isDropped())

 removedExports++;

 if (removedExports == 0)

 return allExports;

 ResolverExport[] selectedExports = new

 ResolverExport[allExports.length - removedExports];

 int index = 0;

 for (int i = 0; i < allExports.length; i++) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 32 / 125

 if (allExports[i].isDropped())

 continue;

 selectedExports[index] = allExports[i];

 index++;

 }

 return selectedExports;

 }

 //返回Host约束。

 BundleConstraint getHost() {

 return host;

 }

 GenericCapability[] getGenericCapabilities() {

 return capabilities;

 }

 //返回Host或Fragment的Require-Bundle约束。

 BundleConstraint[] getRequires() {

 if (isFragment())

 return new BundleConstraint[0];

 if (fragments == null || fragments.size() == 0)

 return requires;

 ArrayList resultList = new ArrayList(requires.length);

 for (int i = 0; i < requires.length; i++)

 resultList.add(requires[i]);

 for (Iterator iter = fragments.iterator(); iter.hasNext();)

 {

 ResolverBundle fragment = (ResolverBundle)

 iter.next();

 ArrayList fragRequires = (ArrayList)

 fragmentRequires.get(fragment.bundleID);

 if (fragRequires != null)

 resultList.addAll(fragRequires);

 }

 return (BundleConstraint[]) resultList.toArray(

new BundleConstraint[resultList.size()]);

 }

 //返回一般约束。

 GenericConstraint[] getGenericRequires() {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 33 / 125

 if (isFragment() || fragments == null ||

fragments.size() == 0)

 return genericReqiures;

 ArrayList resultList = new

 ArrayList(genericReqiures.length);

 for (int i = 0; i < genericReqiures.length; i++)

 resultList.add(genericReqiures[i]);

 for (Iterator iter = fragments.iterator(); iter.hasNext();)

 {

 ResolverBundle fragment = (ResolverBundle)

 iter.next();

 ArrayList fragGenericRegs = (ArrayList)

 fragmentGenericRequires.get(fragment.bundleID);

 if (fragGenericRegs != null)

 resultList.addAll(fragGenericRegs);

 }

 return (GenericConstraint[]) resultList.toArray(

new GenericConstraint[resultList.size()]);

 }

 //返回一个指定名称的Require约束。

 BundleConstraint getRequire(String name) {

 BundleConstraint[] allRequires = getRequires();

 for (int i = 0; i < allRequires.length; i++)

 if (allRequires[i].getVersionConstraint().

getName().equals(name))

 return allRequires[i];

 return null;

 }

 //获取关联Bundle描述。

 public BundleDescription getBundle() {

 return (BundleDescription) getBaseDescription();

 }

 //获取指定包名的Import。

 ResolverImport getImport(String name) {

 ResolverImport[] allImports = getImportPackages();

 for (int i = 0; i < allImports.length; i++) {

 if (allImports[i].getName().equals(name)) {

 return allImports[i];

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 34 / 125

 }

 }

 return null;

 }

 public String toString() {

 return "[" + getBundle() + "]";

 }

 //初始化片段。

 private void initFragments() {

 if (fragments == null)

 fragments = new ArrayList(1);

 if (fragmentExports == null)

 fragmentExports = new HashMap(1);

 if (fragmentImports == null)

 fragmentImports = new HashMap(1);

 if (fragmentRequires == null)

 fragmentRequires = new HashMap(1);

 if (fragmentGenericRequires == null)

 fragmentGenericRequires = new HashMap(1);

 }

 private boolean isImported(String packageName) {

 ResolverImport[] allImports = getImportPackages();

 for (int i = 0; i < allImports.length; i++)

 if (packageName.equals(allImports[i].getName()))

 return true;

 return false;

 }

 private boolean isExported(String packageName) {

 ResolverExport export = getExport(packageName);

 if (export == null)

 return false;

 return 0 > ((Integer) export.getExportPackageDescription().

getDirective(ExportPackageDescriptionImpl.EQUINOX_EE)

).intValue();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 35 / 125

 }

 private boolean isRequired(String bundleName) {

 return getRequire(bundleName) != null;

 }

 //附加一个片段。

 ResolverExport[] attachFragment(

ResolverBundle fragment, boolean dynamicAttach) {

 if (isFragment())//如果该Bundle是一个片段，则直接返回。

 return new ResolverExport[0];

 //Host不允许附加片段。

 if (!getBundle().attachFragments() ||

(isResolved() && !getBundle().dynamicFragments()))

 return new ResolverExport[0];

 //Host不允许附加一个具有多个Host的片段。

 if (fragment.getHost().getNumPossibleSuppliers() > 0

 && !((HostSpecification) fragment.getHost().

getVersionConstraint()).isMultiHost())

 return new ResolverExport[0];

 ImportPackageSpecification[] newImports =

 fragment.getBundle().getImportPackages();

 BundleSpecification[] newRequires =

 fragment.getBundle().getRequiredBundles();

 ExportPackageDescription[] newExports =

 fragment.getBundle().getExportPackages();

 GenericSpecification[] newGenericRequires =

 fragment.getBundle().getGenericRequires();

 //如果是动态附加但有冲突。

 if (dynamicAttach &&

constraintsConflict(fragment.getBundle(),

newImports, newRequires, newGenericRequires))

 return new ResolverExport[0]; //不允许添加冲突的约束。

 //片段被解析，更新Export。

 if (isResolved() && newExports.length > 0)

 fragment.setNewFragmentExports(true);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 36 / 125

 //初始化片段。

 initFragments();

 if (fragments.contains(fragment))

 return new ResolverExport[0]; //如果已经包含，则返回。

 fragments.add(fragment);

 //解析片段。

 fragment.getHost().addPossibleSupplier(this);

 //附加Import。

 if (newImports.length > 0) {

 ArrayList hostImports =

new ArrayList(newImports.length);

 for (int i = 0; i < newImports.length; i++)

 if (!isImported(newImports[i].getName()))

 hostImports.add(new ResolverImport(this,

 newImports[i]));

 fragmentImports.put(fragment.bundleID, hostImports);

 }

 //附加Require。

 if (newRequires.length > 0) {

 ArrayList hostRequires = new

 ArrayList(newRequires.length);

 for (int i = 0; i < newRequires.length; i++)

 if (!isRequired(newRequires[i].getName()))

 hostRequires.add(new BundleConstraint(

this, newRequires[i]));

 fragmentRequires.put(fragment.bundleID, hostRequires);

 }

 //附加一般约束。

 if (newGenericRequires.length > 0) {

 ArrayList hostGenericRequires = new

 ArrayList(newGenericRequires.length);

 for (int i = 0; i < newGenericRequires.length; i++)

 hostGenericRequires.add(new GenericConstraint(

this, newGenericRequires[i]));

 fragmentGenericRequires.put(fragment.bundleID,

 hostGenericRequires);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 37 / 125

 //附加Export到系统状态中。

 ArrayList hostExports = new ArrayList(newExports.length);

 if (newExports.length > 0 && dynamicAttach) {

 StateObjectFactory factory =

 resolver.getState().getFactory();

 for (int i = 0; i < newExports.length; i++) {

 if (!isExported(newExports[i].getName())) {

 ExportPackageDescription hostExport =

 factory.createExportPackageDescription(

newExports[i].getName(),

newExports[i].getVersion(),

newExports[i].getDirectives(),

 newExports[i].getAttributes(),

newExports[i].isRoot(),

getBundle());

 hostExports.add(new ResolverExport(

this, hostExport));

 }

 }

 fragmentExports.put(fragment.bundleID, hostExports);

 }

 return (ResolverExport[]) hostExports.toArray(

new ResolverExport[hostExports.size()]);

 }

 //片段冲突检测。

 boolean constraintsConflict(BundleDescription fragment,

 ImportPackageSpecification[] newImports,

 BundleSpecification[] newRequires,

GenericSpecification[] newGenericRequires) {

 boolean result = false;

 for (int i = 0; i < newImports.length; i++) {

 ResolverImport hostImport =

getImport(newImports[i].getName());

 ResolverExport resolvedExport = (ResolverExport)

 (hostImport == null ? null :

hostImport.getSelectedSupplier());

 //如果已解析但新Import和对应Export不匹配，则不能解析。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 38 / 125

if ((resolvedExport == null && isResolved()) ||

(resolvedExport != null

&& !newImports[i].isSatisfiedBy(resolvedExport.

getExportPackageDescription()))) {

 result = true;

 resolver.getState().addResolverError(

fragment, ResolverError.FRAGMENT_CONFLICT,

newImports[i].toString(), newImports[i]);

 }

 }

 //同上。

 for (int i = 0; i < newRequires.length; i++) {

 BundleConstraint hostRequire =

 getRequire(newRequires[i].getName());

 ResolverBundle resolvedRequire = (ResolverBundle)

 (hostRequire == null ? null :

hostRequire.getSelectedSupplier());

 if ((resolvedRequire == null && isResolved()) ||

 (resolvedRequire != null

 && !newRequires[i].isSatisfiedBy(

resolvedRequire.getBundle()))) {

 result = true;

 resolver.getState().addResolverError(

fragment, ResolverError.FRAGMENT_CONFLICT,

newRequires[i].toString(),

newRequires[i]);

 }

 }

 if (isResolved() && newGenericRequires != null &&

 newGenericRequires.length > 0)

 result = true;

 return result;

 }

 private void setNewFragmentExports(boolean newFragmentExports) {

 this.newFragmentExports = newFragmentExports;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 39 / 125

 boolean isNewFragmentExports() {

 return newFragmentExports;

 }

 //因约束而分离片段。

 ResolverExport[] detachFragment(ResolverBundle fragment,

 ResolverConstraint reason) {

 if (isFragment())

 return new ResolverExport[0];

 initFragments();

 //删除片段。

 if (!fragments.remove(fragment))

 return new ResolverExport[0];

 //分离Import、Export、Require和一般。

 fragment.setNewFragmentExports(false);

 fragment.getHost().removePossibleSupplier(this);

 ArrayList fragImports = (ArrayList)

 fragmentImports.remove(fragment.bundleID);

 ArrayList fragRequires = (ArrayList)

 fragmentRequires.remove(fragment.bundleID);

 ArrayList removedExports = (ArrayList)

 fragmentExports.remove(fragment.bundleID);

 fragmentGenericRequires.remove(fragment.bundleID);

 if (reason != null) {

 ResolverBundle[] remainingFrags =

(ResolverBundle[]) fragments.toArray(

new ResolverBundle[fragments.size()]);

 for (int i = 0; i < remainingFrags.length; i++) {

 resolver.getResolverExports().

remove(detachFragment(remainingFrags[i], null));

 VersionConstraint[] constraints;

 //什么约束不满足？

 if (reason instanceof ResolverImport)

 constraints = remainingFrags[i].

getBundle().getImportPackages();

 else

 constraints = remainingFrags[i].

getBundle().getRequiredBundles();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 40 / 125

 for (int j = 0; j < constraints.length; j++)

 if (reason.getName().equals(

constraints[j].getName()))

 continue;

 resolver.getResolverExports().put(

attachFragment(remainingFrags[i], true));

 ArrayList newImports =

(ArrayList) fragmentImports.get(

remainingFrags[i].bundleID);

 if (newImports != null && fragImports != null)

 for (Iterator iNewImports =

 newImports.iterator();

 iNewImports.hasNext();) {

 ResolverImport newImport =

 (ResolverImport) iNewImports.next();

 for (Iterator iOldImports =

 fragImports.iterator();

 iOldImports.hasNext();) {

 ResolverImport oldImport =

 (ResolverImport)

 iOldImports.next();

 if (newImport.getName().

equals(oldImport.getName()))

 newImport.

setPossibleSuppliers(

oldImport.

getPossibleSuppliers());

 }

 }

 ArrayList newRequires =

(ArrayList) fragmentRequires.get(

remainingFrags[i].bundleID);

 if (newRequires != null && fragRequires != null)

 //同上

 }

 }

 }

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 41 / 125

 return removedExports == null ? new ResolverExport[0] :

 (ResolverExport[]) removedExports.toArray(

new ResolverExport[removedExports.size()]);

 }

 void detachAllFragments() {

 if (fragments == null)

 return;

 ResolverBundle[] allFragments =

(ResolverBundle[]) fragments.toArray(

new ResolverBundle[fragments.size()]);

 for (int i = 0; i < allFragments.length; i++)

 detachFragment(allFragments[i], null);

 }

 boolean isResolvable() {

 return resolvable;

 }

 void setResolvable(boolean resolvable) {

 this.resolvable = resolvable;

 }

 void addExport(ResolverExport re) {

 ResolverExport[] newExports =

new ResolverExport[exports.length + 1];

 for (int i = 0; i < exports.length; i++)

 newExports[i] = exports[i];

 newExports[exports.length] = re;

 exports = newExports;

 }

 ResolverImpl getResolver() {

 return resolver;

 }

 void clearRefs() {

 if (refs != null)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 42 / 125

 refs.clear();

 }

 void addRef(ResolverBundle ref) {

 if (refs != null && !refs.contains(ref))

 refs.add(ref);

 }

 int getRefs() {

 return refs == null ? 0 : refs.size();

 }

 ResolverBundle[] getFragments() {

 return fragments == null ? new ResolverBundle[0] :

 (ResolverBundle[]) fragments.toArray(

new ResolverBundle[fragments.size()]);

 }

 public int compareTo(Object o) {

 String bsn = getName();

 String otherBsn = ((ResolverBundle) o).getName();

 if (bsn == null)

 return otherBsn == null ? 0 : 1;

 return otherBsn == null ? -1 : bsn.compareTo(otherBsn);

 }

}

3.2.7 MappedList

Key与数组 Object[]对应的 Hash 表。

package org.eclipse.osgi.internal.module;

import java.util.*;

public class MappedList {

 protected HashMap internal = new HashMap();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 43 / 125

 public void put(Object key, Object value) {

 Object[] existing = (Object[]) internal.get(key);

 if (existing == null) {

 existing = new Object[1];

 existing[0] = value;

 internal.put(key, existing);

 } else {

 Object[] newValues = new Object[existing.length + 1];

