WHITEPAPER

N
\ 4
= * A
. L
- N 7 | 2
B N
. 4] \
ca— + + S
-
i
Softwar(_e Defined Introducing ONOS - a SDN network operating system for
Networking (SDN) Service Providers

This whitepaper describes ONOS, a SDN network operating system designed for high
availability, performance, scale-out and rich abstractions.

ON.LAB

SUMMARY

The Open Network Operating System (ONOS) is the first open source SDN network operating
system targeted specifically at the Service Provider and mission critical networks. ONOS is purpose
built to provide the high availability (HA), scale-out, and performance these networks demand. In
addition, ONOS has created useful Northbound abstractions and APIs to enable easier application
development and Southbound abstractions and interfaces to allow for control of OpenFlow-ready
and legacy devices. Thus, ONOS will

e bring carrier grade features (scale, availability, and performance) to the SDN control plane
» enable Web style agility

* help service providers migrate their existing networks to white boxes

* lower service provider CapEx and OpEx

ONOS has been developed in concert with leading service providers (AT&T, NTT Communications),
with demanding network vendors (Ciena, Ericsson, Fujitsu, Huawei, Intel, NEC), R&E network
operators (Internet2, CNIT, CREATE-NET), collaborators (SRI, Infoblox), and with ONF to validate its
architecture through real world use cases.

THE SERVICE PROVIDER NEED

The proliferation of mobile devices, OTT services and distribution of content across the cloud have
pushed Service Provider networks to a point where they are in urgent need of reinvention. Service
Providers want to make their networks agile and efficient in order to meet the challenges of these
exponential bandwidth demands and want to be able to create revenue streams with innovative
services and new business models.

SDN AND ONOS TO THE RESCUE

In just a short time, Software Defined Networking (SDN) has become the technology of choice for
enabling mobility, virtualization, and the Cloud. Storage and compute have been virtualized for
years, yet one could not capture the full value of these advancements because the network is what
enables the value to be unlocked - it is the fabric that connects them together and to applications.

The key SDN concept that enables similar network innovation is the separation of the control plane
from the data plane in vertically integrated network devices. A non-proprietary protocol such as
OpenFlow allows the control plane to program the data plane in a much more open and efficient
way. In addition, this separation allows network hardware and software to evolve independently
and facilitates the replacement of expensive, proprietary hardware and firmware with commodity
hardware and open source software. Having an operating system that manages network resources
and provides the abstractions and APIs for managing, monitoring, and programming network
devices greatly simplifies the creation of innovative and beneficial network applications and
services that operate across a wide range of hardware. Open Network Operating System (ONOS)
was created to be this operating system and has the following goals:
» Liberate network application developers from knowing the intricacies of proprietary
hardware.
» Allow network operators to break free from the operational complexities of proprietary
interfaces and protocols.
* Re-enable innovation to happen for both network hardware and software, independently,
on their own time scales.

WHY A NETWORK OPERATING SYSTEM?

There are many open source SDN controllers; it is therefore reasonable to ask “Why ONOS, and
why a network 0S?”. Collaborators at Stanford, Berkeley, and Nicira Networks developed several
open source controllers during the past seven years, including NOX, Beacon, SNAC and POX. These
controllers were designed to explore and demonstrate SDN potential. Much was learned from
working with these controllers and by building the applications and demonstrations they enabled.
However, it is important to understand these controllers were not designed to be a foundation for
commercial products. They don’t have the key features such as scalability, high availability, and
performance. Moreover, they have primitive programming and device-oriented abstractions.

These controllers fundamentally relayed OpenFlow messages directly to applications, and
applications directly created OpenFlow messages for the network devices. In this way, these
controllers are more like device drivers. They are not designed to have the critical scalability,
availability and performance features of a complete SDN control platform. What is needed is a
network OS - ONOS has been created to fulfill this need.

Recall that an operating system is responsible for the following functions:

* It manages finite resources on behalf of resource consumers. In doing so, it ensures that all
consumers have appropriate access - none is starved, all are handled fairly.

