
OpenDaylight 指南

最新版: yeasy@github

更新历史:

V0.6: 2014-02-18

 增加对MD-SAL的分析；

V0.5: 2013-12-30

 增加对 VTN项目的分析；

 部分格式调整。

V0.4: 2013-08-22

 添加如何在控制台调用 bundle方法。

V0.3: 2013-08-20

 添加增量项目编译说明；

优化结构。

V0.2: 2013-07-14

 完成用户安装运行和开发环境部署。

V0.1: 2013-07-10

 完成框架。

第 1章 概述 ...4

第 2章 控制器安装运行 ..5

2.1 环境配置..5

2.2 安装和使用 ..5

2.2.1 获取源码 ..5

2.2.2 编译运行 ..5

2.2.3 常见运行问题...6

2.2.4 使用Mininet测试 ..6

第 3章 开发环境..11

3.1 概述 ...11

3.2 架构原则..11

3.3 架构框架..12

3.3.1 框架概述 ..12

3.3.2 功能概述 ..12

3.4 开发框架概述 ..18

3.5 开发和更新代码 ..18

3.5.1 通过 CLI...18

3.5.2 通过 Eclipse..20

3.5.3 在 OSGi控制台中调用方法 ...20

3.6 示例应用..20

3.6.1 Simple Forwarding Application ...20

3.6.2 Statistics Application ...20

3.6.3 Load Balancer Application ..26

3.7 库函数..29

3.7.1 C客户端库 ...29

3.7.2 .NET客户端库 ...30

3.7.3 Java客户端库...30

3.7.4 Java JSON客户端库...31

3.7.5 Objective C客户端库 ...31

3.8 REST调用和认证 ..32

3.8.1 Topology REST APIs ..32

3.8.2 Host Tracker REST APIs ...32

3.8.3 Flow Programmer REST APIs ...32

3.8.4 Static Routing REST APIs ...33

3.8.5 Statistics REST APIs ...33

3.8.6 Subnets REST APIs...33

3.8.7 Switch Manager REST APIs..33

3.9 Java API ...33

3.10 拓扑 ...33

3.11 集成测试..33

第 4章 VTN ...34

4.1 概念 ...34

4.1.1 场景..34

4.1.2 术语..34

4.2 物理网映射 ..35

4.3 功能 ...36

4.3.1 vBridge ...36

4.3.2 vRouter ...36

4.3.3 流过滤 ..36

4.3.4 多控制器合作...36

4.3.5 北向 API...37

4.4 安装 ...39

4.4.1 VTN Coordinator安装运行 ..39

4.4.2 VTN Manager安装运行 ...41

4.5 虚拟化版本 ..45

4.5.1 安装 VTN Coordinator..45

4.5.2 运行 VTN Coordinator..45

4.6 实现 ...46

4.6.1 整体架构 ..46

4.6.2 VTN Manager ...46

4.6.3 VTN Coordinator ..46

4.6.4 VTN Coordinator REST Reference..54

第1章 概述

OpenDaylight项目目前包括 6个 Bootstrap项目：OpenDaylight Controller、OpenDaylight N

etwork Virtualization Platform、OpenDaylight Virtual Tenant Network (VTN)、Open DOVE OpenFl

ow Plugin、Affinity Metadata Service，以及 9个 Incubation项目：YANG Tools、LISP Flow Map

ping、OVSDB Integration、OpenFlow Protocol Library、BGP-LS/PCEP、Defense4All、SNMP4S

DN、dlux - openDayLight User eXperience、SDN Simulation Platform。

第2章 控制器安装运行

官方网站为 http://www.Open Daylight.org。

2.1 环境配置环境配置环境配置环境配置

Open Daylight Controller是 java程序，理论上可以运行在任何支持 java的环境中。推荐环

境为比较新的 Linux环境和 Java虚拟机 1.7+版本。

例如，在 Ubuntu 12.04系统中，需要安装 java1.7版本，命令为：

#sudo add-apt-repository ppa:webupd8team/java

#sudo apt-get update && sudo apt-get install oracle-jdk7-installer

之后，配置 JAVA_HOME环境变量，添加下面的行到/etc/environment文件。

JAVA_HOME=/usr/lib/jvm/java-7-oracle

2.2 安装和使用安装和使用安装和使用安装和使用

2.2.1 获取源码获取源码获取源码获取源码

源码可以从 https://jenkins.Open Daylight.org/controller/job/controller-nightly/lastSuccessfulBui

ld/artifact/Open Daylight/distribution/Open Daylight/target/下载，或者利用 git下载最新的版本

对于匿名用户：

git clone https://git.Open Daylight.org/gerrit/p/controller.git

对于项目注册用户：

git clone ssh://<username>@git.Open Daylight.org:29418/controller.git

2.2.2 编译运行编译运行编译运行编译运行

进入 Open Daylight/distribution/Open Daylight/src/main/resources 目录，下面一般有若干文

件和目录，包括：

run.bat：Windows系统下的运行脚本。

run.sh：Linux系统下的运行脚本。

version.properties：编译的版本信息。

configuration：基本的配置信息。

在 Linux平台上，需要用 root权限运行./run.sh。

运行成功后可以打开浏览器访问本地地址，并登陆控制器 web UI，默认用户名和密码都

是 admin。

图表 1 控制器Web登陆界面

2.2.3 常见运行问题常见运行问题常见运行问题常见运行问题

如果运行时报错：java.lang.OutOfMemoryError: PermGen space。可以通过修改maven配置

为

export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=256m"

2.2.4 使用使用使用使用Mininet测试测试测试测试

Mininet可以用来模拟大规模的虚拟网络。可以从mininet.github.org下载代码。

Open Daylight Controller可以跟Mininet很好的联动。

在已经安装 Mininet环境的机器（如果跟 controller在同一个机器，可以用 127.0.0.1）中，

启动Mininet

mininet@mininet-vm:~$ sudo mn --controller=remote，ip=127.0.0.1 --topo tree，

3

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2 h3 h4 h5 h6 h7 h8

*** Adding switches:

s1 s2 s3 s4 s5 s6 s7

*** Adding links:

(h1， s3) (h2， s3) (h3， s4) (h4， s4) (h5， s6) (h6， s6) (h7， s7) (h8， s7) (s1，

s2) (s1， s5) (s2， s3) (s2， s4) (s5， s6) (s5， s7)

*** Configuring hosts

h1 h2 h3 h4 h5 h6 h7 h8

*** Starting controller

*** Starting 7 switches

s1 s2 s3 s4 s5 s6 s7

*** Starting CLI:

mininet>

连接成功后可以测试控制器的功能。

2.2.4.1 Simple Forwarding Application

Simple Forwarding是 Open Daylight Controller上的一个应用，它通过 arp包来探测连接到

网络的每个主机，并给交换机安装规则（该规则指定到某个主机地址的网包路径），让网包能

顺利转到各个主机。

首先，登录到 Controller界面。

图表 2 Simple Forwarding界面

通过拖动设备，形成逻辑拓扑，并保存配置。

图表 3 Simple Forwarding拖动成逻辑拓扑

点击 Add Gateway IP Address按钮，添加 IP和 10.0.0.254/8子网。

图表 4 添加网关 IP

在Mininet中确认主机可以相互连通。

mininet> h1 ping h7

PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.

64 bytes from 10.0.0.7: icmp_req=1 ttl=64 time=1.52 ms

64 bytes from 10.0.0.7: icmp_req=2 ttl=64 time=0.054 ms

64 bytes from 10.0.0.7: icmp_req=3 ttl=64 time=0.060 ms

64 bytes from 10.0.0.7: icmp_req=4 ttl=64 time=0.052 ms

--- 10.0.0.7 ping statistics ---

4 packets transmitted， 4 received， 0% packet loss， time 2999ms

rtt min/avg/max/mdev = 0.052/0.422/1.523/0.635 ms

mininet>

点击 Troubleshooting标签页，查看交换机的流表细节。

图表 5 查看交换机流表细节

查看端口细节。

图表 6 查看端口细节

在 osgi的控制台，输入 ss simple，可以看到 Simple Forwarding应用被激活。

osgi> ss simple

"Framework is launched."