 System.arraycopy(existing, 0, newValues, 0,

 existing.length);

 newValues[existing.length] = value; //对新值进行排序。

 sort(newValues);

 internal.put(key, newValues);

 }

 }

 protected void sort(Object[] values) {

 //自定义排序。

 }

 public Object[] remove(Object key) {

 return get(key, true);

 }

 public Object[] get(Object key) {

 return get(key, false);

 }

 private Object[] get(Object key, boolean remove) {

 Object[] result = (Object[]) (remove ?

 internal.remove(key) : internal.get(key));

 return result == null ? new Object[0] : result;

 }

 public int getSize() {

 return internal.size();

 }

 public Object[] getAllValues() {

 if (getSize() == 0)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 44 / 125

 return new Object[0];

 ArrayList results = new ArrayList(getSize());

 Iterator iter = internal.values().iterator();

 while (iter.hasNext()) {

 Object[] values = (Object[]) iter.next();

 for (int i = 0; i < values.length; i++)

 results.add(values[i]);

 }

 return results.toArray();

 }

 public void clear() {

 internal.clear();

 }

}

3.2.8 VersionHashMap

package org.eclipse.osgi.internal.module;

import java.util.*;

import org.eclipse.osgi.framework.internal.core.Constants;

public class VersionHashMap extends MappedList implements Comparator {

 private final String systemBundle =

 Constants.getInternalSymbolicName();

 private ResolverImpl resolver;

 public VersionHashMap(ResolverImpl resolver) {

 this.resolver = resolver;

 }

 protected void sort(Object[] values) {

 Arrays.sort(values, this);

 }

 //VersionSupplier.Name->VersionSupplier[]。

 public void put(VersionSupplier[] versionSuppliers) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 45 / 125

 for (int i = 0; i < versionSuppliers.length; i++)

 put(versionSuppliers[i].getName(),

 versionSuppliers[i]);

 }

 //设置Dropper为false。

 public void put(Object key, Object value) {

 super.put(key, value);

 ((VersionSupplier) value).setDropped(false);

 }

 public boolean contains(VersionSupplier vs) {

 return contains(vs, false) != null;

 }

 private VersionSupplier contains(

VersionSupplier vs, boolean remove) {

 Object[] existing = (Object[]) internal.get(vs.getName());

 if (existing == null)

 return null;

 for (int i = 0; i < existing.length; i++)

 if (existing[i] == vs) {

 if (remove) {

 vs.setDropped(true);

 if (existing.length == 1) {

 internal.remove(vs.getName());

 return vs;

 }

 Object[] newExisting = new

 Object[existing.length - 1];

 System.arraycopy(existing, 0,

newExisting, 0, i);

 if (i + 1 < existing.length)

System.arraycopy(existing, i + 1,

newExisting, i,

existing.length - i - 1);

 internal.put(vs.getName(), newExisting);

 }

 return vs;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 46 / 125

 }

 return null;

 }

 public Object remove(VersionSupplier toBeRemoved) {

 return contains(toBeRemoved, true);

 }

 public void remove(VersionSupplier[] versionSuppliers) {

 for (int i = 0; i < versionSuppliers.length; i++)

 remove(versionSuppliers[i]);

 }

 public Object[] remove(Object key) {

 Object[] results = super.remove(key);

 for (int i = 0; i < results.length; i++)

 ((VersionSupplier) results[i]).setDropped(true);

 return results;

 }

 //排序。

 void reorder() {

 for (Iterator it = internal.values().iterator();

 it.hasNext();) {

 Object[] existing = (Object[]) it.next();

 if (existing.length <= 1)

 continue;

 sort(existing);

 }

 }

 //降序VersionSupplier比较器，属性是解析状态、版本和ID。

 public int compare(Object o1, Object o2) {

 if (!(o1 instanceof VersionSupplier) ||

!(o2 instanceof VersionSupplier))

 throw new IllegalArgumentException();

 VersionSupplier vs1 = (VersionSupplier) o1;

 VersionSupplier vs2 = (VersionSupplier) o2;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 47 / 125

 if (resolver.getSelectionPolicy() != null)

 return resolver.getSelectionPolicy().

compare(vs1.getBaseDescription(),

vs2.getBaseDescription());

 if (systemBundle.equals(vs1.getBundle().getSymbolicName())

 && !systemBundle.equals(vs2.getBundle().getSymbolicName()))

 return -1;

 else if (!systemBundle.equals(

vs1.getBundle().getSymbolicName()) &&

systemBundle.equals(

vs2.getBundle().getSymbolicName()))

 return 1;

 if (vs1.getBundle().isResolved() !=

 vs2.getBundle().isResolved())

 return vs1.getBundle().isResolved() ? -1 : 1;

 int versionCompare = -(vs1.getVersion().compareTo(

vs2.getVersion()));

 if (versionCompare != 0)

 return versionCompare;

 return vs1.getBundle().getBundleId() <=

 vs2.getBundle().getBundleId() ? -1 : 1;

 }

}

3.2.9 ResolverImpl

package org.eclipse.osgi.internal.module;

import java.util.*;

import org.eclipse.osgi.framework.adaptor.FrameworkAdaptor;

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.debug.FrameworkDebugOptions;

import org.eclipse.osgi.internal.module.GroupingChecker.PackageRoots;

import org.eclipse.osgi.internal.resolver.BundleDescriptionImpl;

import org.eclipse.osgi.internal.resolver.ExportPackageDescriptionImpl;

import org.eclipse.osgi.service.resolver.*;

import org.eclipse.osgi.util.ManifestElement;

import org.osgi.framework.*;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 48 / 125

public class ResolverImpl implements

org.eclipse.osgi.service.resolver.Resolver {

 //Debug字段。

 private static final String RESOLVER =

 FrameworkAdaptor.FRAMEWORK_SYMBOLICNAME + "/resolver";

 private static final String OPTION_DEBUG = RESOLVER + "/debug";

 private static final String OPTION_WIRING = RESOLVER + "/wiring";

 private static final String OPTION_IMPORTS = RESOLVER +

 "/imports";

 private static final String OPTION_REQUIRES = RESOLVER +

 "/requires";

 private static final String OPTION_GENERICS = RESOLVER +

 "/generics";

 private static final String OPTION_GROUPING = RESOLVER +

 "/grouping";

 private static final String OPTION_CYCLES = RESOLVER + "/cycles";

 public static boolean DEBUG = false;

 public static boolean DEBUG_WIRING = false;

 public static boolean DEBUG_IMPORTS = false;

 public static boolean DEBUG_REQUIRES = false;

 public static boolean DEBUG_GENERICS = false;

 public static boolean DEBUG_GROUPING = false;

 public static boolean DEBUG_CYCLES = false;

 private static int MAX_MULTIPLE_SUPPLIERS_MERGE = 10;

 private static long MAX_COMBINATIONS = 1000000;

 private static String[][] CURRENT_EES;

 //关联的系统状态。

 private State state;

 private PermissionChecker permissionChecker;

 //暂停删除的Bundle。

 private MappedList removalPending = new MappedList();

 private boolean initialized = false;

 //Export仓库。

 private VersionHashMap resolverExports = null;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 49 / 125

 //Bundle仓库。

 private VersionHashMap resolverBundles = null;

 //Generics仓库。

 private VersionHashMap resolverGenerics = null;

 //未解析Bundle。TODO:改成集合。

 private ArrayList unresolvedBundles = null;

 //BundleDescription->ResolverBundle序列。

 private HashMap bundleMapping = null;

 private GroupingChecker groupingChecker;

 private Comparator selectionPolicy;

 private boolean developmentMode = false;

 public ResolverImpl(

BundleContext context, boolean checkPermissions) {

 this.permissionChecker = new PermissionChecker(

context, checkPermissions, this);

 }

 PermissionChecker getPermissionChecker() {

 return permissionChecker;

 }

 //初始化解析器。完成：从State获取所有的BundleDescription，创建对应的

 //ResolverBundle、ResolverExport，添加到仓库，并且Attach所有的片段。

 private void initialize() {

 resolverExports = new VersionHashMap(this);

 resolverBundles = new VersionHashMap(this);

 resolverGenerics = new VersionHashMap(this);

 unresolvedBundles = new ArrayList();

 bundleMapping = new HashMap();

 BundleDescription[] bundles = state.getBundles();

 groupingChecker = new GroupingChecker();

 ArrayList fragmentBundles = new ArrayList();

 //添加每一个Bundle到解析器的内部状态。

 for (int i = 0; i < bundles.length; i++)

 initResolverBundle(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 50 / 125

bundles[i], fragmentBundles, false);

 //添加每一个正在删除的Bundle到解析器内部状态。

 Object[] removedBundles = removalPending.getAllValues();

 for (int i = 0; i < removedBundles.length; i++)

 initResolverBundle((BundleDescription)

 removedBundles[i], fragmentBundles, true);

 //附加片段。

 for (Iterator iter = fragmentBundles.iterator();

 iter.hasNext();) {

 ResolverBundle fragment = (ResolverBundle)

 iter.next();

 BundleDescription[] hosts = ((HostSpecification)

 fragment.getHost().

getVersionConstraint()).getHosts();

 for (int i = 0; i < hosts.length; i++) {

 ResolverBundle host = (ResolverBundle)

 bundleMapping.get(hosts[i]);

 if (host != null)

 //不要添加片段Export，Host会自己做。

 host.attachFragment(fragment, false);

 }

 }

 rewireBundles(); //重新建立连接线。

 setDebugOptions();

 initialized = true;

 }

 private void initResolverBundle(

BundleDescription bundleDesc,

ArrayList fragmentBundles, boolean pending) {

 ResolverBundle bundle = new ResolverBundle(

bundleDesc, this);

 bundleMapping.put(bundleDesc, bundle);

 //直接将Export、Bundle添加到仓库。

 if (!pending || bundleDesc.isResolved()) {

 resolverExports.put(bundle.getExportPackages());

 resolverBundles.put(bundle.getName(), bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 51 / 125

 resolverGenerics.put(bundle.getGenericCapabilities());

 }

 //添加到片段中。

 if (bundleDesc.isResolved()) {

 bundle.setState(ResolverBundle.RESOLVED);

 if (bundleDesc.getHost() != null)

 fragmentBundles.add(bundle);

 } else {

 if (!pending)

 unresolvedBundles.add(bundle);

 }

 }

 //重新连线已经解析的Bundle。

 private void rewireBundles() {

 ArrayList visited = new ArrayList(bundleMapping.size());

 for (Iterator iter = bundleMapping.values().iterator();

 iter.hasNext();) {

 ResolverBundle rb = (ResolverBundle) iter.next();

 if (!rb.getBundle().isResolved() || rb.isFragment())

 continue;

 rewireBundle(rb, visited);

 }

 }

 //重新连线指定Bundle。

 private void rewireBundle(ResolverBundle rb, ArrayList visited) {

 if (visited.contains(rb))

 return;

 visited.add(rb);

 //连线Require。

 BundleConstraint[] requires = rb.getRequires();

 for (int i = 0; i < requires.length; i++) {

 rewireRequire(requires[i], visited);

 }

 //连线Import。

 ResolverImport[] imports = rb.getImportPackages();

 for (int i = 0; i < imports.length; i++) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 52 / 125

 rewireImport(imports[i], visited);

 }

 //连线Generic。

 GenericConstraint[] genericRequires =

 rb.getGenericRequires();

 for (int i = 0; i < genericRequires.length; i++)

 rewireGeneric(genericRequires[i], visited);

 }

 private void rewireGeneric(GenericConstraint constraint,

 ArrayList visited) {

 if (constraint.getMatchingCapabilities() != null)

 return;

 GenericDescription[] suppliers = ((GenericSpecification)

 constraint.getVersionConstraint()).getSuppliers();

 if (suppliers == null)

 return;

 //获取名称匹配的Des。

 Object[] matches = resolverGenerics.get(

constraint.getName());

 for (int i = 0; i < matches.length; i++) {

 GenericCapability match =

(GenericCapability) matches[i];

 for (int j = 0; j < suppliers.length; j++)

 if (match.getBaseDescription() == suppliers[j])

 constraint.setMatchingCapability(match);

 }

 GenericCapability[] matchingCapabilities =

 constraint.getMatchingCapabilities();

 if (matchingCapabilities != null)

 for (int i = 0; i < matchingCapabilities.length; i++)

 rewireBundle(

matchingCapabilities[i].getResolverBundle(),

visited);

 }

 //连接RequireBundles，除了连接到Require-Bundle，还要求将Required-

//Bundle也重新连线。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 53 / 125

 private void rewireRequire(

BundleConstraint req, ArrayList visited) {

 if (req.getSelectedSupplier() != null) //还未解析过。

 return;

 //获取约束匹配的Bundle。

 ResolverBundle matchingBundle =

(ResolverBundle) bundleMapping.get(

req.getVersionConstraint().getSupplier());

 req.addPossibleSupplier(matchingBundle); //连线。

 if (matchingBundle == null && !req.isOptional()) {

 System.err.println("Could not find matching bundle

 for " + req.getVersionConstraint());

 }

 if (matchingBundle != null) { //强制连线Require的Bundle。

 rewireBundle(matchingBundle, visited);

 }

 }

 //连线Import，并对Export-Bundle进行重新画线。

 private void rewireImport(ResolverImport imp, ArrayList visited)

 {

 //动态和未解析的Import不能重新画线。

 if (imp.isDynamic() || imp.getSelectedSupplier() != null)

 return;

 ResolverExport matchingExport = null;

 ExportPackageDescription importSupplier =

 (ExportPackageDescription) imp.

getVersionConstraint().getSupplier();

 ResolverBundle exporter = importSupplier == null ? null :

 (ResolverBundle) bundleMapping.get(

importSupplier.getExporter());

 //获取匹配的Export。

 Object[] matches = resolverExports.get(imp.getName());

 for (int j = 0; j < matches.length; j++) {

 ResolverExport export = (ResolverExport) matches[j];

 if (export.getExporter() == exporter &&

 importSupplier == export.