» Itisolates and protects NOS users from each other - each user appears to have access to a
full set of resources. It multiplexes between multiple applications and multiple devices. It
may also virtualize some or all of the resources to allow consumers their own virtual
instantiation of the OS.

* It provides useful abstractions to enable users to more easily consume services and
resources managed by the operating system, without having to understand all of the
complexity. It provides mechanisms for different devices to be easily added to and
controlled by the operating system without requiring the application to change.

» It provides security from the external world to the users of the operating system.

* It supplies useful services so that users of the operating system don’t have to build and
rebuild the same services.

These are exactly the things needed by applications running on a network. A controller is typically
too limited in scope - it sets out to control a device. It does not necessarily provide useful
abstractions; it does not necessarily protect different controller users from each other; it does not
provide additional useful services. ONOS sets out to provide all of the functionality of an operating
system - not just the functionality of a controller. How does ONOS accomplish this? By architecting
the software with service provider features.

ONOS ARCHITECTURE

ONOS has been architected from the beginning with the service provider in mind. High Availability,
Scale-out, and Performance are fundamental, as are powerful abstractions at the Northbound and
Southbound interfaces.

The following are the defining features of ONOS:

Distributed Core that provides scalability, high availability, and performance - bring
carrier grade features to the SDN control plane. The ability of ONOS to run as a cluster is
one way that ONOS brings web style agility to the SDN control plane and to service
provider networks.

Northbound abstraction/APIs that include network graph and application intents to ease
development of control, management, and configuration services. This abstraction is
another good example of how ONOS brings web style agility to the SDN control plane and
to service provider networks.

Southbound abstraction/APIs that enable pluggable southbound protocols for
controlling both OpenFlow and Legacy devices. The southbound abstraction insulates the
core of ONOS from the details of different devices and protocols. The southbound is a key
enabler for migration from legacy devices to OpenFlow-based white boxes.

Software Modularity makes it easy to develop, debug, maintain, and upgrade ONOS as a
software system by a community of developers and by the providers.

Each of these architectural features is described in more detail in the following sections.

DISTRIBUTED CORE

ONOS is deployed as a service on a cluster of servers, and the same ONOS software runs on each
server. Deployment symmetry is an important design consideration as it enables rapid failover in
the event of an ONOS server failure. The network operator can add servers incrementally,
without disruption, as needed for additional control plane capacity. The ONOS instances work
together to create what appears to the rest of the network and applications as a single platform.
Applications and network devices do not have to know if they are working with a single instance
or with multiple instances of ONOS. This feature makes ONOS scalable — one can scale ONOS
capacity seamlessly. It is the Distributed Core that does the heavy lifting to realize these
capabilities.

Applications 0D oo

ONOS
instances

Physical
network

Figure 1. Distributed Core

The distributed core provides messaging, state management and leader election services to and
between instances. As a result, multiple instances behave as a single logical entity. Using high
speed messaging in a publish/subscribe model, instances can quickly inform other instances of
updates. Built into ONOS are recovery protocols for dealing with updates that are lost due to
instance failures. A variety of operational state is managed between instances using several
mechanisms - each being appropriate for the type of state. Three examples include the application
intents, the topology database, and the flow tables - each has unique size, read/write pattern, and
durability requirements. A leader election service ensures that switches have one and only one
master instance. Together, the messaging, state management, and leader election mechanisms
enable high throughput, low latency, and high availability of the cluster.

What does this mean? For devices, they will always have a single master and if the master goes
down, they will be able to connect to another instance without having to recreate and
resynchronize the flow tables. For applications, they can count on having a consistent view of the
network through the network graph abstraction. In addition, a failure of an instance or a failure in
the data plane is transparent to the application. These both greatly simplify application
development and error handling.

From a business perspective, it brings a very highly available environment so that applications
do not experience network-related downtime. It also means that the service provider can easily
add control plane capacity as the network grows, without disruption to the network. Through
the same mechanism, the network operator also has the capability to update software with
zero system downtime by taking an instance offline, upgrading it, and bringing it back online.

In summary, the distributed core is the key architectural feature of ONOS that brings carrier
grade features to the SDN control plane.