id State Bundle

45 ACTIVE org.Open Daylight.controller.samples.simpleforwarding_0.4.0.SNAP

SHOT

第3章 开发环境

3.1 概述概述概述概述

Open Daylight Controller提供了一个模块化的开放 SDN控制器。

它提供了开放的北向 API（开放给应用的接口），同时南向支持包括 OpenFlow在内的多种

SDN协议。底层支持混合模式的交换机和经典的 OpenFlow交换机。

运行系统推荐为 Linux系列，并安装了 Java1.7+环境。

自带的Web UI也是利用了北向的 API进行交互。

3.2 架构原则架构原则架构原则架构原则

Open Daylight Controller在设计的时候遵循了六个基本的架构原则：

运行时模块化和扩展化（Runtime Modularity and Extensibility）：支持在控制器运行时进行

安装、删除和服务的更新。

多协议的南向支持（Multiprotocol Southbound）：南向支持多种协议。

服务抽象层（Service Abstraction Layer）：南向多种协议对上提供统一的北向服务接口。

开放的可扩展北向 API（Open Extensible Northbound API）：提供可扩展的应用 API，通过

REST或者函数调用方式。两者提供的功能要一致。

支持多租户、切片（Support for Multitenancy/Slicing）：允许网络在逻辑上（或物理上）划

分成不同的切片或租户。控制器的部分功能和模块可以管理指定切片。控制器根据所管理的分

片来呈现不同的控制观测面。

一致性聚合（Consistent Clustering）：提供细粒度复制的聚合和确保网络一致性的横向扩展

（scale-out）。

3.3 架构框架架构框架架构框架架构框架

3.3.1 框架概述框架概述框架概述框架概述

图表 7 架构框架

如图表 7所示，南向通过 plugin的方式来支持多种协议，包括 OpenFlow1.0、1.3，BGP-L

S 等。这些模块被动态挂载到服务抽象层（SAL），SAL 为上层提供服务，将来自上层的调用

封装为适合底层网络设备的协议格式。控制器需要获取底层设备功能、可达性等方面的信息，

这些信息被存放在拓扑管理器（Topology Manager）中。其他的组件，包括 ARP handler、Host

 Tracker、Device Manager和 Switch Manager，则为 Topology Manager生成拓扑数据。

控制器为应用（App）提供开放的北向 API。支持 OSGi框架和双向的 REST接口。OSGi

框架提供给与控制器运行在同一地址空间的应用，而 REST API则提供给运行在不同地址空间

的应用。所有的逻辑和算法都运行在应用中。

控制自带了 GUI，这个 GUI 使用了跟应用同样的北向 API，这些北向 API 也可以被其他

的应用调用。

3.3.2 功能概述功能概述功能概述功能概述

3.3.2.1 服务抽象层服务抽象层服务抽象层服务抽象层

服务抽象层（SAL）是整个控制器模块化设计的核心，向下支持多种南向协议，向上为模

块和应用支持一致性的服务。使用 SAL 提供的接口，用户无需关心南向协议的具体实现细

节，可以更多的关注到模块实现逻辑本身。

图表 8 抽象服务层

OSGi 框架支持动态链接插件，来支持更多的南向协议。SAL 提供了基本的服务，比如设

备探测（用于拓扑管理器）。服务基于插件提供的特性来构建。服务的请求被 SAL 映射到合适

的插件上，采用合适的南向协议跟底层设备进行交互。各个插件相互之间独立并且跟 SAL 松

耦合。SAL框架被认为是 Open Daylight Controller项目的贡献之一。

拓扑服务（Topology service）是一系列服务，允许传输拓扑信息，包括探测新加入的节点

和链路等；

数据包服务（Data Packet service）将来自各个下层代理的数据包向上发送给应用；

流编程服务（Flow Programming service）为不同的代理编程流规则提供必要的逻辑。

统计服务（Statistics service）搜集统计信息并开放相关的 API，包括：

流

节点连接（Node Connector）或者端口。

队列。

清单服务（Inventory service），返回节点和端口的存储信息。

资源服务（Resource service）查询资源的状态。

3.3.2.2 SAL 服务服务服务服务：：：：数据包服务数据包服务数据包服务数据包服务

图表 9 数据包服务

图表 9展示了一个实现 SAL服务的例子，基于 OpenFlow1.0来实现数据包服务。

� IListenDataPacket 是一个被上层模块或应用（例如 ARP Handler）实现的服务，用于

被希望接收数据包的模块实现。

� IDataPacketService 接口被 SAL 实现，提供从代理发送和接收数据包的服务。这个服

务在 OSGi中注册，以便其他程序获取调用。

� IPluginOutDataPacketService 接口面向 SAL，用于当一个协议插件希望发送一个网包

到应用层。

� IPluginInDataPacketService接口面向协议插件，用于通过 SAL向代理发送网包。

代码在 SAL和各个服务、插件之间的执行过程如下：

� OpenFlow插件获取了 ARP包，该包需要被分配给 ARP Hanlder应用进行处理；

� OpenFlow插件调用 IPluginOutDataPacketService将包发送到 SAL；

� ARP Handler 应用事先已经注册到了 IListenDataPacket 服务，SAL收到网包后将把包

发送到 ARP Handler应用；

� ARP Handler应用将收到网包，可以进行处理。

反向的处理过程（发送出去网包）是

� 应用创建网包并调用 SAL提供的 IDataPacketService接口发出包。目标网络设备作为 API

参数的一部分；

� SAL根据目标网络设备为对应的协议插件（例如 OpenFlow插件）调用 IPluginInDataPacke

tService接口。

� 协议插件将包发送给适当的网络元素。协议相关的处理都由插件完成。

3.3.2.3 SAL 的演进的演进的演进的演进

SAL已经演进成为了一种基于模型的方法。框架被用于对网络（属性和设备）建模，并动

态地在服务应用之间通过北向 API和协议插件提供的南向 API进行映射。图表 10展示了南向

插件如何提供网络模型树的部分。

图表 10 南向插件提供网络模型树的部分

图表 11展示了应用如何通过北向 API来获取网络模型的信息。

图表 11 应用通过北向 API来获取网络模型信息

3.3.2.4 MD-SAL

SAL 的设计已经从原先的 AD-SAL（API-Driven），逐渐演变到了 MD-SAL（Model-Drive

n），这一决定是在 2013.10的第 14次 TSC会议上讨论的。

采用 MD-SAL 的好处是让北向和南向的 API 和数据结构可以不管服务和组件的不同，保

持独立。

数据和接口基于 YANG标记语言进行描述，它描述 XML数据结构、组件功能、定义语义

元素和关系，作为一个独立系统来为所有组件建模。

新创建的模块可以采用 YANG来进行定义，为希望实现的功能创建静态的 API，而无需关

心跟 SAL进行的具体交互和数据结构实现。

3.3.2.4.1 架构架构架构架构

MD-SAL的架构如图表 12所示。

图表 12 MD-SAL的架构

其中，Providers意味着提供 NB API来让其他组件使用服务。

Consumer意味着组件使用了某个或某些 Provider提供的服务。

Broker在不同的 Provider和 Consumer之间路由 RCP、通知和数据更新。

Binding 意味着通过 YANG 模式描述的功能所生成（Generate）的 Java 接口、类或者约

定。所以 Binding-Aware意味着某组件/功能使用了 YANG生成的数据或者 API，而 Binding-ind

ependent意味着某组件/功能的数据和 API是中立的 DOM格式，即没有使用生成绑定。

3.3.2.4.2 子系统子系统子系统子系统

分为两类：Top-Level和 Nested。

前者是部署在控制器中使用控制器的 SAL 来跟其他的模块进行通信的模块或应用。一

般，对于每个系统/API来说，Top-level子系统仅有一个单独实体，或多个不同版本的实体。包

括 Brokers和数据仓库等。YANG语言默认支持。

后者则往往可以存在多个实体。因此，一个 provider可以对外扩展出多个 nested子系统的

实例。典型代表包括路由器、交换机等。YANG语言需要扩展来进行支持。

3.3.2.4.3 Binding-Aware SAL

采用了在部署和运行时候生成的代码，包括两部分：

Binding 模型

描述基本概念，映射 YANG模式和 Binding无关的数据格式，生成为 Java绑定，包括静态

类型的 Java接口、DTO（Data Transfer Object，在 Binding-Aware组件之间传输数据，是 Bindi

ng的一部分）、生成器和映射器等。

Binding 模型包括两部分：1）消费者、提供者 Binding，包括消费者、提供者可见的部

分，在部署（编译）时生成 Java接口（DTO、Builder、RPC接口）。2）Binding架构组件，消

费者、提供者不可见，负责实现 Binding 功能。架构组件在运行时可用，并且往往是动态生成

的，跟 Binding-Aware SAL层的实现相关。

Binding Aware 组件

描述使用或提供 Binding支持的组件。包括 Binding Aware Broker、Binding Generator、Bin

ding Aware的消费者和提供者。

3.3.2.5 交换机管理器交换机管理器交换机管理器交换机管理器

Switch Manager API处理网络元素的细节。当网络元素被探测到的时候，它的属性以 Switc

h Manager的形式存放在数据库中。

3.3.2.6 GUI

GUI作为一个应用来实现，采用了北向的 REST API来跟其他模块交互。因此，GUI能实

现的功能很容易被集成到其他的管理系统中。

3.3.2.7 高可靠性高可靠性高可靠性高可靠性

Open Daylight 控制器支持一个基于集群的高可用性模型。多个 Open Daylight 控制器可以

配合作为一个逻辑控制器。不仅支持了细粒度的冗余，并且支持线性的横向扩展。为了支持高

可用性，需要在下面几个方面增加回弹性能：

� 控制器层：通过集群方式添加一个或多个控制器实例。

� 交换机支持multi-homed，支持多控制器。

� 应用支持multi-homed，支持多控制器。

交换机通过持续的点到点 TCP/IP 协议连接到多个控制器。控制器和应用之间通过 REST

接口连接，是基于 HTTP的。因此所有的基于 HTTP的回弹特性将可以被利用，包括：

� 为控制器集群提供一个虚拟 IP。

� 利用轮询 DNS查询后，应用跟集群之间发送交互。

� 在应用和控制器集群之间部署一个 HTTP的负载均衡，不仅提供可靠性，还可以根据

请求 URL来提供负载均衡。

在 OpenFlow1.2规范中定义了交换机对multi-home的支持，包括两种操作模型：

� 对等交互：所有的控制器都能读写交换机，需要之间进行同步；

� 主从交互：存在一个主控制器和多个从控制器。

以上两种模型都可以采用。在主从模型情况下，会容易避免相互竞争造成的逻辑紊乱。在

OpenFlow1.0中不支持multi-home，因此可以作为扩展来实现。

对于多个控制器之间的相互交互，需要同步以下的信息：

� 内存数据库中的拓扑信息；

� 交换机和主机在数据库中的记录；

� 配置文件；

� 交换机的主控制器；

� 用户数据库。

一般假设在各个节点上的路径计算是各自独立的。如果需要保持一致性，那么路径信息也

需要进行同步。

使用 REST API 的应用在应用和控制器之间采用了非持久性连接，因此，当控制器断线

后，应用将重新发起新的连接。如果在传输中发生失败，则将产生 HTTP 错误并采取纠错行

为。

对于使用 OSGi 框架的应用来说，应用在某个控制器上运行，如果控制器断线，那么应用

也随之停止工作。应用需要自己负责在多个控制器存在时的可靠性和多实例之间的状态同步。

控制器提供集群服务，多个控制器之间可以同步状态和事件。同时提供了交互（transactio