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 54 / 125

getExportPackageDescription()) {

 matchingExport = export;

 break;

 }

 }

 imp.addPossibleSupplier(matchingExport);

 //检查该Export是否为Use导出。

 if (matchingExport == null && exporter != null) {

 ResolverExport reprovidedExport =

new ResolverExport(exporter, importSupplier);

 if (exporter.getExport(imp.getName()) == null) {

 exporter.addExport(reprovidedExport);

 resolverExports.put(

reprovidedExport.getName(),

reprovidedExport);

 }

 imp.addPossibleSupplier(reprovidedExport);

 }

 //如果Supplier为空且不是Optional-Import，则错误。

 if (imp.getSelectedSupplier() == null && !imp.isOptional())

 {

 System.err.println("Could not find matching export

 for " + imp.getVersionConstraint());

 }

 if (imp.getSelectedSupplier() != null) {

//对导出者进行重新画线。

 rewireBundle(((ResolverExport)

imp.getSelectedSupplier()).getExporter(),

visited);

 }

 }

 //判断一个Bundle是否可以解析：是否满足单件约束、符合执行环境、平台过滤。

 private boolean isResolvable(BundleDescription bundle,

 Dictionary[] platformProperties,

ArrayList rejectedSingletons) {

 //判断是否为拒绝Singleton。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 55 / 125

 if (rejectedSingletons.contains(bundle))

 return false;

 //检查Singletons。

 if (bundle.isSingleton()) {

 Object[] sameName =

 resolverBundles.get(bundle.getName());

 if (sameName.length > 1) //是否已经有解析的。

 for (int i = 0; i < sameName.length; i++) {

 if (sameName[i] == bundle ||

!((ResolverBundle) sameName[i]).

getBundle().isSingleton())

 continue; //忽略。

 if (((ResolverBundle) sameName[i]).

getBundle().isResolved()) {

 rejectedSingletons.add(bundle);

 return false; //缓存。

 }

 }

 }

 //检查环境属性。

 ……

 //检查平台过滤。

 ……

 }

 //附加片段到Host。解决Host约束，并附加片段。

 private void attachFragment(ResolverBundle bundle,

ArrayList rejectedSingletons) {

 if (!bundle.isFragment() || !bundle.isResolvable() ||

 rejectedSingletons.contains(bundle.getBundle()))

 return;

 boolean foundMatch = false;

 BundleConstraint hostConstraint = bundle.getHost();

 Object[] hosts = resolverBundles.get(

hostConstraint.getVersionConstraint().getName());

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 56 / 125

 for (int i = 0; i < hosts.length; i++)

 if (((ResolverBundle) hosts[i]).isResolvable() &&

 hostConstraint.isSatisfiedBy(

(ResolverBundle) hosts[i])) {

 foundMatch = true;

 resolverExports.put(((ResolverBundle)

 hosts[i]).attachFragment(bundle, true));

 }

 if (!foundMatch)

 state.addResolverError(bundle.getBundle(),

 ResolverError.MISSING_FRAGMENT_HOST,

 bundle.getHost().getVersionConstraint().toString(),

 bundle.getHost().getVersionConstraint());

 }

 //刷新指定Bundle。

 public synchronized void resolve(BundleDescription[] reRefresh,

 Dictionary[] platformProperties) {

 if (state == null)

 throw new IllegalStateException("RESOLVER_NO_STATE");

 if (!initialized)

 initialize();

 developmentMode = ……

 reRefresh = addDevConstraints(reRefresh);

 //Unresolve这些Bundle。

 if (reRefresh != null)

 for (int i = 0; i < reRefresh.length; i++) {

 ResolverBundle rb = (ResolverBundle)

 bundleMapping.get(reRefresh[i]);

 if (rb != null)

 unresolveBundle(rb, false);

//删除Export等，并从Resolved-Pool删除。

 }

 //重新排序。

 resolverExports.reorder();

 resolverBundles.reorder();

 resolverGenerics.reorder();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 57 / 125

 getCurrentEEs(platformProperties);

 ArrayList rejectedSingletons = new ArrayList();

 boolean resolveOptional = platformProperties.length == 0 ?

 false : "true".equals(

platformProperties[0].get("osgi.resolveOptional"));

 ResolverBundle[] currentlyResolved = null;

 if (resolveOptional) {

 BundleDescription[] resolvedBundles =

 state.getResolvedBundles();

 currentlyResolved =

new ResolverBundle[resolvedBundles.length];

 for (int i = 0; i < resolvedBundles.length; i++)

 currentlyResolved[i] = (ResolverBundle)

 bundleMapping.get(resolvedBundles[i]);

 }

 //尝试解析未解析的Bundle。

 ResolverBundle[] bundles =

(ResolverBundle[]) unresolvedBundles.toArray(

new ResolverBundle[unresolvedBundles.size()]);

 resolveBundles(bundles, platformProperties,

 rejectedSingletons);

 if (selectSingletons(bundles, rejectedSingletons)) {

 //选择一个已经解析的单件。

 bundles =

(ResolverBundle[]) unresolvedBundles.toArray(

new ResolverBundle[unresolvedBundles.size()]);

 resolveBundles(bundles, platformProperties,

 rejectedSingletons);

 }

 for (Iterator rejected = rejectedSingletons.iterator();

 rejected.hasNext();) {

 BundleDescription reject = (BundleDescription)

 rejected.next();

 BundleDescription sameName =

 state.getBundle(reject.getSymbolicName(), null);

 state.addResolverError(reject,

 ResolverError.SINGLETON_SELECTION,

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 58 / 125

 sameName.toString(), null);

 }

 if (resolveOptional)

 resolveOptionalConstraints(currentlyResolved);

 }

 //开发模式的限制。

 private BundleDescription[] addDevConstraints(

BundleDescription[] reRefresh) {

 ……

 }

 //将片段约束添加到Hosts。

 private void addHostsFromFragmentConstraints(

ResolverBundle unresolved, Set additionalRefresh) {

 if (!unresolved.isFragment())

 return;

 ImportPackageSpecification[] newImports =

 unresolved.getBundle().getImportPackages();

 BundleSpecification[] newRequires =

 unresolved.getBundle().getRequiredBundles();

 if (newImports.length == 0 && newRequires.length == 0)

 return; //片段没有约束。

 BundleConstraint hostConstraint = unresolved.getHost();

 Object[] hosts = resolverBundles.get(

hostConstraint.getVersionConstraint().getName());

 for (int j = 0; j < hosts.length; j++)

 if (hostConstraint.isSatisfiedBy(

(ResolverBundle) hosts[j]) &&

((ResolverBundle) hosts[j]).isResolved())

 //需要刷新Host。

 additionalRefresh.add(

((ResolverBundle) hosts[j]).getBundle());

 }

 //解析可选约束。

 private void resolveOptionalConstraints(ResolverBundle[] bundles)

{

 for (int i = 0; i < bundles.length; i++) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 59 / 125

 if (bundles[i] != null)

 resolveOptionalConstraints(bundles[i]);

 }

 }

 //这个方法不正确。

 private void resolveOptionalConstraints(ResolverBundle bundle) {

 BundleConstraint[] requires = bundle.getRequires();

 ArrayList cycle = new ArrayList();

 boolean resolvedOptional = false;

 for (int i = 0; i < requires.length; i++)

 if (requires[i].isOptional() &&

 requires[i].getSelectedSupplier() == null) {

 cycle.clear();

 resolveRequire(requires[i], cycle);

 if (requires[i].getSelectedSupplier() != null)

 resolvedOptional = true;

 }

 ResolverImport[] imports = bundle.getImportPackages();

 for (int i = 0; i < imports.length; i++)

 if (imports[i].isOptional() &&

 imports[i].getSelectedSupplier() == null) {

 cycle.clear();

 resolveImport(imports[i], cycle);

 if (imports[i].getSelectedSupplier() != null)

 resolvedOptional = true;

 }

 if (resolvedOptional) { //这个有问题，对于Optional，不需要从解析

 //池中删除，只需要重新解析Optional-Import。

 state.resolveBundle(bundle.getBundle(), false, null,

 null, null, null);

 stateResolveConstraints(bundle);

 stateResolveBundle(bundle);

 }

 }

 private void getCurrentEEs(Dictionary[] platformProperties) {

 ……

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 60 / 125

 }

 //解析Bundles。

 private void resolveBundles(ResolverBundle[] bundles,

Dictionary[] platformProperties,

ArrayList rejectedSingletons) {

 //删除错误日志。

 for (int i = 0; i < bundles.length; i++) {

 state.removeResolverErrors(bundles[i].getBundle());

 // 开发模式额外操作。

 bundles[i].setResolvable(

isResolvable(bundles[i].getBundle(),

platformProperties, rejectedSingletons) ||

developmentMode);

 bundles[i].clearRefs();

 }

 resolveBundles0(bundles, platformProperties,

 rejectedSingletons);

 if (DEBUG_WIRING)

 printWirings();

 //设置解析状态。

 stateResolveBundles(bundles);

 }

 private void resolveBundles0(ResolverBundle[] bundles,

 Dictionary[] platformProperties,

ArrayList rejectedSingletons) {

 if (developmentMode)

 //重新排序。

 Arrays.sort(bundles);

 //附加所有的片段。

 for (int i = 0; i < bundles.length; i++)

 attachFragment(bundles[i], rejectedSingletons);

 //循环依赖检测。以小起点开始。

 ArrayList cycle = new ArrayList(1);

 //尝试解决所有未解析的Bundle。

 for (int i = 0; i < bundles.length; i++) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 61 / 125

 cycle.clear();

 resolveBundle(bundles[i], cycle);

 //检查是否有环。如果在环中有任何未解析的Bundle，我们需要解析。

 checkCycle(cycle);

 }

 //解析所有未解析的片段。

 if (unresolvedBundles.size() > 0) {

 ResolverBundle[] unresolved =

(ResolverBundle[]) unresolvedBundles.toArray(

new ResolverBundle[unresolvedBundles.size()]);

 for (int i = 0; i < unresolved.length; i++)

 resolveFragment(unresolved[i]);

 }

 //检查Uses约束。

 checkUsesConstraints(bundles, platformProperties,

 rejectedSingletons);

 }

 //checkUsesConstraint，忽略。

 //检查依赖环。

 private void checkCycle(ArrayList cycle) {

 int cycleSize = cycle.size();

 if (cycleSize == 0)

 return;

 cycleLoop:

for (Iterator iCycle = cycle.iterator(); iCycle.hasNext();)

{

 ResolverBundle cycleBundle =

(ResolverBundle) iCycle.next();

 if (!cycleBundle.isResolvable()) {

 iCycle.remove(); //从需要解析的Bundle中删除。

 continue cycleLoop;

 }

 ResolverImport[] imports =

 cycleBundle.getImportPackages();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 62 / 125

 for (int j = 0; j < imports.length; j++) {

 //检查一个有效的Supplier。

 while (imports[j].getSelectedSupplier() != null)

 {

 ResolverExport importSupplier =

 (ResolverExport) imports[j].

getSelectedSupplier();

 if (importSupplier.isDropped())

 imports[j].selectNextSupplier();

 else

 break;

 }

 //Import不能解析。

 if (!imports[j].isDynamic() &&

!imports[j].isOptional() &&

imports[j].getSelectedSupplier() == null)

 {

 cycleBundle.setResolvable(false);

 cycleBundle.clearRefs();

 state.addResolverError(

imports[j].getVersionConstraint().

getBundle(),

ResolverError.MISSING_IMPORT_PACKAGE,

imports[j].getVersionConstraint().

toString(),

imports[j].getVersionConstraint());

 iCycle.remove();

 continue cycleLoop;

 }

 }

 }

 if (cycle.size() != cycleSize) {

 //因为环中有不能解析的Bundle，因此必须重新解析。

 for (int i = 0; i < cycle.size(); i++) {

 ResolverBundle cycleBundle =

(ResolverBundle) cycle.get(i);

 cycleBundle.clearWires();

 cycleBundle.clearRefs();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 63 / 125

 }

 //尝试解析这个环中能够解析的Bundle。

 ArrayList innerCycle = new ArrayList(cycle.size());

 for (int i = 0; i < cycle.size(); i++)

 resolveBundle((ResolverBundle) cycle.get(i),

 innerCycle);

 checkCycle(innerCycle);

 } else { //环中所有Bundle都能够解析。

 for (int i = 0; i < cycle.size(); i++) {

 setBundleResolved(

(ResolverBundle) cycle.get(i));

 }

 }

 }

 //找到Singleton冲突的Bundle，反解析这个Bundle。

 private boolean selectSingletons(ResolverBundle[] bundles,

 ArrayList rejectedSingletons) {

 if (developmentMode)

 return false;

 boolean result = false;

 for (int i = 0; i < bundles.length; i++) {

 BundleDescription bundleDesc = bundles[i].getBundle();

 if (!bundleDesc.isSingleton()

 || !bundleDesc.isResolved() ||

 rejectedSingletons.contains(bundleDesc))

 continue;

 Object[] sameName = resolverBundles.get(

bundleDesc.getName());

 if (sameName.length > 1) {

 for (int j = 0; j < sameName.length; j++) {

 BundleDescription sameNameDesc =

((VersionSupplier) sameName[j]).getBundle();

 ResolverBundle sameNameBundle =

(ResolverBundle) sameName[j];

 if (sameName[j] == bundles[i]

|| !sameNameDesc.isSingleton() || !sameNameDesc.isResolved() ||

rejectedSingletons.contains(sameNameDesc))

 continue;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 64 / 125

 result = true;

 boolean rejectedPolicy =

selectionPolicy != null ? selectionPolicy.compare(sameNameDesc,

bundleDesc) < 0 :

sameNameDesc.getVersion().compareTo(bundleDesc.getVersion()) > 0;

 int sameNameRefs =

sameNameBundle.getRefs();

 int curRefs = bundles[i].getRefs();

 if ((sameNameRefs == curRefs &&

rejectedPolicy) || sameNameRefs > curRefs) {

 if (!rejectedSingletons.contains(bundles[i].getBundle()))

 rejectedSingletons.add(bundles[i].getBundle());

 break;

 }

 if

(!rejectedSingletons.contains(sameNameDesc))

 rejectedSingletons.add(sameNameDesc);

 }

 }

 }

 //反解析这些Bundle。

 for (Iterator rejects = rejectedSingletons.iterator();

 rejects.hasNext();)

 unresolveBundle((ResolverBundle)

 bundleMapping.get(rejects.next()), false);

 return result;

 }

 //解析片段。

 private void resolveFragment(ResolverBundle fragment) {

 if (!fragment.isFragment())

 return;

 if (fragment.getHost().getNumPossibleSuppliers() > 0)

 if (!developmentMode || state.getResolverErrors(

fragment.getBundle()).length == 0)

 setBundleResolved(fragment);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 65 / 125

 //这个方法将尝试解析指定Bundle和依赖的所有Bundle。

 private boolean resolveBundle(ResolverBundle bundle,

ArrayList cycle) {

 if (bundle.isFragment())

 return false;

 if (!bundle.isResolvable()) {

 return false;

 }

 switch (bundle.getState()) {

 case ResolverBundle.RESOLVED :

 return true;

 case ResolverBundle.UNRESOLVED :

 //设置Resolving状态。

 bundle.clearWires();

 setBundleResolving(bundle);

 break;

 case ResolverBundle.RESOLVING :

 if (cycle.contains(bundle))

 return true;

 break;

 default :

 break;

 }

 boolean failed = false;

 if (!failed) {

 GenericConstraint[] genericRequires =

 bundle.getGenericRequires();

 for (int i = 0; i < genericRequires.length; i++) {

 if (!resolveGenericReq(

genericRequires[i], cycle)) {

 state.addResolverError(……);

 if (genericRequires[i].isFromFragment())

 {

 if (!developmentMode)

 …detach fragment.