NORTHBOUND ABSTRACTIONS

There are two powerful Northbound abstractions: the Intent Framework and the Global
Network View.

The Intent Framework allows an application to request a service from the network without
having to know details of how the service will be performed. This allows network operators as
well as application developers to program the network at a high level; they can simply specify
their intent: a policy statement or connectivity requirement.

Some example intents:
» Set up a connection between Host A and Host B
e Set up an Optical Path from Switch X to Switch Y with Z amount of bandwidth
» Don’t allow host A to talk to host B

Flexible and intuitive northbound
abstraction and interface for DevOps

to define what they need without ’ “Provision 10G path from
worrying about how. ‘ DC1 to DC2 optimized for
= & cost”
Highly available, Scalable Application Intent Framework:
Network Agnostic APIs, Policy Enforcement, Conflict resolution

Distributed Core

Intents translated and

Compiled into specific Southbound
instructions for network
Devices. .
OpenFlow NetConf Solutth ?ound
nterface

T —
u

Figure 2. Intent Framework

The Intent Framework takes such requests from all applications, figures out which ones can
and cannot be accommodated, resolves conflicts between applications, applies policies set by
an administrator, programs the network to provide the requested functionality, and delivers
the requested services to the application.

An intent is translated into multiple objectives - for example, an intent to have a connection
between two hosts translates into two objectives, each providing one direction of flow. The
objectives are compiled into instructions that are sent to the network devices. This process is
done under the control of policies specified by the network operator and in a way that resolves
conflicts between different intents.

The Global Network View provides the application with a view of the Network - the hosts,
switches, links, and any other state associated with the network such as utilization. An
application can program this network view through APIs. One API lets an application look at
the view as a network graph. Some examples of what can be done with the network graph
include:
» create a simple application to calculate shortest paths since the application already has
a graphical view of the network
* maximize network utilization by monitoring the network view and programming
changes to paths to adjust load (traffic engineering)
» steer traffic away from a part of the network that is being upgraded or that is being
quarantined for a virus.
Technically, the northbound abstractions and APIs insulate applications from details of the
network that are not needed by the application. The abstractions can also insulate applications
from network events (like link down) when desired by the application. Conversely, it insulates

the operating system from the applications allowing the operating system to do its job of
managing requests from multiple, competing applications. From a business perspective, this
increases application development velocity and allows network changes without application
downtime.

SOUTHBOUND ABSTRACTIONS

The southbound abstraction is built using network elements, such as switches, hosts, or links. The
southbound abstraction of ONOS represents each network element as an object in a generic
form. Through this abstraction, the distributed core can maintain the state of the network
element without having to know the specifics of the element represented by the underlying
driver. In effect, it allows the core to be southbound protocol and device agnostic. The network
element abstraction is also what allows addition of new devices and protocols. ONOS and its
southbound abstraction allow plug-ins for various southbound protocols and devices, where a
plug-in maps or translates generic network element description or operation on the device to the
specific and vice-versa. Thus the southbound enables ONOS to control or manage multiple diverse
devices, even if they use different protocols (OpenFlow, NetConf, etc.).

Architecturally, the southbound is composed of the layers shown in figure 3. At the bottom are
the network devices or elements. ONOS interacts with devices through protocols. The protocol
specifics are abstracted away by the network element plug-in or adapter. As a result, the core of
the southbound can maintain its network element objects (devices, hosts, links) without having to
know the specifics of the protocols and network elements. Through the adapter API, the
distributed core is kept up to date on the status of the network element objects. The adapter API
insulates the distributed core from having to know details about protocols and network elements.

The main benefits of the southbound abstractions include:
« ability to manage different devices using different protocols - without effect on the
distributed core of the system
+ ability to add new devices and protocols to the system
« ease of migration from legacy devices and protocols to white boxes supporting OpenFlow

SOFTWARE MODULARITY

Software construction matters. Done correctly, software is easy to enhance, change, and
maintain. The ONOS team has put great care into modularity to make it easy for developers to
work with the software.