n）API来维护集群中节点之间的交互。

3.4 开发框架概述开发框架概述开发框架概述开发框架概述

包括如下几个部分。

版本管理：git：https://git.opendaylight.org/

代码 review：Gerrit：https://git.opendaylight.org/gerrit/

连续集成：Jenkins：https://jenkins.opendaylight.org/

人工 Repo：Nexus：https://nexus.opendaylight.org/

质量管理：Sonar：https://nexus.opendaylight.org/

Bug跟踪：Bugzilla：http://bugs.opendaylight.org/

Wiki：MediaWiki：https://wiki.opendaylight.org/

整体的代码流如图表 13所示。

图表 13 整体代码流

首先，用户通过认证的 git方式来获取代码；

从开发 Nexus的库中获取需要的依赖；

修改和编写代码；

提交代码；

触发 Jenkins审查；

进行连续集成；

提交 patch；

审查 path；

提交 patch；

合并 patch到 branch中；

触发 Jenkins的合并 CI；

检查需要的新的依赖；

提交新的依赖。

3.5 开发和更新代码开发和更新代码开发和更新代码开发和更新代码

3.5.1 通过通过通过通过 CLI

用 git从库中获取代码：

git clone ssh://<username>@git.opendaylight.org:29418/controller.git

匿名获取代码可以执行：

git clone https://git.opendaylight.org/gerrit/p/controller.git

配置 Gerrit Change-id提交信息。

cd controller

scp -p -P 29418 <username>@git.opendaylight.org:hooks/commit-msg .git/hooks/

chmod 755 .git/hooks/commit-msg

编译代码

cd opendaylight/distribution/opendaylight/

mvn clean install [-DskipTests]

运行控制器

cd target/distribution.opendaylight-0.1.0-SNAPSHOT-osgipackage/opendaylight/

./run.sh

提交代码

git commit --signoff

从代码库获取最新代码：

git pull ssh://<username>@git.opendaylight.org:29418/controller.git HEAD:refs/for/

master

推送代码到代码库：

git push ssh://<username>@git.opendaylight.org:29418/controller.git HEAD:refs/fo

r/master

之后可以登录 Gerrit查看提交信息。

注意：编译整个项目可能需要比较长的时间，如果不需要进行测试，并且不需要清理原先

的编译结果，可以执行

mvn install –DskipTests

更进一步的，如果只是想更新某个 bundle，可以不用编译和停止 OSGi框架，直接进入 bu

nlde子目录，执行 mvn编译，编译成功后将 jar文件复制到整体项目的 plugin目录下，并注意

重命名。此时在 OSGi框架中可以通过 start和 stop命令来重启该 bundle，应用更新。

例如

cd ~/controller/opendaylight/arphandler

mvn clean install

cp target/arphandler-0.4.0-SNAPSHOT.jar ../distribution/opendaylight/target/distrib

ution.opendaylight-0.1.0-SNAPSHOT-osgipackage/opendaylight/plugins/org.openda

ylight.controller.arphandler-0.4.0-SNAPSHOT.jar

3.5.2 通过通过通过通过 Eclipse

3.5.2.1 配置配置配置配置 eclipse

首先通过 git下载代码。

打开 eclipse，安装maven插件。

Eclipse->help->install new software。

添加源 http://download.eclipse.org/technology/m2e/releases，搜索 m2e 和 m2e-slf4j，都安装

1.2.0版本。然后完成安装。

重启 eclipse。

导入 git下载的项目。

Eclipse->file->import->maven-> Existing Maven Projects，找到 opendaylight/distribution/open

daylight目录，完成。如果询问是否安装 Tycho，选择是。

3.5.3 在在在在 OSGi控制台中调用方法控制台中调用方法控制台中调用方法控制台中调用方法

模块可以通过实现 CommandProvider接口来注册自身的方法，让用户通过 OSGi的控制台

命令直接调用。步骤如下（请参考 Switchmanager.implementation）：

在 bundle的 POM.xml文件中的 Import-Package列表中，加入 org.eclipse.osgi.framework.co

nsole和 org.osgi.framework包。

在实现类中，继承 CommandProvider接口。

重载 getHelp()函数，这样在 OSGi控制台输入 help命令的时候会输出相关的提示。

此时，所有类内的 public void _<command_name>(CommandInterpreter ci)格式的函数将被

OSGi控制台中的<command_name>触发。

实现注册方法，并在 start()方法中进行调用。

例如，注册方法为

private void registerWithOSGIConsole() {

 BundleContext bundleContext =

FrameworkUtil.getBundle(this.getClass()).getBundleContext();

 bundleContext.registerService(CommandProvider.class.getName()， this，

null);

 }

3.6 示例应用示例应用示例应用示例应用

3.6.1 Simple Forwarding Application

3.6.2 Statistics Application

3.6.2.1 JAXB 统计客户端统计客户端统计客户端统计客户端

下面介绍一个基于 JAXB的应用，使用了统计模块。

package org.opendaylight.controller.topology;

import java.io.InputStream;

import java.net.URL;

import java.net.URLConnection;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import org.apache.commons.codec.binary.Base64;

import org.opendaylight.controller.sal.reader.FlowOnNode;

import org.opendaylight.controller.statistics.northbound.AllFlowStatistics;

import org.opendaylight.controller.statistics.northbound.FlowStatistics;

public class JAXBStatisticsClient {

 public static void main(String[] args) {

 System.out.println("Starting Statistics JAXB client.");

 String baseURL = "http://127.0.0.1:8080/one/nb/v2/statistics";

 String containerName = "default";

 String user = "admin";

 String password = "admin";

 URL url;

 try {

 url = new java.net.URL(baseURL + "/" + containerName + "/flowstats");

 String authString = user + ":" + password;

 byte[] authEncBytes = Base64.encodeBase64(authString.getBytes());

 String authStringEnc = new String(authEncBytes);

 URLConnection connection = url.openConnection();

 connection.setRequestProperty("Authorization"， "Basic "

 + authStringEnc);

 connection.setRequestProperty("Content-Type"， "application/xml");

 connection.setRequestProperty("Accept"， "application/xml");

 connection.connect();

 JAXBContext context = JAXBContext.newInstance(AllFlowStatistics.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 InputStream inputStream = connection.getInputStream();

 AllFlowStatistics result = (AllFlowStatistics) unmarshaller.unmarshal(inputStream);

 System.out.println("We have these statistics:");

 for (FlowStatistics statistics : result.getFlowStatistics()) {

 System.out.println(statistics.getNode().getNodeIDString());

 System.out.println(statistics.getNode().getType());

 for (FlowOnNode flowOnNode : statistics.getFlowStat()) {

 System.out.println("\t" + flowOnNode.getByteCount());

 System.out.println("\t" + flowOnNode.getDurationNanoseconds());

 System.out.println("\t" + flowOnNode.getDurationSeconds());

 System.out.println("\t" + flowOnNode.getPacketCount());

 System.out.println("\t" + flowOnNode.getTableId());

 System.out.println("\t" + flowOnNode.getFlow());

 }

 }

 } catch (Exception e) {

 System.out.println(e.getLocalizedMessage());

 }

 }

}

下面具体分析代码的工作过程，首先是创建连接，练到统计模块上。

String baseURL = "http://127.0.0.1:8080/one/nb/v2/statistics";

 String containerName = "default";

 String user = "admin";

 String password = "admin";