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 66 / 125

 continue;

 }

 if (!developmentMode) {

 failed = true;

 break;

 }

 }

 }

 }

 if (!failed) {

 BundleConstraint[] requires = bundle.getRequires();

 for (int i = 0; i < requires.length; i++) {

 if (!resolveRequire(requires[i], cycle)) {

//同上，设置错误，Detach Fragment等。

 }

 }

 }

 if (!failed) {

 ResolverImport[] imports = bundle.getImportPackages();

 for (int i = 0; i < imports.length; i++) {

 //仅解析非Dynamic。

 if (!imports[i].isDynamic() &&

!resolveImport(imports[i], cycle)) {

 //同上。

 }

 }

 }

 //检查片段约束。

 checkFragmentConstraints(bundle);

 //开发模式的额外检验。

 if (developmentMode && !failed &&

 state.getResolverErrors(bundle.getBundle()).length > 0)

 failed = true;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 67 / 125

 if (failed) {

 setBundleUnresolved(bundle, false, developmentMode);

 } else if (!cycle.contains(bundle)) {

 setBundleResolved(bundle);

 }

 if (bundle.getState() == ResolverBundle.UNRESOLVED)

 bundle.setResolvable(false);

 return bundle.getState() != ResolverBundle.UNRESOLVED;

 }

 //检查片段约束。

 private void checkFragmentConstraints(ResolverBundle bundle) {

 //获取所有的片段，冲突检测，如果冲突，则分离片段和Export。

 ……

 }

 private boolean resolveGenericReq(GenericConstraint constraint,

 rayList cycle) {

 //解析一般需求，忽略。

 }

 //解析Require-Bundle约束。

 private boolean resolveRequire(BundleConstraint req,

ArrayList cycle) {

 //如果Supplier不为空，则将依赖Bundle添加到环中。

 if (req.getSelectedSupplier() != null) {

 if (!cycle.contains(req.getBundle())) {

 cycle.add(req.getBundle());

 }

 return true; //已经连过线。

 }

 Object[] bundles = resolverBundles.get(

req.getVersionConstraint().getName());

 boolean result = false;

 for (int i = 0; i < bundles.length; i++) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 68 / 125

 ResolverBundle bundle = (ResolverBundle) bundles[i];

 //检查Import约束是否满足。

 if (req.isSatisfiedBy(bundle)) {

 bundle.addRef(req.getBundle());//添加引用。

 req.addPossibleSupplier(bundle);

 if (req.getBundle() != bundle) {

 if (bundle.getState() !=

 ResolverBundle.RESOLVED &&

!resolveBundle(bundle, cycle)

 && !developmentMode) {

 req.removePossibleSupplier(bundle);

 continue; //未解析。

 }

 }

 //检查循环依赖。

 if (req.getBundle() != bundle) {

 if (bundle.getState() ==

 ResolverBundle.RESOLVING)

 //如果Bundle是Resolving，则循环。

 if (!cycle.contains(

req.getBundle())) {

 cycle.add(req.getBundle());

 }

 }

 //找到匹配项，正在连线。

 result = true;

 }

 }

 if (result || req.isOptional())

 return true; //Optional总是返回true。

 return false;

 }

 //解析Import约束。

private boolean resolveImport(ResolverImport imp, ArrayList cycle)

 {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 69 / 125

 if (imp.getSelectedSupplier() != null) {

 //查环。

 if (!cycle.contains(imp.getBundle())) {

 cycle.add(imp.getBundle());

 }

 return true; }

 boolean result = false;

 Object[] exports = resolverExports.get(imp.getName());

 exportsloop:

for (int i = 0; i < exports.length; i++) {

 ResolverExport export = (ResolverExport) exports[i];

 if (imp.isSatisfiedBy(export)) {

 int originalState =

 export.getExporter().getState();

 if (imp.isDynamic() && originalState !=

 ResolverBundle.RESOLVED)

 continue; //不解析Dynamic。

 if (imp.getBundle() == export.getExporter() &&

!export.getExportPackageDescription().isRoot())

 continue; //不能连接到Re-export。

 if (imp.getSelectedSupplier() != null &&

 ((ResolverExport) imp.

getSelectedSupplier()).getExporter()

== imp.getBundle())

 break; //连接到本身，没有关系。

 export.getExporter().addRef(imp.getBundle());

 imp.addPossibleSupplier(export);

 ResolverExport[] importerExps = null;

 if (imp.getBundle() != export.getExporter()) {

 importerExps = imp.getBundle().

getExports(imp.getName());

 for (int j = 0; j < importerExps.length;

 j++) {

 if (importerExps[j].

getExportPackageDescription()

.isRoot() &&

!export.

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 70 / 125

getExportPackageDescription()

.isRoot())

 continue exportsloop;

//阻止Import到Re-exports。

 if (importerExps[j].

getExportPackageDescription()

.isRoot())

 resolverExports.remove(

importerExps[j]);

//引用成功，删除Export。

 }

 //开发模式允许一个约束到一个为解析的Bundle。

 if ((originalState !=

 ResolverBundle.RESOLVED &&

 !resolveBundle(export.getExporter(

), cycle) && !developmentMode) ||

export.isDropped()) {

 imp.removePossibleSupplier(export);

 for (int j = 0; j <

 importerExps.length; j++)

 resolverExports.put(

importerExps[j].getName(),

importerExps[j]);

 continue; // 未解析。

 }

 } else if (export.isDropped())

 continue;

 //记录循环依赖。

 if (imp.getBundle() != export.getExporter())

 if (export.getExporter().getState() ==

 ResolverBundle.RESOLVING) {

 if (!cycle.contains(

imp.getBundle())) {

 cycle.add(imp.getBundle());

 }

 }

 result = true;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 71 / 125

 }

 }

 if (result)

 return true;

 if (resolveImportReprovide(imp, cycle))

 return true;

 if (imp.isOptional())

 return true;

 return false;

 }

 //检查Import是否可以用Re-Export解析，找到真正的Exporter。

 private boolean resolveImportReprovide(ResolverImport imp,

 ArrayList cycle) {

 String bsn = ((ImportPackageSpecification) imp.

getVersionConstraint()).getBundleSymbolicName();

 if (bsn == null)

 return false;

 Object[] bundles = resolverBundles.get(bsn);

 for (int i = 0; i < bundles.length; i++)

 if (resolveBundle((ResolverBundle) bundles[i], cycle))

 if (resolveImportReprovide0(imp,

 (ResolverBundle) bundles[i],

 (ResolverBundle) bundles[i], cycle,

new ArrayList(5)))

 return true;

 return false;

 }

 private boolean resolveImportReprovide0(ResolverImport imp,

 ResolverBundle reexporter, ResolverBundle rb,

ArrayList cycle, ArrayList visited) {

 if (visited.contains(rb))

 return false; //循环检测。

 visited.add(rb);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 72 / 125

 BundleConstraint[] requires = rb.getRequires();

 for (int i = 0; i < requires.length; i++) {

 if (!((BundleSpecification) requires[i].

getVersionConstraint()).isExported())

 continue;

 if (requires[i].getSelectedSupplier() == null)

 continue;

 ResolverExport[] exports =

((ResolverBundle) requires[i].

getSelectedSupplier()).getExports(

imp.getName());

 for (int j = 0; j < exports.length; j++) {

 Map directives = exports[j].

getExportPackageDescription().getDirectives();

 directives.remove(Constants.USES_DIRECTIVE);

 ExportPackageDescription epd = state.

getFactory().createExportPackageDescription(exp

orts[j].getName(), exports[j].getVersion(),

directives,

exports[j].getExportPackageDescription().getAtt

ributes(), false, reexporter.getBundle());

 if (imp.getVersionConstraint().

isSatisfiedBy(epd)) {

 // Create reexport and add to bundle and

 ResolverExport re = new

 ResolverExport(reexporter, epd);

 reexporter.addExport(re);

 resolverExports.put(re.getName(), re);

 imp.addPossibleSupplier(re);

 return true;

 }

 }

 if (resolveImportReprovide0(imp, reexporter,

 (ResolverBundle) requires[i].

getSelectedSupplier(), cycle, visited))

 return true;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 73 / 125

 return false;

 }

 //将一个Bundle移到UNRESOLVED状态。

 private void setBundleUnresolved(ResolverBundle bundle,

boolean removed, boolean keepFragsAttached) {

 if (bundle.getState() == ResolverBundle.UNRESOLVED &&

 !developmentMode)

 return;

 if (removed || !keepFragsAttached) {

 resolverExports.remove(bundle.getExportPackages());

 resolverGenerics.remove(

bundle.getGenericCapabilities());

 bundle.detachAllFragments();

 bundle.initialize(false);

 if (!removed) {

 resolverExports.put(bundle.getExportPackages());

 resolverGenerics.put(

bundle.getGenericCapabilities());

 }

 }

 if (!removed && (!developmentMode

 || !unresolvedBundles.contains(bundle)))

 unresolvedBundles.add(bundle);

 bundle.setState(ResolverBundle.UNRESOLVED);

 }

 private void setBundleResolved(ResolverBundle bundle) {

 if (bundle.getState() == ResolverBundle.RESOLVED)

 return;

 unresolvedBundles.remove(bundle);

 bundle.setState(ResolverBundle.RESOLVED);

 }

 private void setBundleResolving(ResolverBundle bundle) {

 if (bundle.getState() == ResolverBundle.RESOLVING)

 return;

 unresolvedBundles.remove(bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 74 / 125

 bundle.setState(ResolverBundle.RESOLVING);

 }

 //在系统状态中解析Bundle。

private void stateResolveBundles(ResolverBundle[] resolvedBundles)

{

 for (int i = 0; i < resolvedBundles.length; i++) {

 if (!resolvedBundles[i].getBundle().isResolved())

 stateResolveBundle(resolvedBundles[i]);

 }

 }

 //在State解析约束，包括Import、Require和Generics。

 private void stateResolveConstraints(ResolverBundle rb) {

 ResolverImport[] imports = rb.getImportPackages();

 for (int i = 0; i < imports.length; i++) {

 ResolverExport export =

(ResolverExport) imports[i].getSelectedSupplier();

 BaseDescription supplier = export == null ? null :

 export.getExportPackageDescription();

 state.resolveConstraint(

imports[i].getVersionConstraint(), supplier);

 }

 BundleConstraint[] requires = rb.getRequires();

 for (int i = 0; i < requires.length; i++) {

 ResolverBundle bundle = (ResolverBundle) requires[i].

getSelectedSupplier();

 BaseDescription supplier = bundle == null ? null :

 bundle.getBundle();

 state.resolveConstraint(

requires[i].getVersionConstraint(), supplier);

 }

 GenericConstraint[] genericRequires =

 rb.getGenericRequires();

 for (int i = 0; i < genericRequires.length; i++) {

 GenericCapability[] matchingCapabilities =

 genericRequires[i].getMatchingCapabilities();

 if (matchingCapabilities == null)

 state.resolveConstraint(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 75 / 125

genericRequires[i].getVersionConstraint(),

null);

 else

 for (int j = 0; j < matchingCapabilities.length;

 j++)

 state.resolveConstraint(

genericRequires[i].getVersionConstraint(),

matchingCapabilities[j].

getBaseDescription());

 }

 }

 //记录片段约束——片段的Import和Require约束。

 private void stateResolveFragConstraints(ResolverBundle rb) {

 ResolverBundle host = (ResolverBundle) rb.getHost().

getSelectedSupplier();

 ImportPackageSpecification[] imports =

 rb.getBundle().getImportPackages();

 for (int i = 0; i < imports.length; i++) {

 ResolverImport hostImport = host == null ? null :

 host.getImport(imports[i].getName());

 ResolverExport export = (ResolverExport) (

hostImport == null ? null :

hostImport.getSelectedSupplier());

 BaseDescription supplier = export == null ? null :

 export.getExportPackageDescription();

 state.resolveConstraint(imports[i], supplier);

 }

 BundleSpecification[] requires =

 rb.getBundle().getRequiredBundles();

 for (int i = 0; i < requires.length; i++) {

 BundleConstraint hostRequire = host == null ? null :

 host.getRequire(requires[i].getName());

 ResolverBundle bundle = (ResolverBundle) (

hostRequire == null ? null :

hostRequire.getSelectedSupplier());

 BaseDescription supplier = bundle == null ? null :

 bundle.getBundle();

 state.resolveConstraint(requires[i], supplier);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 76 / 125

 }

 }

 //在State中解析Bundle。

 private void stateResolveBundle(ResolverBundle rb) {

 if (!rb.isResolved() && !developmentMode)

 return;

 if (rb.isFragment())

 stateResolveFragConstraints(rb);

 else

 stateResolveConstraints(rb);

 //收集exports。

 ResolverExport[] exports = rb.getSelectedExports();