What is modularity? It is how the software is structured into components and how those
components relate to one another. As apparent from diagram below, the major structures of
ONOS are its tiers centered around the distributed core. Thus, at the macro level the Northbound
and Southbound APIs provide an initial basis for insulating Applications, Core and Adapters from
each other. New applications or new protocol adapters can be added as needed without each
needing to know about the other.

Apps
Northbound AP|

Core
(Device, Host, Link, Topology, Path, Flow, Packet + Intent, Network, ...)

Southbound API

Adapters
(Device, Host, Link, Flow, Packet)

Protocols

Network Elements

Figure 3. ONOS Layers

Similarly, beneath this macro level depiction are smaller substructures within the Core itself,
which exist to limit the size of any particular subsystem and to facilitate modular extensibility.
Again, these rely heavily on interfaces to serve as contracts for interactions between different
parts of the core, allowing each part of the core to evolve independently from others. This
enables new algorithms or more efficient data structures can be provided over time, without
affecting large parts of the system or the applications.

Clearly, major focus has been placed on making sure the interfaces encourage separation of
concerns and responsibilities in order to keep the interactions between subsystems as natural
and simple as possible. This is essential for stable evolution of the software base. For example,
on the Southbound API, care was taken to raise the level of abstraction in order to avoid
general bias towards any specific protocol and also to enforce the convention where the Core,
and not the Adapters create the network model objects.

ONOS source tree structure is setup to not only follow, but to enforce these architectural
principles. Modules are kept reasonably small and dependencies among them form an acyclic
graph, where direct dependencies between modules are realized through APl modules as

depicted in diagram below.
 onlab-uti-misc onlabutibrest
\E

— =

i\l

Figure 4. ONOS Modules

In summary, there are many benefits to software modularity:
e Architectural integrity and coherence
» Simplified test structure, allowing more comprehensive testing
» Easier maintenance with fewer side effects of changes
* Extensibility and customization of components
* Avoidance of cyclic dependencies

ONOS VALUE PROPOSITION - ENABLING OPERATOR USE CASES
* Multi-layer SDN control of packet-optical core

Service Providers operate multi-layer networks. For example, a service provider operates IP
packet network as well as a transport or optical network. A tunneling layer may also exist on top
of the IP substrate to create services such as virtual IP layer networks. Each of these layers is
managed independently today resulting in low levels of network utilization, high operational
costs, and reconfiguration cycles that are in months rather than minutes. For example, in today’s
environment, packet network designers provision additional capacity to handle network failures
and peak bursty traffic loads as well as failures; and independently, transport networks designers
do the same at the optical level. Moreover, packet network designers like to operate at 30%
average utilization. This, in aggregate, leads to 4-5x total over-provisioning of capacity.

SDN control of multi-layer networks addresses the problems mentioned above. The solution
includes three components: (1) addition of OpenFlow like programmability to optical transport
elements such as ROADMs; (2) ONOS to build a network graph view for each layer of the network
and maintain the mapping or correspondence among them; and (3) development of a PCE
application on ONOS that set ups and tears down path, taking into account multiple correlated
network graphs.

ONOS PCE application is able to configure, monitor and orchestrate the layers as though it were a
single entity. For example, IP connection changes can trigger automatic provisioning of optical
paths. The operator now has the ability to lower operational costs through central control, to
raise network utilization on all layers, and to reconfigure the network in minutes. One of the first
applications of this capability is a bandwidth calendaring application that allows bandwidth to be
reserved in the future. ONOS provisions the packet and optical layers to provide the bandwidth,
and then monitors the resources to perform re-routing and adjustments based on real time
network events and other changes.

Re-Route
optical circuit

optical
circuit

— =
~__ N Ju—

Figure 5. Multi-layer SDN control

SDN control of multi-layer networks is an excellent example of how SDN control implemented
with ONOS can lead to significant savings in CapEx and OpEx as well as enable new class of
services.