 URL url;

 try {

 url = new java.net.URL(baseURL + "/" + containerName + "/flowstats");

 String authString = user + ":" + password;

 byte[] authEncBytes = Base64.encodeBase64(authString.getBytes());

 String authStringEnc = new String(authEncBytes);

 URLConnection connection = url.openConnection();

 connection.setRequestProperty("Authorization"， "Basic "

 + authStringEnc);

 connection.setRequestProperty("Content-Type"， "application/xml");

 connection.setRequestProperty("Accept"， "application/xml");

 connection.connect();

为了获取流统计信息，需要创建一个 JAXB 上下文，然后数据被传输到 AllFlowStatistics

对象。

for (FlowStatistics statistics : result.getFlowStatistics()) {

 System.out.println(statistics.getNode().getNodeIDString());

 System.out.println(statistics.getNode().getType());

 for (FlowOnNode flowOnNode : statistics.getFlowStat()) {

 System.out.println("\t" + flowOnNode.getByteCount());

 System.out.println("\t" + flowOnNode.getDurationNanoseconds());

 System.out.println("\t" + flowOnNode.getDurationSeconds());

 System.out.println("\t" + flowOnNode.getPacketCount());

 System.out.println("\t" + flowOnNode.getTableId());

 System.out.println("\t" + flowOnNode.getFlow());

 }

 }

3.6.2.2 Jersey 统计客户端统计客户端统计客户端统计客户端

跟基于 JAXB的统计客户端类似，代码为

package org.opendaylight.controller.topology;

import org.opendaylight.controller.sal.reader.FlowOnNode;

import org.opendaylight.controller.statistics.northbound.AllFlowStatistics;

import org.opendaylight.controller.statistics.northbound.FlowStatistics;

import com.sun.jersey.api.client.Client;

import com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;

public class JerseyStatisticsClient {

 public static void main(String[] args) {

 System.out.println("Starting Topology JAXB client.");

 String baseURL = "http://127.0.0.1:8080/one/nb/v2/statistics";

 String containerName = "default";

 String user = "admin";

 String password = "admin";

 try {

 Client client = com.sun.jersey.api.client.Client.create();

 client.addFilter(new HTTPBasicAuthFilter(user， password));

 AllFlowStatistics result = client.resource(

 baseURL + "/" + containerName + "/flowstats").get(

 AllFlowStatistics.class);

 System.out.println("We have these statistics:");

 for (FlowStatistics statistics : result.getFlowStatistics()) {

 System.out.println(statistics.getNode().getNodeIDString());

 System.out.println(statistics.getNode().getType());

 for (FlowOnNode flowOnNode : statistics.getFlowStat()) {

 System.out.println("\t" + flowOnNode.getByteCount());

 System.out.println("\t"

 + flowOnNode.getDurationNanoseconds());

 System.out.println("\t" + flowOnNode.getDurationSeconds());

 System.out.println("\t" + flowOnNode.getPacketCount());

 System.out.println("\t" + flowOnNode.getTableId());

 System.out.println("\t" + flowOnNode.getFlow());

 }

 }

 } catch (Exception e) {

 System.out.println(e.getLocalizedMessage());

 }

 }

}

下面分析代码过程，首先，也是需要连接到统计模块。

String baseURL = "http://127.0.0.1:8080/one/nb/v2/statistics";

 String containerName = "default";

 String user = "admin";

 String password = "admin";

 try {

 Client client = com.sun.jersey.api.client.Client.create();

 client.addFilter(new HTTPBasicAuthFilter(user， password));

为了获取流信息，需要创建一个 Jersey 客户端对象，数据被存放到 AllFlowStatistics 对象

中。

AllFlowStatistics result = client.resource(

 baseURL + "/" + containerName + "/flowstats").get(

 AllFlowStatistics.class);

AllFlowStatistics对象被转化为一个 FlowStatistics对象，结果从 FlowStatistic对象中获取，

可以通过 get方法来实现。

for (FlowStatistics statistics : result.getFlowStatistics()) {

 System.out.println(statistics.getNode().getNodeIDString());

 System.out.println(statistics.getNode().getType());

 for (FlowOnNode flowOnNode : statistics.getFlowStat()) {

 System.out.println("\t" + flowOnNode.getByteCount());

 System.out.println("\t"

 + flowOnNode.getDurationNanoseconds());

 System.out.println("\t" + flowOnNode.getDurationSeconds());

 System.out.println("\t" + flowOnNode.getPacketCount());

 System.out.println("\t" + flowOnNode.getTableId());

 System.out.println("\t" + flowOnNode.getFlow());

 }

 }

3.6.3 Load Balancer Application

应用可以通过源地址和源端口将流量负载均衡到后端的服务器上。该服务被动的安装流表

规则，将所有的特定来源地址和端口的数据包发送到合适的后端服务器上。该服务可以通过 R

EST API来被外部程序配置。

要使用这个服务，首先所有客户端需要使用一个 VIPP 作为目标地址。VIP 包括虚拟 IP、

端口和协议。

一些前提假设：

� 同一个服务器池可以被分配一个或多个 VIP，但同一个池必须使用同样的均衡策略。

� 对于每一个 VIP，最多分配一个服务器池。

� 所有的流表项默认超时时间为 5秒。

� 到达 VIP的网包在离开 OpenFlow机器的时候必须从进入的交换机离开。

� 删除 VIP、服务器池，或从池中删除一个服务器的时候，服务并不删除之前添加的流

表项，这些流表项通过自动超时来删除。

3.6.3.1 REST API

表格 1 负载均衡服务的 REST API

Descripti

on
URI

T y

pe

Request B

ody/Arguments
Response Codes

List detail

s of all existing

 pools

/one/nb/v2/lb/{container-n

ame*}/

G E

T

200 ("Operation su

ccessful")

404 ("The containerNa

me is not found")
503 "Load balancer serv

ice is unavailable")

List detail

s of all existing

 VIPs

/one/nb/v2/lb/{container-n

ame}/vips

G E

T

200 ("Operation su

ccessful")

404 ("The containerNa

me is not found")
503 ("Load balancer ser

vice is unavailable")

Create po

ol

/one/nb/v2/lb/{container-n

ame}/create/pool

P O

ST

{

"name":""，

"lbmethod":""

}

201 ("Pool created

successfully")

404 ("The containerNa

me not found")

503 ("Load balancer ser

vice is unavailable")

409 ("Pool already exist
")

415 ("Invalid input data

")

Delete po

ol

/one/nb/v2/lb/{container-n

ame}/delete/pool/{pool-name}

D E

LETE

200 ("Pool deleted

successfully")

404 ("The containerNa

me not found")

503 ("Load balancer ser

vice is unavailable")

404 ("Pool not found")

500 ("Failed to delete po

ol")

Create VI

P

/one/nb/v2/lb/{container-n

ame}/create/vip

P O

ST

{

"name":""，

"ip":"ip in (xxx.

xxx.xxx.xxx) fo

rmat"，

"protocol":"TCP

/UDP"，

"port":"any vali

d port number

"，

"poolname":""
(optional)

}

201 ("VIP created s

uccessfully")
404 ("The containerNa

me not found")

503 ("Load balancer ser
vice is unavailable")

409 ("VIP already exists

")

415 ("Invalid input data

")

Update VI
P

/one/nb/v2/lb/{container-n
ame}/update/vip

P U
T

{

"name":""，

"poolname":""

}

201 ("VIP updated

successfully")

404 ("The containerNa

me not found")

503 ("VIP not found")

404 ("Pool not found")

405 ("Pool already attac

hed to the VIP")

415 ("Invalid input nam

e")

Delete VI

P

/one/nb/v2/lb/{container-n

ame}/delete/vip/{vip-name}

D E

LETE

200 ("VIP deleted s

uccessfully")

404 ("The containerNa

me not found")

503 ("Load balancer ser

vice is unavailable")

404 ("VIP not found")

500 ("Failed to delete V

IP")

Create po

ol member

/one/nb/v2/lb/{container-n

ame}/create/poolmember

P O

ST

{

"name":""，

"ip":"ip in (xxx.

xxx.xxx.xxx) fo

201 ("Pool member

 created successfully")

404 ("The containerNa

me not found")

rmat"，

"poolname":"exi

sting pool name

"

}

503 ("Load balancer ser

vice is unavailable")
404 ("Pool not found")

409 ("Pool member alre

ady exists")

415 ("Invalid input data

")

Delete po

ol member

/one/nb/v2/lb/{container-n

ame}/delete/poolmember/{poo

l-member-name}/{pool-name}

D E

LETE

200 ("Pool member

deleted successfully")

404 ("The

containerName not

found")

503 ("Load balancer

service is unavailable")

404 ("Pool member not

found")

404 ("Pool not

found")