 ArrayList selectedExports = new ArrayList(exports.length);

 for (int i = 0; i < exports.length; i++) {

 selectedExports.add(

exports[i].getExportPackageDescription());

 }

 ExportPackageDescription[] selectedExportsArray =

 (ExportPackageDescription[]) selectedExports.toArray(

new ExportPackageDescription[selectedExports.size()]);

 //收集连线的Exports。

 ResolverImport[] imports = rb.getImportPackages();

 ArrayList exportsWiredTo = new ArrayList(imports.length);

 for (int i = 0; i < imports.length; i++)

 if (imports[i].getSelectedSupplier() != null)

 exportsWiredTo.add(

imports[i].getSelectedSupplier().

getBaseDescription());

 ExportPackageDescription[] exportsWiredToArray =

 (ExportPackageDescription[])

exportsWiredTo.toArray(new

ExportPackageDescription[exportsWiredTo.size()]

);

 //收集连线的Bundle。

 BundleConstraint[] requires = rb.getRequires();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 77 / 125

 ArrayList bundlesWiredTo = new ArrayList(requires.length);

 for (int i = 0; i < requires.length; i++)

 if (requires[i].getSelectedSupplier() != null)

 bundlesWiredTo.add(

requires[i].getSelectedSupplier().

getBaseDescription());

 BundleDescription[] bundlesWiredToArray =

 (BundleDescription[]) bundlesWiredTo.toArray(

new BundleDescription[bundlesWiredTo.size()]);

 //片段。

 BundleDescription[] hostBundles = null;

 if (rb.isFragment()) {

 VersionSupplier[] matchingBundles =

 rb.getHost().getPossibleSuppliers();

 if (matchingBundles != null &&

 matchingBundles.length > 0) {

 hostBundles = new BundleDescription[

matchingBundles.length];

 for (int i = 0; i < matchingBundles.length; i++)

 {

 hostBundles[i] =

 matchingBundles[i].getBundle();

 if (rb.isNewFragmentExports() &&

 hostBundles[i].isResolved()) {

 //更新Export。

 ResolverExport[] hostExports =

((ResolverBundle) matchingBundles[i]).getSelectedExports();

 ExportPackageDescription[]

hostExportsArray = new ExportPackageDescription[hostExports.length];

 for (int j = 0; j <

 hostExports.length; j++)

 hostExportsArray[j] =

hostExports[j].getExportPackageDescription();

 state.resolveBundle(hostBundles[i],

true, null, hostExportsArray, hostBundles[i].getResolvedRequires(),

hostBundles[i].getResolvedImports());

 }

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 78 / 125

 }

 }

 //在State中解析Bundle。

 state.resolveBundle(rb.getBundle(), rb.isResolved(),

hostBundles, selectedExportsArray, bundlesWiredToArray,

exportsWiredToArray);

 }

 //解析动态Import。

 public synchronized ExportPackageDescription

 resolveDynamicImport(

BundleDescription importingBundle,

String requestedPackage) {

 if (state == null)

 throw new IllegalStateException("RESOLVER_NO_STATE");

 //确保解析器已经初始化。

 if (!initialized)

 initialize();

 ResolverBundle rb = (ResolverBundle)

 bundleMapping.get(importingBundle);

 if (rb.getExport(requestedPackage) != null)

 return null; //不允许动态引用的该Bundle的导出。

 ResolverImport[] resolverImports = rb.getImportPackages();

 boolean found = false;

 for (int j = 0; j < resolverImports.length; j++) {

 if (!resolverImports[j].isDynamic())

 continue;

 String importName = resolverImports[j].getName();

 if (importName.equals("*") ||

 (importName.endsWith(".*") &&

 requestedPackage.startsWith(

importName.substring(0, importName.length() –

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 79 / 125

 2)))) {

 resolverImports[j].setName(requestedPackage);

 }

 //解析Import。

 if (requestedPackage.equals(

resolverImports[j].getName())) {

 found = true;

 //收集Grouping Checker。

 ……

 }

 //清空。

 resolverImports[j].setName(null);

 }

 //支持快速添加动态Import。

 if (!found) {

 Map directives = new HashMap(1);

 directives.put(

Constants.RESOLUTION_DIRECTIVE,

ImportPackageSpecification.RESOLUTION_DYNAMIC);

 ImportPackageSpecification packageSpec = state.

getFactory().createImportPackageSpecification(

requestedPackage, null, null, null, directives,

null, importingBundle);

 ResolverImport newImport = new ResolverImport(rb,

 packageSpec);

 //解析Import，不需要管Cycle。

 if (resolveImport(newImport, new ArrayList())) {

 while (newImport.getSelectedSupplier() != null)

 {

 if (groupingChecker.isDynamicConsistent(

rb, (ResolverExport) newImport.

getSelectedSupplier()) != null)

 newImport.selectNextSupplier();

 else

 break;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 80 / 125

 return ((ResolverExport) newImport.

getSelectedSupplier()).

getExportPackageDescription();

 }

 }

 return null;

 }

 //添加一个BundleDescription。

 public void bundleAdded(BundleDescription bundle) {

 if (!initialized)

 return;

 boolean alreadyThere = false; //是否已经添加了

 for (int i = 0; i < unresolvedBundles.size(); i++) {

 ResolverBundle rb = (ResolverBundle)

 unresolvedBundles.get(i);

 if (rb.getBundle() == bundle) {

 alreadyThere = true;

 }

 }

 if (!alreadyThere) {

 ResolverBundle rb = new ResolverBundle(bundle, this);

 bundleMapping.put(bundle, rb);

 unresolvedBundles.add(rb);

 resolverExports.put(rb.getExportPackages());

 resolverBundles.put(rb.getName(), rb);

 resolverGenerics.put(rb.getGenericCapabilities());

 }

 }

 //从解析器中删除一个BundleDescription，删除内容包括RemovalPending列表、

 //BundleMapping列表、ExportDes仓库、BundleDes仓库、

//UnresolvedBundle仓库。

 public void bundleRemoved(BundleDescription bundle,

boolean pending) {

 if (pending)

 removalPending.put(

new Long(bundle.getBundleId()), bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 81 / 125

 if (!initialized)

 return;

 ResolverBundle rb =

(ResolverBundle) bundleMapping.get(bundle);

 if (rb == null)

 return;

 if (!pending) {

 bundleMapping.remove(bundle);

 groupingChecker.clear(rb);

 }

 if (!pending || !bundle.isResolved()) {

 resolverExports.remove(rb.getExportPackages());

 resolverBundles.remove(rb);

 resolverGenerics.remove(rb.getGenericCapabilities());

 }

 unresolvedBundles.remove(rb);

 }

 //反解析Bundle。

//1 从Export、Bundle描述仓库删除；2 修改状态；3 从State中删除。

 private void unresolveBundle(ResolverBundle bundle,

boolean removed) {

 if (bundle == null)

 return;

 Object[] removedBundles = removalPending.remove(

new Long(bundle.getBundle().getBundleId()));

 for (int i = 0; i < removedBundles.length; i++) {

 ResolverBundle re =

(ResolverBundle) bundleMapping.get(removedBundles[i]);

 unresolveBundle(re, true);

 state.removeBundleComplete(

(BundleDescription) removedBundles[i]);

 resolverExports.remove(re.getExportPackages());

 resolverBundles.remove(re);

 resolverGenerics.remove(re.getGenericCapabilities());

 bundleMapping.remove(removedBundles[i]);

 groupingChecker.clear(re);

 //判断是否需要删除。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 82 / 125

 if (removedBundles[i] == bundle.getBundle())

 removed = true;

 }

 if (!bundle.getBundle().isResolved() && !developmentMode)

 return;

 setBundleUnresolved(bundle, removed, false);

 BundleDescription[] dependents =

 bundle.getBundle().getDependents();

 //从State中反解析。

 state.resolveBundle(bundle.getBundle(), false, null, null,

 null, null);

 //反解析依赖的Budle。

 for (int i = 0; i < dependents.length; i++)

 unresolveBundle((ResolverBundle)

 bundleMapping.get(dependents[i]), false);

 }

 //Removed然后Added。

 public void bundleUpdated(BundleDescription newDescription,

 BundleDescription existingDescription, boolean pending) {

 bundleRemoved(existingDescription, pending);

 bundleAdded(newDescription);

 }

 //清空所有临时数据。

 public void flush() {

 resolverExports = null;

 resolverBundles = null;

 resolverGenerics = null;

 unresolvedBundles = null;

 bundleMapping = null;

 Object[] removed = removalPending.getAllValues();

 for (int i = 0; i < removed.length; i++)

 state.removeBundleComplete(

(BundleDescription) removed[i]);

 removalPending.clear();

 initialized = false;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 83 / 125

 public State getState() {

 return state;

 }

 public void setState(State newState) {

 state = newState;

 flush();

 }

 //Log……

 VersionHashMap getResolverExports() {

 return resolverExports;

 }

 public void setSelectionPolicy(Comparator selectionPolicy) {

 this.selectionPolicy = selectionPolicy;

 }

 public Comparator getSelectionPolicy() {

 return selectionPolicy;

 }

}

3.3 osgi.eclipse.osgi.internal.resolver

3.3.1 BundleDeltaImpl

package org.eclipse.osgi.internal.resolver;

import org.eclipse.osgi.service.resolver.BundleDelta;

import org.eclipse.osgi.service.resolver.BundleDescription;

public class BundleDeltaImpl implements BundleDelta {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 84 / 125

 private BundleDescription bundleDescription;

 private int type;

 public BundleDeltaImpl(BundleDescription bundleDescription) {

 this(bundleDescription, 0);

 }

 public BundleDeltaImpl(BundleDescription bundleDescription,

int type) {

 this.bundleDescription = bundleDescription;

 this.type = type;

 }

 //发生变化的Bundle。

 public BundleDescription getBundle() {

 return bundleDescription;

 }

 //变更类型。

 public int getType() {

 return type;

 }

 protected void setBundle(BundleDescription bundleDescription) {

 this.bundleDescription = bundleDescription;

 }

 protected void setType(int type) {

 this.type = type;

 }

 public String toString() {

 ……

 }

 //按BundleID比较。

 public int compareTo(Object obj) {

 long idcomp = getBundle().getBundleId() –

((BundleDelta) obj).getBundle().getBundleId();

 return (idcomp < 0L) ? -1 : ((idcomp > 0L) ? 1 : 0);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 85 / 125

}

3.3.2 StateDeltaImpl

package org.eclipse.osgi.internal.resolver;

import java.util.*;

import org.eclipse.osgi.service.resolver.*;

public class StateDeltaImpl implements StateDelta {

 private State state;

 private Map changes = new HashMap();

 public StateDeltaImpl(State state) {

 this.state = state;

 }

 //返回所有发生变化的Bundle的变更情况。

 public BundleDelta[] getChanges() {

 return (BundleDelta[]) changes.values().toArray(

new BundleDelta[changes.size()]);

 }

 //发生指定变化的Bundle变更情况。

 public BundleDelta[] getChanges(int mask, boolean exact) {

 List result = new ArrayList();

 for (Iterator changesIter = changes.values().iterator();

changesIter.hasNext();) {

 BundleDelta change = (BundleDelta) changesIter.next();

 if (mask == change.getType() ||

(!exact && (change.getType() & mask) != 0))

 result.add(change);

 }

 return (BundleDelta[]) result.toArray(

new BundleDelta[result.size()]);

 }

 //关联状态。

 public State getState() {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 86 / 125

 return state;

 }

 //记录添加一个Bundle。

 void recordBundleAdded(BundleDescriptionImpl added) {

 BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(added);

 if (change == null) { //如果原来不存在，则直接添加。

 changes.put(added, new BundleDeltaImpl(

added, BundleDelta.ADDED));

 return;

 }

 if (change.getType() == BundleDelta.REMOVED) {

 changes.remove(added); //如果系统状态已删除它，添加后

 //系统状态保持不变。

 return;

 }

 int newType = change.getType();

 if ((newType & BundleDelta.REMOVED) != 0)

 newType &= ~BundleDelta.REMOVED;

 change.setType(newType | BundleDelta.ADDED); //状态进行位或。

 change.setBundle(added);

 }

 //记录更新。

 void recordBundleUpdated(BundleDescriptionImpl updated) {

 BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(updated);

 if (change == null) {

 changes.put(updated, new BundleDeltaImpl(

updated, BundleDelta.UPDATED));

 return;

 }

 if ((change.getType() & (BundleDelta.ADDED |

BundleDelta.REMOVED)) != 0)

 return;

 change.setType(change.getType() | BundleDelta.UPDATED);

 change.setBundle(updated);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 87 / 125

 //记录删除。

 void recordBundleRemoved(BundleDescriptionImpl removed) {

 BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(removed);

 if (change == null) {

 changes.put(removed, new BundleDeltaImpl(

removed, BundleDelta.REMOVED));

 return;

 }

 if (change.getType() == BundleDelta.ADDED) {

 changes.remove(removed);

 return;

 }

 int newType = change.getType();

 if ((newType & BundleDelta.ADDED) != 0)

 newType &= ~BundleDelta.ADDED;

 change.setType(newType | BundleDelta.REMOVED);

 }

 //记录正在删除。

 void recordBundleRemovalPending(BundleDescriptionImpl removed) {

 BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(removed);

 if (change == null) {

 changes.put(removed, new BundleDeltaImpl(

removed, BundleDelta.REMOVAL_PENDING));

 return;

 }

 int newType = change.getType();

 if ((newType & BundleDelta.REMOVAL_COMPLETE) != 0)

 newType &= ~BundleDelta.REMOVAL_COMPLETE;

 change.setType(newType | BundleDelta.REMOVAL_PENDING);

 }

 //记录删除完毕。

 void recordBundleRemovalComplete(BundleDescriptionImpl removed) {

 BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(removed);

 if (change == null) {

 changes.put(removed, new BundleDeltaImpl(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 88 / 125

removed, BundleDelta.REMOVAL_COMPLETE));

 return;

 }

 int newType = change.getType();

 if ((newType & BundleDelta.REMOVAL_PENDING) != 0)

 newType &= ~BundleDelta.REMOVAL_PENDING;

 change.setType(newType | BundleDelta.REMOVAL_COMPLETE);