3.6.3.2 使用负载均衡使用负载均衡使用负载均衡使用负载均衡

运行控制器，确保 samples.loadbalancer和 samples.loadbalancer.northbound模块都被加载。

运行 mininet，连接到控制器，例如创建包含 16 台主机（10.0.0.1~10.0.0.16/8）的树状拓

扑。

mn --topo=tree，2，4 --controller=remote，ip=<Host IP where controller is runni

ng>，port=6633

在控制器的 web ui中添加网关（同一网段的未占用的 ip），之后各个主机可以互通。

创建轮询策略的负载均衡服务。

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applica

tion/json" -X POST

 http://<Controller_IP>:8080/one/nb/v2/lb/default/create/pool -d

 '{"name":"PoolRR"，"lbmethod":"roundrobin"}'

创建 VIP 10.0.0.20。

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applica

tion/json" -X POST

 http://Controller_IP:8080/one/nb/v2/lb/default/create/vip -d '{"n

ame":"VIP-RR"，"ip":"10.0.0.20"，"protocol":"TCP"，"port":"5550"}'

添加 10.0.0.2和 10.0.0.3到池中。

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applica

tion/json" -X POST

 http://Controller_IP:8080/one/nb/v2/lb/default/create/poolmemb

er -d '{"name":"PM2"，"ip":"10.0.0.2"，"poolname":"PoolRR"}'

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applica

tion/json" -X POST

 http://Controller_IP:8080/one/nb/v2/lb/default/create/poolmemb

er -d '{"name":"PM3"，"ip":"10.0.0.3"，"poolname":"PoolRR"}'

因为 VIP在网络中实际并不存在，无法解析 ARP请求，因此需要手动添加对象的表项。

在 h1上启动 xterm，添加 VIP的mac表项。

arp -s 10.0.0.20 00:00:10:00:00:20

在 h2到 h4上启动 xterm，开启 iperf服务端，例如监听 5550端口（iperf –s –p 5550）。

在 h1上启动 iperf发送请求到 VIP（iperf -c 10.0.0.20 -p 5550）。

此时请求被发送到了 h2，结束后再次发送请求，则被发送到了 h3。

可以通过下面的命令来删除池中的成员

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applic

ation/json" -X DELETE

 http://Controller_IP:8080/one/nb/

v2/lb/default/delete/poolmember/PM2/PoolRR'

删除 VIP。

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applic

ation/json" -X DELETE

 http://Controller_IP:8080/one/nb/v

2/lb/default/delete/vip/VIP-RR

删除资源池。

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: applic

ation/json" -X DELETE

 http://Controller_IP:8080/one/nb/v

2/lb/default/delete/pool/PoolRR

3.7 库函数库函数库函数库函数

3.7.1 C客户端库客户端库客户端库客户端库

C模块能生成 ANSI-C兼容的 C代码，可以跟 libxml2结合，（解）序列化 XML为 REST

资源。

生成的 C代码依赖 XML Reader API和 XML Writer API，以及<time.h>、<string.h>和<stdli

b.h>等标准的 C库。

REST XML例子：

#include <full.c>

 //...

 xmlTextReaderPtr reader = ...; //set up the reader to the url.

 full_ns0_edgeProps *response_element = ...;

 response_element = xml_read_full_ns0_edgeProps(reader);

 //handle the response as needed...

 //free the full_ns0_edgeProps

 free_full_ns0_edgeProps(response_element);

3.7.2 .NET客户端库客户端库客户端库客户端库

.NET客户端库定义了跟 XML相互转化的类。例子：

//read a resource from a REST url

 Uri uri = new Uri(...);

 XmlSerializer s = new XmlSerializer(

 typeof(EdgeProps)

);

 //Create the request object

 WebRequest req = WebRequest.Create(uri);

 WebResponse resp = req.GetResponse();

 Stream stream = resp.GetResponseStream();

 TextReader r = new StreamReader(stream);

 EdgeProps order = (EdgeProps) s.Deserialize(r);

 //handle the result as needed...

3.7.3 Java客户端库客户端库客户端库客户端库

Java客户端库用于访问应用的Web服务 API。

JAX-WS客户端库用于提供可以利用 JAXB跟 XML之间相互转化的 java对象。

Raw JAXB的 REST代码例子：

java.net.URL url = new java.net.URL(baseURL + "/{containerName}");

 JAXBContext context = JAXBContext.newInstance(EdgeProps.class);

 java.net.URLConnection connection = url.openConnection();

 connection.connect();

 Unmarshaller unmarshaller = context.createUnmarshaller();

 EdgeProps result = (EdgeProps) unmarshaller.unmarshal(connection.getInputStrea

m());

 //handle the result as needed...

Jersey客户端的 REST代码例子：

</nowiki>

com.sun.jersey.api.client.Client client = com.sun.jersey.api.client.Client.create();

EdgeProps result = client.resource(baseUrl + "/{containerName}")

 .get(EdgeProps.class);

//handle the result as needed...

</nowiki>

3.7.4 Java JSON客户端库客户端库客户端库客户端库

提供了跟 jackson之间转化的 java对象。代码例子：

java.net.URL url = new java.net.URL(baseURL + "/{containerName}");

 ObjectMapper mapper = new ObjectMapper();

 java.net.URLConnection connection = url.openConnection();

 connection.connect();

 EdgeProps result = (EdgeProps) mapper.readValue(connection.getInputStream()，

 EdgeProps.class);

 //handle the result as needed...

3.7.5 Objective C客户端库客户端库客户端库客户端库

Objective C模块必须生成能用于 libxml2的 Objective C类和序列化相关函数。

生成的 Objective C源代码依赖于 XML Reader API和 XML Writer API，和基本的 OpenStep

基础类。例子：

#import <full.h>

 //...

 FULLNS0EdgeProps *responseElement;

 NSData *responseData; //data holding the XML from the response.

 NSURL *baseURL = ...; //the base url including the host and subpath.

 NSURL *url = [NSURL URLWithString: @"/{containerName}" relativeToURL: baseUR

L];

 NSMutableURLRequest *request = [[NSMutableURLRequest alloc] initWithURL:url];

 NSURLResponse *response = nil;

 NSError *error = NULL;

 [request setHTTPMethod: @"GET"];

 //this example uses a synchronous request，

 //but you'll probably want to use an asynchronous call

 responseData = [NSURLConnection sendSynchronousRequest:request returningRes

ponse:&response error:&error];

 FULLNS0EdgeProps *responseElement = [FULLNS0EdgeProps readFromXML: respo

nseData];

 [responseElement retain];

 //handle the response as needed...

3.8 REST 调用和认证调用和认证调用和认证调用和认证

REST API包括多个模块。同时提供了 HTTP Digest认证的 REST认证。管理员用户可以通

过 web来管理用户。以后将支持 HTTPs，并把 REST API迁移到 HTTP Basic。

3.8.1 Topology REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/top

ology/target/site/wsdocs/index.html。

3.8.2 Host Tracker REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/host

tracker/target/site/wsdocs/index.html。

3.8.3 Flow Programmer REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/flo

wprogrammer/target/site/wsdocs/index.html。

3.8.4 Static Routing REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/stati

crouting/target/site/wsdocs/index.html。

3.8.5 Statistics REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/stati

stics/target/site/wsdocs/index.html。

3.8.6 Subnets REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/sub

nets/target/site/wsdocs/index.html。

3.8.7 Switch Manager REST APIs

https://jenkins.opendaylight.org/controller/job/controller-merge/ws/opendaylight/northbound/swit

chmanager/target/site/wsdocs/index.html。

3.9 Java API

参考自动生成的 javadoc：https://jenkins.opendaylight.org/controller/job/controller-merge/lastS

uccessfulBuild/artifact/opendaylight/distribution/opendaylight/target/apidocs/index.html。

3.10 拓扑拓扑拓扑拓扑

Open Daylight Controller 提供了对物理网络的集中式的逻辑拓扑。并且可以更改转发的规

则。控制器实现拓扑是基于 LLDP消息。

Web UI中可以看到连接到控制器的交换机信息以及主机的信息。

所有拓扑信息是由 Topology Manager来维护的。

3.11 集成测试集成测试集成测试集成测试

第4章 VTN

Virtual Tenant Network项目是 ODP中的一个重要项目，主要负责在 SDN控制器上提供对

多租户虚拟网络的支持。利用该项目，可以很好的让 ODP支持 OpenStack。

4.1 概念概念概念概念

4.1.1 场景场景场景场景

所解决的场景就是现在数据中心网络的场景。不同租户需要运行不同的网络配置和应用程

序，这些需要在同一个物理网络中实现，并且实现资源的共用。如果不使用虚拟网络，则需要

在同一个物理网络中针对不同租户分别配置和管理，情况将变得十分复杂。

图表 14 多租户虚拟网络场景

而在支持虚拟网络的情况下，VTN 提供一个逻辑的抽象层，租户的隔离是在逻辑层上进

行的，底下的物理网络不需要进行太多的改动。对租户来说，看到的都是抽象网络拓扑，不需

要关心具体的物理拓扑结构和具体的网络参数。图表 14中给出了一个场景示例。

而 VTN应用，则负责完成从用户的抽象网络到底下物理网络的映射，并且通过 SDN协议

来负责各个交换节点上的规则配置。

4.1.2 术语术语术语术语

VTN 的基本元素包括虚拟节点（vBridge、vRouter）、虚拟接口和虚拟链路。通过虚拟链

路将虚拟节点上的虚拟接口连接起来，即形成一张虚拟网络。

4.1.2.1 虚拟节点虚拟节点虚拟节点虚拟节点

vBridge：代表一个 L2交换机，实现上可以是同一个物理 VLAN的所有或部分交换机。

vRouter：代表一个路由器。

vTep：代表一个隧道的端点。

vTunnel：一个隧道。

vBypass：受控网络之间的连通性。

4.1.2.2 虚拟接口虚拟接口虚拟接口虚拟接口

interface：表示一个虚拟节点上的一个接口。

4.1.2.3 虚拟链路虚拟链路虚拟链路虚拟链路

vLink：虚拟接口之间的 L1通路。

4.2 物理网映射物理网映射物理网映射物理网映射

如何完成抽象网络和物理网之间的映射是 VTN的核心问题。

具体来说，当一个物理网上的交换机收到网包，VTN 需要知道是哪个逻辑网，反过来完

成转发，还要从逻辑网告知物理网。

映射包括三种方法：

端口映射，利用网包到达的物理交换机 id、端口 id和网包的 VLAN id来映射到一个 vBrid

ge的一个接口上。

VLAN映射，利用网包的 VLAN id来映射到一个 vBridge。或者利用利用到达物理交换机

id和网包 VLAN id来映射一个特定交换机的资源到一个 vBridge。

MAC映射，利用网包的mac地址把物理资源映射到一个 vBridge的一个接口。

此外，VTN 可以学习挂载到交换机上的终端信息，并保存 MAC 地址和 VLAN id 到交换

机的端口的关联信息。当终端断开后，经过超时机制会丢弃该信息。

图表 15 VTN mapping 示例

图表 15 中给出了一个映射的例子。该例中，BR1 的一个接口跟 OFS1 的一个接口相映

射，而 VLAN id为 200的网络，全部被映射为 BR2。

4.3 功能功能功能功能

4.3.1 vBridge

即常规的 L2 交换机功能，根据目的 MAC 进行查表后转发到某个端口。如果不存在表

项，则进行 flooding。

收到网包时，学习源 mac，并且利用超时机制来清除断开的主机。

同时，支持静态配置 mac信息。

4.3.2 vRouter

在 vBridge之间传输 IP网包，支持路由和 ARP。

当一个 IP 地址注册到某个路由器的虚接口的时候，会注册对应的路由信息。支持静态配

置。

同时，为每一个路由域维护一张 arp 表，绑定目标 IP、MAC 地址到虚拟接口上。通过超

时机制来删除过期信息。支持静态配置。

支持 DHCP的传递。

4.3.3 流过滤流过滤流过滤流过滤

类似 ACL。对网包进行简单的允许或禁止通过。规则的配置可以部署到某个接口上。

支持的过滤域包括：Source MAC address， Destination MAC address， MAC ether type， V

LAN Priority， Source IP address， Destination IP address， DSCP， IP Protocol， TCP/UDP sour

ce port， TCP/UDP destination port， ICMP type， ICMP code等。

支持的行动包括 Pass，Drop或 Redirection（包括透明发送过去和修改了mac路由过去）。

图表 16 VTN流过滤示例

图表 16中给出了一个示例。在 BR1上进行过滤。

4.3.4 多控制器合作多控制器合作多控制器合作多控制器合作

VTN支持多个控制器之间的合作配置，支持动态添加控制器和删除控制器。

例如，每个控制器上配置一个 VTN，但集成为一个单独的 VTN提供统一的策略。

VTN支持同时管理 OpenFlow的网络和 Overlay的网络。

4.3.4.1.1 OpenFlow网络和网络和网络和网络和 L2/L3网络协作网络协作网络协作网络协作

如果网络中混合有支持 OpenFlow的交换机和传统的 L2/L3交换机，在 VTN中传统交换设

备作为 vBypass存在。注意在 vBypass上无法配置过滤策略。

4.3.5 北向北向北向北向 API

VTN提供了 rest API，因此用户可以通过 web操作来对 VTN资源进行管理。支持 Json和

Xml格式。

架构如图表 17所示。

图表 17 VTN北向 API

支持的操作如表格 2所示：

表格 2 北向 API支持操作

Resources GET POST PUT DELETE

VTN Yes Yes Yes Yes

vBridge Yes Yes Yes Yes

vRouter Yes Yes Yes Yes

vTep Yes Yes Yes Yes

vTunnel Yes Yes Yes Yes

vBypass Yes Yes Yes Yes

vLink Yes Yes Yes Yes

Interface Yes Yes Yes Yes

Port map Yes No Yes Yes

Vlan map Yes Yes Yes Yes

Flowfilter (ACL/redirect) Yes Yes Yes Yes

Controller information Yes Yes Yes Yes

Physical topology information Yes No No No

Alarm information Yes No No No

4.3.5.1 北向北向北向北向 API 例子例子例子例子

创建 VTN

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'passwo

rd: PASSWORD' -H 'ipaddr: 127.0.0.1' \

 -d '{"vtn":{"vtn_name":"VTN1"}}' http://172.1.0.1:8080/vtn-webapi/vtns.json

创建控制器信息

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'passwo

rd: PASSWORD' -H 'ipaddr: 127.0.0.1' \

 -d '{"controller": {"controller_id":"CONTROLLER1","ipaddr":"172.1.0.1","type":"pfc","u

sername":"root", \

 "password":"PASSWORD","version":"5.0"}}' http://172.1.0.1:8080/vtn-webapi/control

lers.json

创建 vBridge

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'passwo

rd: PASSOWRD' -H 'ipaddr: 127.0.0.1' \

 -d '{"vbridge":{"vbr_name":"VBR1","controller_id": "CONTROLLER1","domain_id": "(

DEFAULT)"}}' \

 http://172.1.0.1:8080/vtn-webapi/vtns/VTN1/vbridges.json

创建接口，连接到 vBridge上的一个终端上

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'passwo

rd: PASSWORD' -H 'ipaddr: 127.0.0.1' \

-d '{"interface":{"if_name":"IF1"}}' http://172.1.0.1:8080/vtn-webapi/vtns/VTN1/vbrid

ges/VBR1/interfaces.json

4.4 安装安装安装安装

VTN Coordinator运行在 ODC（OpenDaylight Controller）之外，而 VTN Manager作为一

个 bundle，运行在控制器中。因此，一般推荐分别安装两者到不同机器。

另外，VTN Coordinator的 web端口默认是 8080，与 ODC冲突，需要进行修改：

[root@tsukemen conf]# pwd

/usr/share/java/apache-tomcat-7.0.39/conf

[root@tsukemen conf]# diff -u server.xml.org server.xml

--- server.xml.org 2013-08-08 09:53:53.748971829 +0900

+++ server.xml 2013-08-08 09:15:39.012970589 +0900

@@ -68,13 +68,13 @@

 APR (HTTP/AJP) Connector: /docs/apr.html

 Define a non-SSL HTTP/1.1 Connector on port 8080

 -->

- <Connector port="8080" protocol="HTTP/1.1"

+ <Connector port="8081" protocol="HTTP/1.1"

 connectionTimeout="20000"

 redirectPort="8443" />

 <!-- A "Connector" using the shared thread pool-->

 <!--

 <Connector executor="tomcatThreadPool"

- port="8080" protocol="HTTP/1.1"

+ port="8081" protocol="HTTP/1.1"

 connectionTimeout="20000"

 redirectPort="8443" />

 -->

4.4.1 VTN Coordinator安装运行安装运行安装运行安装运行

4.4.1.1 准备准备准备准备

以 redhat os为例。需要 RHEL6.1或更新的版本。

安装必要的程序包。

yum install make glibc-devel gcc gcc-c++ boost-devel openssl-devel \

 ant perl-ExtUtils-MakeMaker unixODBC-devel perl-Digest-SHA uuid libxslt libcurl

 libcurl-devel git

安装 JDK7，并且设置 JAVA_HOME环境变量。

yum install java-1.7.0-openjdk-devel

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk.x86_64

从 http://yum.postgresql.org/9.1/redhat/rhel-6-x86_64 安装 postgreSQL（ubuntu下直接包安装

postgresql即可）

postgresql91-libs-9.1.9-1PGDG.rhel6.x86_64.rpm

postgresql91-9.1.9-1PGDG.rhel6.x86_64.rpm

postgresql91-server-9.1.9-1PGDG.rhel6.x86_64.rpm

postgresql91-contrib-9.1.9-1PGDG.rhel6.x86_64.rpm

postgresql91-odbc-09.00.0310-1PGDG.rhel6.x86_64.rpm

安装maven。

安装 gtest-devel，json-c（ubuntu下包安装 libgtest-dev和 libjson0-dev）。

wget http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

rpm -Uvh epel-release-6-8.noarch.rpm

yum install gtest-devel json-c json-c-devel

4.4.1.2 编译编译编译编译

下载代码。

git clone ssh://<username>@git.opendaylight.org:29418/vtn.git

编译，并安装 VTN Coordinator

cd vtn/coordinator

mvn -f dist/pom.xml package

sudo make install

4.4.1.3 运行运行运行运行

安装 Tomcat，从 http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.39/bin/apache-tomcat-7.0.