 }

 //记录解析或为解析。

 void recordBundleResolved(BundleDescriptionImpl resolved,

boolean result) {

 if (resolved.isResolved() == result) //如果未变更，则不记录。

 return;

BundleDeltaImpl change =

(BundleDeltaImpl) changes.get(resolved);

 int newType = result ? BundleDelta.RESOLVED :

BundleDelta.UNRESOLVED;

 if (change == null) {

 change = new BundleDeltaImpl(resolved, newType);

 changes.put(resolved, change);

 return;

 }

 newType = newType | (change.getType() &

~(BundleDelta.RESOLVED | BundleDelta.UNRESOLVED));

 change.setType(newType);

 change.setBundle(resolved);

 }

}

3.3.3 StateImpl

系统状态类。

package org.eclipse.osgi.internal.resolver;

import java.util.*;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 89 / 125

import org.eclipse.osgi.framework.debug.Debug;

import org.eclipse.osgi.framework.debug.FrameworkDebugOptions;

import org.eclipse.osgi.framework.internal.core.Constants;

import org.eclipse.osgi.framework.internal.core.FilterImpl;

import org.eclipse.osgi.framework.util.*;

import org.eclipse.osgi.internal.baseadaptor.StateManager;

import org.eclipse.osgi.service.resolver.*;

import org.eclipse.osgi.util.ManifestElement;

import org.osgi.framework.*;

public abstract class StateImpl implements State {

 public static final String[] PROPS = {"osgi.os", "osgi.ws",

"osgi.nl", "osgi.arch",

Constants.OSGI_FRAMEWORK_SYSTEM_PACKAGES,

Constants.OSGI_RESOLVER_MODE,

Constants.FRAMEWORK_EXECUTIONENVIRONMENT,

"osgi.resolveOptional", "osgi.genericAliases"};

 //关联解析器。

transient private Resolver resolver;

//系统状态变更。

 transient private StateDeltaImpl changes;

 transient private boolean resolving = false;

 //正在删除的Bundle。

 transient private HashSet removalPendings = new HashSet();

 private boolean resolved = true;

 private long timeStamp = System.currentTimeMillis();

 //所有Bundle描述。

 private KeyedHashSet bundleDescriptions = new KeyedHashSet(false);

 //所有解析错误。

 private HashMap resolverErrors = new HashMap();

 //状态对象工厂。

 private StateObjectFactory factory;

 //已解析的Bundle。

 private KeyedHashSet resolvedBundles = new KeyedHashSet();

 boolean fullyLoaded = false;

 private boolean dynamicCacheChanged = false;

 //状态Reader，仅用于Bundle描述的晚加载。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 90 / 125

 private StateReader reader;

 private Dictionary[] platformProperties = {

new Hashtable(PROPS.length)};

 //最高BundleID。

 private long highestBundleId = -1;

 private HashSet platformPropertyKeys = new HashSet(PROPS.length);

 private static long cumulativeTime;

 //阻止外部访问。

 protected StateImpl() {

 addPlatformPropertyKeys(PROPS);

 }

 //添加Bundle到系统状态。

 public boolean addBundle(BundleDescription description) {

 if (!basicAddBundle(description)) //添加到Bundle描述库。

 return false;

 String platformFilter = description.getPlatformFilter();

 if (platformFilter != null) {

 try {

 FilterImpl filter = (FilterImpl)

FrameworkUtil.createFilter(platformFilter);

 addPlatformPropertyKeys(filter.getAttributes());

 } catch (InvalidSyntaxException e) {

 }

 }

 //系统状态发生变化。

 resolved = false;

 //记录Bundle变化。

 getDelta().recordBundleAdded(

(BundleDescriptionImpl) description);

 //是否扩展Bundle。

 if (Constants.getInternalSymbolicName().equals(

description.getSymbolicName()))

 resetSystemExports();

 //通知解析器，添加了一个Bundle。

 if (resolver != null)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 91 / 125

 resolver.bundleAdded(description);

 //时间戳加1。

 updateTimeStamp();

 return true;

 }

 public boolean updateBundle(BundleDescription newDescription) {

 BundleDescriptionImpl existing =

(BundleDescriptionImpl) bundleDescriptions.get(

(BundleDescriptionImpl) newDescription);

 if (existing == null)

 return false;

 if (!bundleDescriptions.remove(existing))

 return false;

 resolvedBundles.remove(existing);

 existing.setStateBit(BundleDescriptionImpl.REMOVAL_PENDING,

 true);

 if (!basicAddBundle(newDescription))

 return false;

 resolved = false;

 getDelta().recordBundleUpdated(

(BundleDescriptionImpl) newDescription);

 if (Constants.getInternalSymbolicName().equals(

newDescription.getSymbolicName()))

 resetSystemExports();

 if (resolver != null) {

 boolean pending = existing.getDependents().length > 0;

 resolver.bundleUpdated(

newDescription, existing, pending);

 if (pending) {

 getDelta().recordBundleRemovalPending(existing);

 removalPendings.add(existing);

 } else {

 synchronized (this) {

 try {

 resolving = true;

 resolverErrors.remove(existing);

 resolveBundle(existing, false, null,

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 92 / 125

 null, null, null);

 } finally {

 resolving = false;

 }

 }

 }

 }

 updateTimeStamp();

 return true;

 }

 //删除一个指定ID的Bundle。

 public BundleDescription removeBundle(long bundleId) {

 BundleDescription toRemove = getBundle(bundleId);

 if (toRemove == null || !removeBundle(toRemove))

 return null;

 return toRemove;

 }

 //删除一个Bundle。

 public boolean removeBundle(BundleDescription toRemove) {

 if (!bundleDescriptions.remove((KeyedElement) toRemove))

 return false;

 resolvedBundles.remove((KeyedElement) toRemove);

 resolved = false;

 //记录删除一个Bundle变更。

 getDelta().recordBundleRemoved(

(BundleDescriptionImpl) toRemove);

 ((BundleDescriptionImpl) toRemove).setStateBit(

BundleDescriptionImpl.REMOVAL_PENDING, true);

 if (resolver != null) {

 boolean pending = toRemove.getDependents().length > 0;

 //通知解析器，一个Bundle已经被删除。

 //如果有依赖的话，转入正在删除。

 resolver.bundleRemoved(toRemove, pending);

 if (pending) {

 getDelta().recordBundleRemovalPending(

(BundleDescriptionImpl) toRemove);

 removalPendings.add(toRemove);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 93 / 125

 } else {

 synchronized (this) {

 try {

 resolving = true;

 resolverErrors.remove(toRemove);

 //反解析Bundle。

 resolveBundle(toRemove, false, null,

null, null, null);

 } finally {

 resolving = false;

 }

 }

 }

 }

 updateTimeStamp();

 return true;

 }

 public StateDelta getChanges() {

 return getDelta();

 }

 private StateDeltaImpl getDelta() {

 if (changes == null)

 changes = new StateDeltaImpl(this);

 return changes;

 }

 //Bundle搜索。

 public BundleDescription[] getBundles(String symbolicName) {

 if (Constants.OSGI_SYSTEM_BUNDLE.equals(symbolicName))

 symbolicName = Constants.getInternalSymbolicName();

 final List bundles = new ArrayList();

 for (Iterator iter = bundleDescriptions.iterator();

 iter.hasNext();) {

 BundleDescription bundle =

(BundleDescription) iter.next();

 if (symbolicName.equals(bundle.getSymbolicName()))

 bundles.add(bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 94 / 125

 }

 return (BundleDescription[]) bundles.toArray(

new BundleDescription[bundles.size()]);

 }

 public BundleDescription[] getBundles() {

 return (BundleDescription[]) bundleDescriptions.

elements(new BundleDescription[

bundleDescriptions.size()]);

 }

 public BundleDescription getBundle(long id) {

 BundleDescription result = (BundleDescription)

 bundleDescriptions.getByKey(new Long(id));

 if (result != null)

 return result;

 for (Iterator iter = removalPendings.iterator();

 iter.hasNext();) {

 BundleDescription removedBundle =

(BundleDescription) iter.next();

 if (removedBundle.getBundleId() == id)

 return removedBundle;

 }

 return null;

 }

 public BundleDescription getBundle(String name, Version version)

 {

 BundleDescription[] allBundles = getBundles(name);

 if (allBundles.length == 1)

 return version == null || allBundles[0].getVersion().

equals(version) ? allBundles[0] : null;

 if (allBundles.length == 0)

 return null;

 BundleDescription unresolvedFound = null;

 BundleDescription resolvedFound = null;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 95 / 125

 for (int i = 0; i < allBundles.length; i++) {

 BundleDescription current = allBundles[i];

 BundleDescription base;

 if (current.isResolved())

 base = resolvedFound;

 else

 base = unresolvedFound;

 if (version == null || current.getVersion().

equals(version)) {

 if (base != null && (base.getVersion().

compareTo(current.getVersion()) <= 0 ||

base.getBundleId() >

current.getBundleId())) {

 if (base == resolvedFound)

 resolvedFound = current;

 else

 unresolvedFound = current;

 } else {

 if (current.isResolved())

 resolvedFound = current;

 else

 unresolvedFound = current;

 }

 }

 }

 if (resolvedFound != null)

 return resolvedFound;

 return unresolvedFound;

 }

 //获取时间戳。

 public long getTimeStamp() {

 return timeStamp;

 }

 //是否系统状态发生变化。

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 96 / 125

 public boolean isResolved() {

 return resolved || isEmpty();

 }

 //利用指定Supplier解析指定约束。

 public void resolveConstraint(VersionConstraint constraint,

BaseDescription supplier) {

 ((VersionConstraintImpl) constraint).setSupplier(supplier);

 }

 //利用指定的Supplier解析指定约束。

 public synchronized void resolveBundle(BundleDescription bundle,

 boolean status, BundleDescription[] hosts,

ExportPackageDescription[] selectedExports,

BundleDescription[] resolvedRequires,

ExportPackageDescription[] resolvedImports) {

 if (!resolving) //如果当前状态不是Resolving，则异常。

 throw new IllegalStateException();

 BundleDescriptionImpl modifiable =

(BundleDescriptionImpl) bundle;

 //记录Resolved。

 getDelta().recordBundleResolved(modifiable, status);

 //晚加载为NOT。

 modifiable.setLazyLoaded(false);

 //状态为RESOLVED。

 modifiable.setStateBit(BundleDescriptionImpl.RESOLVED,

 status);

 if (status) {

 resolverErrors.remove(modifiable);

 resolvedBundles.add(modifiable);

 } else {

 //从解析池删除该Bundle。

 resolvedBundles.remove(modifiable);

 modifiable.removeDependencies();

 }

 //解析或反解析所有的Export、Require和Import。

 if (selectedExports == null || resolvedRequires == null ||

 resolvedImports == null)

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 97 / 125

 unresolveConstraints(modifiable);

 else

 resolveConstraints(modifiable, hosts, selectedExports,

 resolvedRequires, resolvedImports);

 }

 //删除一个Bundle完成。

 public synchronized void removeBundleComplete(

BundleDescription bundle) {

 if (!resolving)

 throw new IllegalStateException();

 //记录变更。

 getDelta().recordBundleRemovalComplete(

(BundleDescriptionImpl) bundle);

 removalPendings.remove(bundle);

 }

 //为Bundle设置所有的约束和依赖。

 private void resolveConstraints(BundleDescriptionImpl bundle,

 BundleDescription[] hosts,

ExportPackageDescription[] selectedExports,

BundleDescription[] resolvedRequires,

ExportPackageDescription[] resolvedImports) {

 HostSpecificationImpl hostSpec =

(HostSpecificationImpl) bundle.getHost();

 if (hostSpec != null) {

 if (hosts != null) {

 hostSpec.setHosts(hosts);

 for (int i = 0; i < hosts.length; i++)

 ((BundleDescriptionImpl) hosts[i]).

addDependency(bundle, true);

 }

 }

 bundle.setSelectedExports(selectedExports);

 bundle.setResolvedRequires(resolvedRequires);

 bundle.setResolvedImports(resolvedImports);

 bundle.addDependencies(hosts, true);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 98 / 125

 bundle.addDependencies(resolvedRequires, true);

 bundle.addDependencies(resolvedImports, true);

 GenericSpecification[] genericRequires =

 bundle.getGenericRequires();

 if (genericRequires.length > 0) {

 ArrayList genericSuppliers =

new ArrayList(genericRequires.length);

 for (int i = 0; i < genericRequires.length; i++) {

 GenericDescription[] suppliers =

 genericRequires[i].getSuppliers();

 if (suppliers != null)

 for (int j = 0; j < suppliers.length; j++)

 genericSuppliers.add(suppliers[j]);

 }

 bundle.addDependencies((BaseDescription[])

 genericSuppliers.toArray(new BaseDescription[

genericSuppliers.size()]), true);

 }

 }

 //清空Bundle的所有约束和依赖。

 private void unresolveConstraints(BundleDescriptionImpl bundle) {

 HostSpecificationImpl host =

(HostSpecificationImpl) bundle.getHost();

 if (host != null)

 host.setHosts(null);

 bundle.setSelectedExports(null);

 bundle.setResolvedImports(null);

 bundle.setResolvedRequires(null);

 GenericSpecification[] genericRequires =

 bundle.getGenericRequires();

 if (genericRequires.length > 0)

 for (int i = 0; i < genericRequires.length; i++)

 ((GenericSpecificationImpl)

 genericRequires[i]).setSupplers(null);

 bundle.removeDependencies();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 99 / 125

 }

 //解析，incremental声明是否为渐进的方式来解析。如果是渐进防止，则只是解析

 //指定的Bundle，否则将清空所有的Bundle，然后解析指定Bundle。

 private synchronized StateDelta resolve(boolean incremental,

 BundleDescription[] reResolve) {

 try {

 resolving = true; //正在解析标志。

 if (resolver == null)

 throw new IllegalStateException(

"no resolver set");

 fullyLoad();

 long start = 0;

 if (StateManager.DEBUG_PLATFORM_ADMIN_RESOLVER)

 start = System.currentTimeMillis();

 //非渐进模式，则清空所有已解析的缓存。

 if (!incremental) {

 resolved = false;

 reResolve = getBundles();