39.tar.gz下载后解压到/usr/share/java。

tar zxvf apache-tomcat-7.0.39.tar.gz -C /usr/share/java

配置 Tomcat：

创建软连接

ln -s /usr/local/vtn/tomcat/webapps/vtn-webapi /usr/share/java/apache-tomcat-7.0.

39/webapps/vtn-webapi

添加下面的路径到/usr/share/java/apache-tomcat-7.0.39/conf/catalina.properties文件的 commo

n.loader。

/usr/local/vtn/tomcat/lib,/usr/local/vtn/tomcat/lib/*.jar

添加下面的路径到/usr/share/java/apache-tomcat-7.0.39/conf/catalina.properties文件的 shared.l

oader。

/usr/local/vtn/tomcat/shared/lib/*.jar

添加下面的路径到/usr/share/java/apache-tomcat-7.0.39/conf/server.xml文件的<Server>。

<Listener className="org.opendaylight.vtn.tomcat.server.StateListener" />

配置 DB。

/usr/local/vtn/sbin/db_setup

4.4.1.3.1 启动和停止启动和停止启动和停止启动和停止

启动 VTN Coordinator和 Tomcat：

/usr/local/vtn/bin/vtn_start

/usr/share/java/apache-tomcat-7.0.39/bin/catalina.sh start

如果要停止，执行下面的命令：

/usr/share/java/apache-tomcat-7.0.39/bin/catalina.sh stop

/usr/local/vtn/bin/vtn_stop

4.4.1.3.2 WebAPI

启动 VTN Coordinator后，通过下面的命令可以获取版本信息。

$ curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'passwor

d: adminpass' -H 'ipaddr:127.0.0.1' http://127.0.0.1:8080/vtn-webapi/api_version.json

{"api_version":{"version":"V1.0"}}

4.4.2 VTN Manager安装运行安装运行安装运行安装运行

4.4.2.1 准备准备准备准备

VTN Manager作为 ODC的一个 bundle，因此只要能满足 ODC的运行环境即可（主要是 J

ava1.7环境）。

4.4.2.2 编译编译编译编译

下载最新的代码：

git clone ssh://<username>@git.opendaylight.org:29418/vtn.git

编译代码：

cd ${VTN_DIR}

mvn -f manager/dist/pom.xml install

4.4.2.3 运行运行运行运行

运行命令为：

cd ${VTN_DIR}/manager/dist/target/distribution.vtn-manager-0.1.0-SNAPSHOT-osgi

package/opendaylight

./run.sh

4.4.2.3.1 REST API

创建虚拟租户网络：

curl --user "admin":"admin" -H "Accept: application/json" -H \

"Content-type: application/json" -X POST \

http://localhost:8080/controller/nb/v2/vtn/default/vtns/Tenant1 \

-d '{"description": "My First Virtual Tenant Network"}'

查看所有租户：

curl --user "admin":"admin" -H "Accept: application/json" -H \

"Content-type: application/json" -X GET \

http://localhost:8080/controller/nb/v2/vtn/default/vtns

4.4.2.3.2 使用使用使用使用mininet

使用mininet来运行多个控制器，多个控制器需要在 VTN Coordinator的管理下，因此使用

mininet 的 multitree.py脚本来模拟多个控制器的网络。这个脚本将启动 6台交换机，和两个控

制器，各负责管理 3台交换机。

编辑脚本中的 ControllerAddress，之后执行脚本：

% sudo python multitree.py

该脚本的源代码为：

#!/usr/bin/python

"""

Run Mininet network using tree topology per remote controller.

"""

from mininet.cli import CLI

from mininet.log import info, setLogLevel

from mininet.net import Mininet

from mininet.node import Host, OVSKernelSwitch, RemoteController

from mininet.topo import Topo

TreeDepth = 2

FanOut = 2

ControllerAddress = ["192.168.0.180", "192.168.0.181"]

class MultiTreeTopo(Topo):

 """Topology for multiple tree network using remote controllers.

 A tree network is assigned to a remote controller."""

 def __init__(self):

 Topo.__init__(self)

 self.hostSize = 1

 self.switchSize = 1

 self.treeSwitches = []

 prev = None

 for cidx in range(len(ControllerAddress)):

 switches = []

 self.treeSwitches.append(switches)

 root = self.addTree(switches, TreeDepth, FanOut)

 if prev:

 self.addLink(prev, root)

 prev = root

 def addTree(self, switches, depth, fanout):

 """Add a tree node."""

 if depth > 0:

 node = self.addSwitch('s%u' % self.switchSize)

 self.switchSize += 1

 switches.append(node)

 for i in range(fanout):

 child = self.addTree(switches, depth - 1, fanout)

 self.addLink(node, child)

 else:

 node = self.addHost('h%u' % self.hostSize)

 self.hostSize += 1

 return node

 def start(self, net):

 """Start all controllers and switches in the network."""

 cidx = 0

 for c in net.controllers:

 info("*** Starting controller: %s\n" % c)

 info(" + Starting switches ... ")

 switches = self.treeSwitches[cidx]

 for sname in switches:

 s = net.getNodeByName(sname)

 info(" %s" % s)

 s.start([c])

 cidx += 1

 info("\n")

 self.treeSwitches = None

class MultiTreeNet(Mininet):

 """Mininet network environment with multiple tree network using remote

 controllers."""

 def __init__(self, **args):

 args['topo'] = MultiTreeTopo()

 args['switch'] = OVSKernelSwitch

 args['controller'] = RemoteController

 args['build'] = False

 Mininet.__init__(self, **args)

 idx = 1

 for addr in ControllerAddress:

 name = 'c%d' % idx

 info('*** Creating remote controller: %s (%s)\n' % (name, addr))

 self.addController(name, ip=addr, port=6633)

 idx = idx + 1

 def start(self):

 "Start controller and switches."

 if not self.built:

 self.build()

 self.topo.start(self)

if __name__ == '__main__':

 setLogLevel('info') # for CLI output

 net = MultiTreeNet()

 net.build()

 print "*** Starting network"

 net.start()

 print "*** Running CLI"

 CLI(net)

 print "*** Stopping network"

 net.stop()

4.5 虚拟化版本虚拟化版本虚拟化版本虚拟化版本

ODC的虚拟化版本中包括了 vtn的 manager，因此，我们可以通过运行虚拟化版本来使用

vtn。

直接下载完整版 ODC，并运行控制器，并制定虚拟化版本参数。

* cd opendaylight

 * ./run.sh -virt vtn

4.5.1 安装安装安装安装 VTN Coordinator

将 vtn coordinator的压缩包作为虚拟化版本的外部 app使用。

cd opendaylight/externalapps

tar -C / -jxvf org.opendaylight.vtn.distribution.vtn-coordinator-5.0.0.0-<date_time_b

uild_ref>-bin.tar.bz2

该命令将安装 Coordinator到/usr/local/vtn路径。

4.5.2 运行运行运行运行 VTN Coordinator

参考 4.4.1VTN Coordinator安装运行。

4.6 实现实现实现实现

4.6.1 整体架构整体架构整体架构整体架构

图表 18 VTN整体架构

图表 18给出了 VTN项目的整体架构。

主要包括两大部分：VTN Coordinator和 VTN Manager。

其中 VTN Coordinator为 VTN的应用程序提供北向的 REST API支持，同时负责组织协调

底下的若干控制器。

VTN Manager作为控制器的一个 bundle，运行在 OSGi框架下，为 VTN Coordinator提供

具体的虚拟化网络功能支持。

4.6.2 VTN Manager

4.6.3 VTN Coordinator

图表 19描绘了 VTN Coordinator的整体架构。

图表 19 VTN Coordinator整体架构

包括的主要组件有

VTN API：提供 VTN的北向Web API

TC：两步提交模块

UPPL：物理网的管控模块

UPLL：虚拟网的管控模块

ODC Driver：控制器接口模块

4.6.3.1 VTN API

架构如图表 20所示。

图表 20 VTN API架构

包括两个子模块：Web Server和 VTN Service Java API库。

前者处理 VTN 的应用程序发来的 REST请求，并将这些请求转化为对应的 Java API，该

模块的主要功能包括：通过启动脚本 catalina.sh启动；VTN应用程序通过 Json或 XML格式发

送 HTTP请求；创建一个 session，并获取读写锁；调用对应的 VTN Service Java API；返回响

应到 VTN应用。

后者提供了调用底层 Java模块的 API，主要功能包括：创建一个面向底层的 IPC客户端 s

ession；将请求转化为 IPC框架格式；调用底层的 API（包括 UPPL，UPLL，TC的 API等）；

从底层返回应答给Web服务器。

表格 3 VTN Coordinator Web Server中的类

Class Name Description

InitManager

It is a Singleton class for executing the acquisition of configuration

information from properties file, log initialization, initialization of VTN

Service Java API.

Executed by init() of VtnServiceWebAPIServlet.