 //合并正在删除的Bundle。

 if (removalPendings.size() > 0) {

 BundleDescription[] removed =

 getRemovalPendings();

 reResolve = mergeBundles(

reResolve, removed);

 }

 //清空这些Bundle所有信息。

 flush(reResolve);

 }

 if (resolved && reResolve == null)

 return new StateDeltaImpl(this);

 if (removalPendings.size() > 0) {

 BundleDescription[] removed =

 getRemovalPendings();

 reResolve = mergeBundles(reResolve, removed);

 }

 //平台属性。

 Headers[] tmpPlatformProperties = new Headers[

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 100 / 125

platformProperties.length];

 for (int i = 0; i < platformProperties.length; i++) {

 tmpPlatformProperties[i] = new Headers(

platformProperties[i].size());

 for (Enumeration keys = platformProperties[i].

keys(); keys.hasMoreElements();) {

 Object key = keys.nextElement();

 tmpPlatformProperties[i].put(key,

 platformProperties[i].get(key));

 }

 }

 //解析这些Bundle。

 resolver.resolve(reResolve, tmpPlatformProperties);

 resolved = removalPendings.size() == 0;

 StateDelta savedChanges = changes == null ?

new StateDeltaImpl(this) : changes;

 changes = new StateDeltaImpl(this);

 //更新时间戳。

 if (savedChanges.getChanges().length > 0)

 updateTimeStamp();

 return savedChanges;

 } finally {

 resolving = false; //解析完成。

 }

 }

 //合并Bundle。

 private BundleDescription[] mergeBundles(

BundleDescription[] reResolve, BundleDescription[] removed)

{

 if (reResolve == null) //为空，则返回正在删除的Bundel。

 return removed;

 if (reResolve.length == 0) //阻止正在删除的Bundle。

 return reResolve;

 //合并结果。

 ArrayList result = new ArrayList(reResolve.length +

 removed.length);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 101 / 125

 for (int i = 0; i < reResolve.length; i++)

 result.add(reResolve[i]);

 for (int i = 0; i < removed.length; i++) {

 boolean found = false;

 for (int j = 0; j < reResolve.length; j++) {

 if (removed[i] == reResolve[j]) {

 found = true;

 break;

 }

 }

 if (!found)

 result.add(removed[i]);

 }

 return (BundleDescription[]) result.toArray(

new BundleDescription[result.size()]);

 }

 //清空指定Bundle。

 private void flush(BundleDescription[] bundles) {

 resolver.flush();//刷新Resolver。

 resolved = false;

 resolverErrors.clear();

 if (resolvedBundles.isEmpty())

 return;

 //反解析已存在的Bundle。

 for (int i = 0; i < bundles.length; i++) {

 resolveBundle(bundles[i], false, null, null,

null, null);

 }

 resolvedBundles.clear();

 }

 public StateDelta resolve() {

 return resolve(true, null);

 }

 public StateDelta resolve(boolean incremental) {

 return resolve(incremental, null);

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 102 / 125

 public StateDelta resolve(BundleDescription[] reResolve) {

 return resolve(true, reResolve);

 }

 public void setOverrides(Object value) {

 throw new UnsupportedOperationException();

 }

 //返回所有已经解析的Bundle。

 public BundleDescription[] getResolvedBundles() {

 return (BundleDescription[]) resolvedBundles.elements(

new BundleDescription[resolvedBundles.size()]);

 }

 public boolean isEmpty() {

 return bundleDescriptions.isEmpty();

 }

 void setResolved(boolean resolved) {

 this.resolved = resolved;

 }

 //仅添加一个Bundle。

 boolean basicAddBundle(BundleDescription description) {

 ((BundleDescriptionImpl) description).

setContainingState(this); //设置所属的State。

 ((BundleDescriptionImpl) description).setStateBit(

BundleDescriptionImpl.REMOVAL_PENDING, false);

 if (bundleDescriptions.add(

(BundleDescriptionImpl) description)) {

 if (description.getBundleId() > getHighestBundleId())

 highestBundleId = description.getBundleId();

 return true;

 }

 return false;

 }

 void addResolvedBundle(BundleDescriptionImpl resolvedBundle) {

 resolvedBundles.add(resolvedBundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 103 / 125

 }

 //返回所有已经解析的Selected-Export，包括正在删除的Bundle。

 public ExportPackageDescription[] getExportedPackages() {

 fullyLoad();

 final List allExportedPackages = new ArrayList();

 for (Iterator iter = resolvedBundles.iterator();

 iter.hasNext();) {

 BundleDescription bundle =

(BundleDescription) iter.next();

 ExportPackageDescription[] bundlePackages =

 bundle.getSelectedExports();

 if (bundlePackages == null)

 continue;

 for (int i = 0; i < bundlePackages.length; i++)

 allExportedPackages.add(bundlePackages[i]);

 }

 for (Iterator iter = removalPendings.iterator();

 iter.hasNext();) {

 BundleDescription bundle =

(BundleDescription) iter.next();

 ExportPackageDescription[] bundlePackages =

 bundle.getSelectedExports();

 if (bundlePackages == null)

 continue;

 for (int i = 0; i < bundlePackages.length; i++)

 allExportedPackages.add(bundlePackages[i]);

 }

 return (ExportPackageDescription[]) allExportedPackages.

toArray(new ExportPackageDescription[

allExportedPackages.size()]);

 }

 //获取一个Host的所有片段。

 BundleDescription[] getFragments(final BundleDescription host) {

 final List fragments = new ArrayList();

 for (Iterator iter = bundleDescriptions.iterator();

 iter.hasNext();) {

 BundleDescription bundle =

(BundleDescription) iter.next();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 104 / 125

 HostSpecification hostSpec = bundle.getHost();

 if (hostSpec != null) {

 BundleDescription[] hosts = hostSpec.getHosts();

 if (hosts != null)

 for (int i = 0; i < hosts.length; i++)

 if (hosts[i] == host) {

 fragments.add(bundle);

 break;

 }

 }

 }

 return (BundleDescription[]) fragments.toArray(

new BundleDescription[fragments.size()]);

 }

 //设置和获取时间戳。

 public void setTimeStamp(long newTimeStamp) {

 timeStamp = newTimeStamp;

 }

 private void updateTimeStamp() {

 if (getTimeStamp() == Long.MAX_VALUE)

 setTimeStamp(0);

 setTimeStamp(getTimeStamp() + 1);

 }

 //设置和获取状态对象工厂。

 public StateObjectFactory getFactory() {

 return factory;

 }

 void setFactory(StateObjectFactory factory) {

 this.factory = factory;

 }

 //Bundle查询。

 public BundleDescription getBundleByLocation(String location) {

 for (Iterator i = bundleDescriptions.iterator();

 i.hasNext();) {

 BundleDescription current =

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 105 / 125

(BundleDescription) i.next();

 if (location.equals(current.getLocation()))

 return current;

 }

 return null;

 }

 public Resolver getResolver() {

 return resolver;

 }

 public void setResolver(Resolver newResolver) {

 if (resolver == newResolver)

 return;

 if (resolver != null) {

 Resolver oldResolver = resolver;

 resolver = null;

 oldResolver.setState(null);

 }

 resolver = newResolver;

 if (resolver == null)

 return;

 resolver.setState(this);

 }

 public boolean setPlatformProperties(

Dictionary platformProperties) {

 return setPlatformProperties(

new Dictionary[] {platformProperties});

 }

 public boolean setPlatformProperties(

Dictionary[] platformProperties) {

 return setPlatformProperties(platformProperties, true);

 }

 synchronized boolean setPlatformProperties(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 106 / 125

Dictionary[] platformProperties, boolean resetSystemExports)

{

……

 }

 //重置系统Bundle的Export。

 private void resetSystemExports() {

 BundleDescription[] systemBundles = getBundles(

Constants.getInternalSymbolicName());

 if (systemBundles.length > 0) {

 BundleDescriptionImpl systemBundle =

 (BundleDescriptionImpl) systemBundles[0];

 ExportPackageDescription[] exports =

 systemBundle.getExportPackages();

 ArrayList newExports = new ArrayList(exports.length);

 for (int i = 0; i < exports.length; i++)

 if (((Integer) exports[i].getDirective(

ExportPackageDescriptionImpl.EQUINOX_EE))

 .intValue() < 0)

 newExports.add(exports[i]);

 addSystemExports(newExports);

 systemBundle.setExportPackages(

(ExportPackageDescription[])

newExports.toArray(new ExportPackageDescription[

newExports.size()]));

 }

 }

 //添加系统Export。

 private void addSystemExports(ArrayList exports) {

 for (int i = 0; i < platformProperties.length; i++)

 try {

 ManifestElement[] elements = ManifestElement.

parseHeader(Constants.EXPORT_PACKAGE,

(String) platformProperties[i].get(

Constants.

OSGI_FRAMEWORK_SYSTEM_PACKAGES));

 if (elements == null)

 continue;

 ExportPackageDescription[] systemExports =

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 107 / 125

StateBuilder.createExportPackages(

elements, null, null, null, 2, false);

 Integer profInx = new Integer(i);

 for (int j = 0; j < systemExports.length; j++)

 {

 ((ExportPackageDescriptionImpl)

systemExports[j]).setDirective(

ExportPackageDescriptionImpl.

EQUINOX_EE, profInx);

 exports.add(systemExports[j]);

 }

 } catch (BundleException e) {

 }

 }

 public Dictionary[] getPlatformProperties() {

 return platformProperties;

 }

 private boolean checkProp(Object origObj, Object newObj) {

 if ((origObj == null && newObj != null) ||

(origObj != null && newObj == null))

 return true;

 if (origObj == null)

 return false;

 if (origObj.getClass() != newObj.getClass())

 return true;

 if (origObj instanceof String)

 return !origObj.equals(newObj);

 String[] origProps = (String[]) origObj;

 String[] newProps = (String[]) newObj;

 if (origProps.length != newProps.length)

 return true;

 for (int i = 0; i < origProps.length; i++) {

 if (!origProps[i].equals(newProps[i]))

 return true;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 108 / 125

 return false;

 }

 private boolean changedProps(Dictionary origProps,

Dictionary newProps, String[] keys) {

 for (int i = 0; i < keys.length; i++) {

 Object origProp = origProps.get(keys[i]);

 Object newProp = newProps.get(keys[i]);

 if (checkProp(origProp, newProp))

 return true;

 }

 return false;

 }

 //返回正在删除的Bundle。

 public BundleDescription[] getRemovalPendings() {

 return (BundleDescription[]) removalPendings.toArray(

new BundleDescription[removalPendings.size()]);

 }

 //解析动态Import。利用时间戳，这是一个好方法。

 public synchronized ExportPackageDescription linkDynamicImport(

BundleDescription importingBundle,

String requestedPackage) {

 if (resolver == null)

 throw new IllegalStateException("no resolver set"); 、

 BundleDescriptionImpl importer =

(BundleDescriptionImpl) importingBundle;

 if (importer.getDynamicStamp(requestedPackage) ==

 getTimeStamp())

 return null;

 try {

 resolving = true;

 fullyLoad();

 ExportPackageDescriptionImpl result =

 (ExportPackageDescriptionImpl)

 resolver.resolveDynamicImport(

importingBundle, requestedPackage);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 109 / 125

 if (result == null) //如果没有解析成功，则设置解析失败的

 //时间戳，这样不过时间戳不变则，总是解析失败。

 importer.setDynamicStamp(requestedPackage,

new Long(getTimeStamp()));

 else {

 importer.setDynamicStamp(requestedPackage,

 null); //清空时间戳。

 importer.addDynamicResolvedImport(result);

 }

 setDynamicCacheChanged(true);

 return result;

 } finally {

 resolving = false;

 }

 }

 void setReader(StateReader reader) {

 this.reader = reader;

 }

 StateReader getReader() {

 return reader;

 }

 //利用Reader加载。

 public void fullyLoad() {

 if (reader == null)

 return;

 synchronized (reader) {

 if (fullyLoaded == true)

 return;

 if (reader.isLazyLoaded())

 reader.fullyLoad();

 fullyLoaded = true;

 }

 }

 public void unloadLazyData(long expireTime) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 110 / 125

 synchronized (reader) {

 if (reader.getAccessedFlag()) {

 reader.setAccessedFlag(false);

 return;

 }

 fullyLoaded = false;

 BundleDescription[] bundles = getBundles();

 for (int i = 0; i < bundles.length; i++)

 ((BundleDescriptionImpl) bundles[i]).unload();

 }

 }

 public ExportPackageDescription[] getSystemPackages() {

 ArrayList result = new ArrayList();

 BundleDescription[] systemBundles =

 getBundles(Constants.getInternalSymbolicName());

 if (systemBundles.length > 0) {

 BundleDescriptionImpl systemBundle =

 (BundleDescriptionImpl) systemBundles[0];

 ExportPackageDescription[] exports =

 systemBundle.getExportPackages();

 for (int i = 0; i < exports.length; i++)

 if (((Integer) exports[i].getDirective(

ExportPackageDescriptionImpl.EQUINOX_EE))

.intValue() >= 0)

 result.add(exports[i]);

 }

 return (ExportPackageDescription[]) result.toArray(

new ExportPackageDescription[result.size()]);

 }

 boolean inStrictMode() {

 return Constants.STRICT_MODE.equals(

getPlatformProperties()[0].get(

Constants.OSGI_RESOLVER_MODE));

 }

 //获取解析错误。

 public synchronized ResolverError[] getResolverErrors(

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 111 / 125

BundleDescription bundle) {

 if (bundle.isResolved())

 return new ResolverError[0];

 ArrayList result = (ArrayList) resolverErrors.get(bundle);

 return result == null ? new ResolverError[0] :

 (ResolverError[]) result.toArray(

new ResolverError[result.size()]);

 }

 public synchronized void addResolverError(

BundleDescription bundle, int type, String data,

VersionConstraint unsatisfied) {

 if (!resolving)

 throw new IllegalStateException();

 ArrayList errors = (ArrayList) resolverErrors.get(bundle);

 if (errors == null) {

 errors = new ArrayList(1);

 resolverErrors.put(bundle, errors);

 }

 errors.add(new ResolverErrorImpl(

(BundleDescriptionImpl) bundle, type, data,

unsatisfied));

 }

 public synchronized void removeResolverErrors(B

undleDescription bundle) {

 if (!resolving)

 throw new IllegalStateException();

 resolverErrors.remove(bundle);

 }

 public boolean dynamicCacheChanged() {

 return dynamicCacheChanged;

 }

 void setDynamicCacheChanged(boolean dynamicCacheChanged) {

 this.dynamicCacheChanged = dynamicCacheChanged;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 112 / 125

 public StateHelper getStateHelper() {

 return StateHelperImpl.getInstance();

 }

 void addPlatformPropertyKeys(String[] keys) {

 synchronized (platformPropertyKeys) {

 for (int i = 0; i < keys.length; i++)

 if (!platformPropertyKeys.contains(keys[i]))

 platformPropertyKeys.add(keys[i]);

 }

 }

 String[] getPlatformPropertyKeys() {

 synchronized (platformPropertyKeys) {

 return (String[]) platformPropertyKeys.toArray(

new String[platformPropertyKeys.size()]);

 }

 }

 public long getHighestBundleId() {

 return highestBundleId;

 }

}

3.3.4 ReadOnlyState

对 State 中会引起 Bundle 变更的所有方法重写，抛出异常。

package org.eclipse.osgi.internal.resolver;

import java.util.Dictionary;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.BundleException;

import org.osgi.framework.Version;

public class ReadOnlyState implements State {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 113 / 125

 private State target;

 public ReadOnlyState(State target) {

 this.target = target;

 }

 public boolean addBundle(BundleDescription description) {

 throw new UnsupportedOperationException();

 }

 public StateDelta compare(State state) throws BundleException {

 return target.compare(state);

 }

 public BundleDescription getBundle(long id) {

 return target.getBundle(id);

 }

 public BundleDescription getBundle(String symbolicName,

Version version) {

 return target.getBundle(symbolicName, version);

 }

 public BundleDescription getBundleByLocation(String location) {

 return target.getBundleByLocation(location);

 }

 public BundleDescription[] getBundles() {

 return target.getBundles();

 }

 public BundleDescription[] getBundles(String symbolicName) {

 return target.getBundles(symbolicName);

 }

 public StateDelta getChanges() {

 return target.getChanges();

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 114 / 125

 public ExportPackageDescription[] getExportedPackages() {

 return target.getExportedPackages();

 }

 public StateObjectFactory getFactory() {

 return target.getFactory();

 }

 public BundleDescription[] getResolvedBundles() {

 return target.getResolvedBundles();

 }

 public long getTimeStamp() {

 return target.getTimeStamp();

 }

 public boolean isEmpty() {

 return target.isEmpty();

 }

 public boolean isResolved() {

 return target.isResolved();

 }

 public boolean removeBundle(BundleDescription bundle) {

 throw new UnsupportedOperationException();

 }

 public BundleDescription removeBundle(long bundleId) {

 throw new UnsupportedOperationException();

 }

 public StateDelta resolve() {

 throw new UnsupportedOperationException();

 }

 public StateDelta resolve(boolean incremental) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 115 / 125

 throw new UnsupportedOperationException();

 }

 public StateDelta resolve(BundleDescription[] discard) {

 throw new UnsupportedOperationException();

 }

 public void setOverrides(Object value) {

 throw new UnsupportedOperationException();

 }

 public boolean updateBundle(BundleDescription newDescription) {

 throw new UnsupportedOperationException();

 }

 public void resolveConstraint(VersionConstraint constraint,

 BaseDescription supplier) {

 throw new UnsupportedOperationException();

 }

 public void resolveBundle(BundleDescription bundle,

boolean status, BundleDescription[] host,

ExportPackageDescription[] selectedExports,

BundleDescription[] resolvedRequires,

ExportPackageDescription[] resolveImports) {

 throw new UnsupportedOperationException();

 }

 public void removeBundleComplete(BundleDescription bundle) {

 throw new UnsupportedOperationException();

 }

 public Resolver getResolver() {

 return null;

 }

 public void setResolver(Resolver value) {

 throw new UnsupportedOperationException();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 116 / 125

 }

 public boolean setPlatformProperties(

Dictionary platformProperties) {

 throw new UnsupportedOperationException();

 }

 public boolean setPlatformProperties(

Dictionary platformProperties[]) {

 throw new UnsupportedOperationException();

 }

 public Dictionary[] getPlatformProperties() {

 return target.getPlatformProperties();

 }

 public ExportPackageDescription

 linkDynamicImport(BundleDescription importingBundle,

String requestedPackage) {

 throw new UnsupportedOperationException();

 }

 public void setTimeStamp(long timeStamp) {

 throw new UnsupportedOperationException();

 }

 public ExportPackageDescription[] getSystemPackages() {

 return target.getSystemPackages();

 }

 public void addResolverError(BundleDescription bundle, int type,

 String data, VersionConstraint unsatisfied) {

 throw new UnsupportedOperationException();

 }

 public ResolverError[] getResolverErrors(BundleDescription bundle)

 {

 return target.getResolverErrors(bundle);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 117 / 125

 }

 public void removeResolverErrors(BundleDescription bundle) {

 throw new UnsupportedOperationException();

 }

 public StateHelper getStateHelper() {

 return StateHelperImpl.getInstance();

 }

 public long getHighestBundleId() {

 return target.getHighestBundleId();

 }

}

3.3.5 SyetemState

提供对解析、添加、删除、更新的同步访问。

package org.eclipse.osgi.internal.resolver;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.BundleException;

public class SystemState extends StateImpl {

 synchronized public boolean addBundle(

BundleDescription description) {

 return super.addBundle(description);

 }

 synchronized public boolean removeBundle(

BundleDescription toRemove) {

 return super.removeBundle(toRemove);

 }

 synchronized public boolean updateBundle(

BundleDescription newDescription) {

 return super.updateBundle(newDescription);

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 118 / 125

 }

 public StateDelta compare(State state) throws BundleException

{

 throw new UnsupportedOperationException();

 }

}

3.3.6 UserState

保留所有 Bundle 的变更记录。

package org.eclipse.osgi.internal.resolver;

import java.util.HashSet;

import java.util.Set;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.BundleException;

public class UserState extends StateImpl {

 //这不是一个精确的记录Bundle变更的方法。

 private Set updated = new HashSet();

 public synchronized boolean removeBundle(

BundleDescription description) {

 if (description.getLocation() != null)

 updated.remove(description.getLocation());

 if (!super.removeBundle(description))

 return false;

 return true;

 }

 public boolean updateBundle(BundleDescription newDescription) {

 if (!super.updateBundle(newDescription))

 return false;

 updated.add(newDescription.getLocation());

 return true;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 119 / 125

 public StateDelta compare(State baseState)

throws BundleException {

 BundleDescription[] current = this.getBundles();

 StateDeltaImpl delta = new StateDeltaImpl(this);

 //处理添加和更新。

 for (int i = 0; i < current.length; i++) {

 BundleDescription existing =

 baseState.getBundleByLocation(

current[i].getLocation());

 if (existing == null)

 delta.recordBundleAdded(

(BundleDescriptionImpl) current[i]);

 else if (updated.contains(current[i].getLocation()))

 delta.recordBundleUpdated(

(BundleDescriptionImpl) current[i]);

 }

 //处理删除。

 BundleDescription[] existing = baseState.getBundles();

 for (int i = 0; i < existing.length; i++) {

 BundleDescription local = getBundleByLocation(

existing[i].getLocation());

 if (local == null)

 delta.recordBundleRemoved(

(BundleDescriptionImpl) existing[i]);

 }

 return delta;

 }

}

4 Related Classes

4.1 StateManager

实现 PlatformAdmin 服务，管理框架的系统状态。

package org.eclipse.osgi.internal.baseadaptor;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 120 / 125

import java.io.File;

import java.io.IOException;

import org.eclipse.osgi.framework.internal.core.FrameworkProperties;

import org.eclipse.osgi.internal.resolver.*;

import org.eclipse.osgi.service.resolver.*;

import org.osgi.framework.BundleContext;

import org.osgi.framework.BundleException;

public class StateManager implements PlatformAdmin, Runnable {

 //状态晚加载标识。

 public static String PROP_NO_LAZY_LOADING =

 "osgi.noLazyStateLoading";

 //设置清理晚加载数据前的间隔。

 public static String PROP_LAZY_UNLOADING_TIME =

 "osgi.lazyStateUnloadingTime";

 private long expireTime = 300000; //默认为5分钟。

 private long readStartupTime;

 private StateImpl systemState;

 private StateObjectFactoryImpl factory;

 private long lastTimeStamp;

 private boolean cachedState = false;

 private File stateFile;

 private File lazyFile;

 private long expectedTimeStamp;

 private BundleContext context;

 private Thread dataManagerThread;

 //构建一个实例。StateFile是持久化的数据，LazyFile是用于晚加载的数据，可以从

 //内存中清洗掉。

 public StateManager(File stateFile, File lazyFile,

BundleContext context) {

//-1表示不检测时间戳。

 this(stateFile, lazyFile, context, -1);

 }

 public StateManager(File stateFile, File lazyFile,

BundleContext context, long expectedTimeStamp) {

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 121 / 125

 this.stateFile = stateFile;

 this.lazyFile = lazyFile;

 this.context = context;

 this.expectedTimeStamp = expectedTimeStamp;

 factory = new StateObjectFactoryImpl();

 }

 //关闭StateManager。

 public void shutdown(File stateFile, File lazyFile)

throws IOException {

//解析删除的Bundle。

 BundleDescription[] removalPendings =

 systemState.getRemovalPendings();

 if (removalPendings.length > 0)

 systemState.resolve(removalPendings);

 //持久化数据。

 writeState(systemState, stateFile, lazyFile);

 //停止。

 stopDataManager();

 }

 //更新持久数据。TODO:需要考虑更新晚加载数据。

 public void update(File stateFile, File lazyFile)

throws IOException {

 BundleDescription[] removalPendings =

 systemState.getRemovalPendings();

 StateImpl state = systemState;

 if (removalPendings.length > 0) {

 state = (StateImpl) state.getFactory().

createState(systemState);

 state.setResolver(getResolver(

System.getSecurityManager() != null));

 state.setPlatformProperties(

FrameworkProperties.getProperties());

 state.resolve(false);

 }

 //写文件。

 writeState(state, stateFile, lazyFile);

 lastTimeStamp = state.getTimeStamp();

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 122 / 125

 }

 private void readSystemState(File stateFile, File lazyFile,

long expectedTimeStamp) {

 if (stateFile == null || !stateFile.isFile())

 return;

 try {

 boolean lazyLoad = !Boolean.valueOf(

FrameworkProperties.getProperty(

PROP_NO_LAZY_LOADING)).booleanValue();

 systemState = factory.readSystemState(

stateFile, lazyFile, lazyLoad,

expectedTimeStamp);

 if (systemState == null || !initializeSystemState())

 {

 systemState = null;

 return;

 }

 cachedState = true;

 try {

 expireTime = Long.parseLong(FrameworkProperties.

getProperty(PROP_LAZY_UNLOADING_TIME,

Long.toString(expireTime)));

 } catch (NumberFormatException nfe) {

 expireTime = 0;

 }

 if (lazyLoad && expireTime > 0)

 startDataManager();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } finally {

 //记录调试时间。

 }

 }

 private synchronized void startDataManager() {

 if (dataManagerThread != null)

 return;

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 123 / 125

 dataManagerThread = new Thread(this, "State Data Manager");

 dataManagerThread.setDaemon(true);

 dataManagerThread.start();

 }

 public synchronized void stopDataManager() {

 if (dataManagerThread == null)

 return;

 dataManagerThread.interrupt();

 dataManagerThread = null;

 }

 //将State写到持久文件。

 private void writeState(StateImpl state, File stateFile,

File lazyFile) throws IOException {

 if (state == null)

 return;

 if (cachedState && !saveNeeded())

 return;

 state.fullyLoad();

 factory.writeState(state, stateFile, lazyFile);

 }

 private boolean initializeSystemState() {

 systemState.setResolver(

getResolver(System.getSecurityManager() != null));

 lastTimeStamp = systemState.getTimeStamp();

 return !systemState.setPlatformProperties(

FrameworkProperties.getProperties());

 }

 public synchronized State createSystemState() {

 if (systemState == null) {

 systemState = factory.createSystemState();

 initializeSystemState();

 }

 return systemState;

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 124 / 125

 public synchronized State readSystemState() {

 if (systemState == null)

 readSystemState(stateFile, lazyFile,

 expectedTimeStamp);

 return systemState;

 }

 public State getSystemState() {

 return systemState;

 }

 public long getCachedTimeStamp() {

 return lastTimeStamp;

 }

 public boolean saveNeeded() {

 return systemState.getTimeStamp() != lastTimeStamp ||

systemState.dynamicCacheChanged();

 }

 public State getState(boolean mutable) {

 return mutable ? factory.createState(systemState) :

new ReadOnlyState(systemState);

 }

 public State getState() {

 return getState(true);

 }

 public StateObjectFactory getFactory() {

 return factory;

 }

 //不支持。

 public synchronized void commit(State state) throws

BundleException {

 throw new IllegalArgumentException("PlatformAdmin.commit()

 not supported");

 }

OSGi 解析模型源码分析 陈贞宝 xashine.zhenbao@gmail.com

西安尤埃信息技术有限公司 www.uishell.com 029-88332685

 125 / 125

 public Resolver getResolver() {

 return getResolver(false);

 }

 private Resolver getResolver(boolean checkPermissions) {

 return new org.eclipse.osgi.internal.module.ResolverImpl(

context, checkPermissions);

 }

 public StateHelper getStateHelper() {

 return StateHelperImpl.getInstance();

 }

 public void run() {

 long timeStamp = lastTimeStamp;

 while (true) {

 try {

 Thread.sleep(expireTime);

 } catch (InterruptedException e) {

 return;

 }

 if (systemState != null)

 synchronized (systemState) {

 if (timeStamp ==

systemState.getTimeStamp() && !systemState.dynamicCacheChanged())

 systemState.unloadLazyData(

expireTime);

 }

 }

 }

}