ConfigurationManager
Class to maintain the configuration information acquired from

properties file.

VtnServiceCommonUtil Utility class.

VtnServiceWebUtil Utility class.

VtnServiceWebAPIServlet

Receives HTTP request from VTN Application and calls the method of

corresponding VtnServiceWebAPIHandler.

Inherits class HttpServlet, and overrides doGet(), doPut(), doDelete(),

doPost().

VtnServiceWebAPIHandler
Creates JsonObject(com.google.gson) from HTTP request, and calls

method of corresponding VtnServiceWebAPIController.

VtnServiceWebAPIController

Creates RestResource() class and calls UPLL API/UPPL API through

Java API.

At the time of calling UPLL API/UPPL API, performs the

creation/deletion of session, acquisition/release of configuration mode,

acquisition/release of read lock by TC API through Java API.

DataConverter
Class to covert from HTTP request to JsonObject and from JsonXML to

JSON.

表格 4 VTN Coordinator Service Java API库中的类

Class Name Description

VtnServiceInitManager
It is a Singleton class for executing the acquisition of configuration

information from properties file, log initialization.

Executed by init() of Web API Servlet.

VtnServiceConfiguration
Class to maintain the configuration information acquired from

properties file.

IpcConnPool Class that mains Connection pool of IPC.

IpcChannelConnection Class that mains Connections of IPC.

RestResource

The class that will be interface for Web API Servlet.

Implementation of Interface VtnServiceResource.

AnnotationReflect
Performs the mapping of path filed value of RestRsource class and

xxxResource class.

xxxResource

The class that is created according to the path filed value of

RestResource.

(vtnResource, VBridgeResource etc) Inherits abstract class

AbstractResource.

xxxResourceValidator

CommonValidator

The class that performs the appropriateness check of values specified

in the path, query, request field of RestResource class.

IpcPhysicalResponseFactory
The class to create JsonObject from the response received

from UPPL.

IpcRequestProcessor

Sends request to UPLL/UPPL through proprietary IPC

Framework. UPLL API and UPPL API are the API that are

implemented on proprietary IPC Framework, and request/response is

defined by special interface called as Key Interface.

IpcRequestPacket The class that maintains the request to be sent to UPLL/UPPL.

IpcStructFactory
The class to create Key Structure and Value Structure that will be

included in the Request to be sent to UPLL /UPPL.

4.6.3.2 TC

提供两步提交协调功能，包括两个子组件：Transaction Coordinator和 Transaction Coordina

tor Library。

图表 21 VTN Coordinator TC模块组件

其中，前者支持功能包括：启动时候从 uncd daemon 启动；响应 VTN 中的两步提交操

作；在提交和审计操作时从 VTN 服务接收请求；通过 IPC框架来调用底层的 TCLIB API（UP

LL、UPPL或 ODC Driver API）。

后者作为 UPLL，UPPL和 ODC Driver daemon的一个模块被加载；负责处理从 TC发给 d

aemon 的消息；这些 daemon 将安装他们的句柄到 TCLIB，这些句柄在收到 TC 的消息时被调

用。

表格 5 VTN Coordinator TC模块的类

Class Name Description

TcModule
Main interface which offers the services to VTN Service library. It also handles

state transitions.

TcOperations Base class that services every operation request in TC.

TcMsg

The message to be sent for every operation has different characteristics based on

the type of message.

This base class will provide methods to handle different types of messages to the

intended recipients.

TcLock
The exclusion control class, an object of TcLock is contained in TcModule and

used for every operation.

TcDbHandler Utility class for TC database operations.

TcTaskqUtil Utility class for taskq used in TC for driver triggered audit and read operations.

表格 6 VTN Coordinator TCLIB模块的类

Class Name Description

TcLibModule Main class which handles requests from TC module.

TcLibInterface
Abstract class which every module implements to interact with TC module. Member

of TcLibModule.

TcLiBMsgUtil Internal utility class for extracting session attributes of every request from TC.

4.6.3.3 UPPL

提供对物理网络的管控，如图表 22所示。

图表 22 VTN Coordinator UPPL模块示意

启动是通过 phynwd daemon；通过 IPC框架跟 TC、UPLL和 ODC Driver进行交互；从 VT

N Service获取各种 CRUD请求；在外部数据库中维护启动信息和配置、状态信息；在 TC的指

示下进行 setup/commit/abort操作；通过 ODC Driver连接到南向的控制器；利用控制器的通知

创建物理拓扑；通知 UPLL关于控制器添加、删除等操作和物理拓扑的改变。

表格 7 VTN Coordinator UPPL模块中的类

Class Name Description

PhysicalLayer

It’s a singleton class which will instantiate other UPPL’s classes. This

class will be inherited from base module in order to use the Core

features and IPC service handlers.

PhysicalCore

Class that is responsible for processing requests from TC. It also

processes the configuration and capability file. It’s also responsible

for sending alarm to node manager. It’s responsible for receiving

requests from north bound.

IPCConnectionManager

It’s responsible for processing the requests received via IPC

framework. It contains separate classes to process request

from VTN service, UPLL and ODC Driver.

ODBCManager It is a singleton class which performs all database services.

InternalTransactionCoordinator It is responsible for parsing the IPC structures and forward it to the

various request classes like ConfigurationRequest, ReadRequest,

ImportRequest etc.

ConfigurationRequest
It is responsible to process the Create, Delete and Update

operations received from VTN service.

ReadRequest It is responsible to process all the read operations.

Kt_Base, Kt_State_Base and

respective Kt classes

These classes perform the functionality required for individual key

type.

TransactionRequest

It is responsible for performing the various functions required for

each phase of the Transaction Request received from Transaction

Coordinator during User Commit/Abort.

AuditRequest It is responsible for performing functions related to audit request.

ImportRequest It is responsible for performing functions related to import request.

SystemStateChangeRequest
It is responsible for performing functions when VTN coordinator state

is moved to active or standby.

DBConfigurationRequest
It is responsible for processing various Database operations like

Save/Clear/Abort

4.6.3.4 UPLL

提供对虚拟网的监控。包括 UPLL和 DAL。

如图表 23所示。

图表 23 UPLL在架构中的位置

主要功能包括：在启动时候被 lgcnwd daemon启动；通过 IPC框架分别跟 TC、UPPL和 O

DC Driver 进行交互；通过 VTN 服务接受对虚拟网络的 CURD 请求；在外部数据库维护启

动、运行配置和状态信息等数据；在 TC指导下进行 Setup/Commit/Abort等操作；通过 ODC D

river来连接到南向的控制器；维护从控制器传来的虚拟网拓扑相关信息；为虚拟网配置提供审

计和导入。

此外，DAl模块实现了对数据库的抽象层。

4.6.3.5 ODC Driver

ODC Driver模块提供监控虚拟网络和控制器的物理网络，在 VTN Coordinator的启动时被

启动，主要包括常规驱动框架（Common Driver Framework，CDF）和 ODC Driver。

如图表 24所示。

图表 24 ODC Driver在架构中位置

主要是面向 UPLL和 UPPL，提供独立于控制器的一层。

功能包括：处理收到的 UPLL和 UPPL的消息；提供驱动接口来在控制器上执行命令；提

供对不同类型控制器的支持；解析消息和出发驱动方法；为不同驱动提供接口来安装命令句

柄；提供封装，简化 vote和 commit操作的操作；支持在多个控制器上的并行更新；可以扩展

支持多个驱动模块。

CDF是基于 vtndrvintf和 vtncacheutil实现的。

ODC Driver 模块实现了控制器管理和在控制器中提供虚拟网支持的接口。上层发来的请

求将被转化为合适的 REST API调用，然后发给控制器。转换 VTN的操作为 VTN Manager的

命令。

ODC Driver主要由 restjsonutil、odcdriver两个子模块实现。前者是提供对 JSON的解析处

理；后者实现了 CDF开放的接口，并为 ODC注册驱动，同时使用 restjsonutil来通信。

4.6.4 VTN Coordinator REST Reference

遵循 REST的一般使用规则。

POST为创建新资源，PUT为更新，GET为获取，DELETE为删除。

请求头需要的信息如表格 8所示。

表格 8 VTN Coordinator REST头部信息

域 POST PUT GET DELETE

username Y Y Y Y

password Y Y Y Y

Accept N N N N

Content-Type Y Y N N

Content-Length Y Y N N

Host Y Y Y Y

Filename: OpenDaylight指南.docx

Directory: E:\My Documents\GitHub\tech_writing\SDN

Template:

 C:\Users\IBM_ADMIN\AppData\Roaming\Microsoft\Templates\N

ormal.dot

Title: Floodlight Notes

Subject:

Author: baohua

Keywords:

Comments:

Creation Date: 2013/5/7 15:07:00

Change Number: 3

Last Saved On: 2014/2/19 13:30:00

Last Saved By: ibm

Total Editing Time: 194 Minutes

Last Printed On: 2014/2/19 13:30:00

As of Last Complete Printing

 Number of Pages: 54

 Number of Words: 9,299 (approx.)

 Number of Characters: 53,005 (approx.)