* SDN-IP Peering and Scaling SDN Control Plane

Today, Autonomous Systems (AS) connect to the Internet and with each other using BGP to
share routing information. The SDN-IP peering application on ONOS is designed to help service
providers start small and grow their SDN deployments. A service provider can deploy a small
SDN network or an SDN island as an AS and use the SDN-IP peering application to seamlessly
connect the SDN network to the rest of the Internet using BGP. With the SDN-IP application, an
SDN network appears as just another AS to the rest of the Internet. Over time, the service
provider can keeping scaling the SDN network and realize all the benefits without impacting its
peering with the Internet. Moreover, a service provider can use the SDN-IP peering application
to inter-connect multiple SDN networks to create a large SDN Autonomous System (AS) that
peers with the Internet the same way as other AS.

The SDN-IP application peers with AS border routers and exchanges route information for IP
prefixes as is done between standard AS today. The SDN-IP peering application uses the routing
information to set up forwarding paths for various Internet prefixes on the SDN network. Thus
SDN network can act as a transit network for some prefixes and can forward IP traffic to and
from any IP address that is reachable.

In addition, SDN-IP application can be used to scale ONOS-based SDN control plane. For example
SDN networks or domains can be interconnected through BGP similar to non-SDN AS today.
Confederation works in a similar way as well - a group of SDN domains can be viewed by the rest
of the Internet as a single AS.

BGP routes

ONOS Intents

OpenF lo'w entries
Control plane

» o 1P Network
[<] _eBGPY RS R r’egG,",«‘ ><]
& >
& & { -\\.\'
g SDN Network l
£
(2<] S (ST op
P oGP : G 1P Network
- = IR

Figure 6. SDN-IP

Thus SDN-IP peering application plays an important role in incremental and seamless SDN
deployment in a service provider infrastructure. ON.Lab is deploying SDN-IP peering application
on Internet 2, and it is being used to interconnect campus networks that are migrating to SDN
via Internet2’s SDN backbone.

10

* Network Functions as a Service (NFaaS) in Central Office

Telecom providers have a valuable asset in their networks today - the central offices. These
central offices are geographically close to a large number of end users, and thus they are strategic
in that they enable the telecom providers to offer services at scale to a large number of
customers with performance and predictability. For example, AT&T operates close to 4,500
central offices in the country and a typical central office in a large metro area can serve as many
as ~100K wired and ~100K cellular subscribers, and 100s of enterprises. A typical central office
has lot of access and switching capacity and many purpose built middle boxes for various network
functions. Though central offices are strategic to telecom operators, they have evolved over
many decades and have significant complexity in terms of network switching/routing, middle
boxes, and termination of customers. They represent significant CapEx and OpEx for the service
providers.

Not surprisingly, service providers want to re-architect the central office. They want to bring the
data center economies and agility to the central office. This means building the central office
network fabric using SDN, transforming network functions implemented using purpose built
middle boxes to software running on x86 servers (so called NFV), and an orchestration system
that can orchestrate network functions and network flows for a subscriber or enterprise
customer -- dynamically to serve individual customers while realizing various policies of both the
customer and the provider.

p Mobils
_—PGWEDXCODEBNIAB N Cstomers

Residential

) BNG & cDNED CG- NATEDFirewall - Customers

_~ Residential Customers.

VPN €D WanEx €5 DSA €B1Ds Enterprise

- Customers

XOS + OVX + ONOS

V==] ==
e
=5 == == == 7 N

Figure 7. NFaaS in Central Office

: = L
|
INQYOY + MS 1338d

i
1

This transformation of the central office will allow the service providers to quickly create,
deploy and offer new services to customers at scale and at the same time, significantly cut the
CapEx and OpEx.

This ONOS use case demonstrates the potential of this re-architected central office at a small
scale. ONOS, its applications and OpenFlow enabled switches help transform the network
fabric of the central office to SDN providing the agility required for the Network Functions as a
Service. We expect to build on this use case in two important directions: demonstrate ONOS
can be the network OS for the re-architected central office network in terms of scale and
performance; and demonstrate how SDN and Network Functions as a Service fit within the

same larger architecture of the central office.
11

* Segment Routing- Evolving and Improving MPLS

Today’s IP/MPLS networks are complex and hard to manage. Label distribution, traffic
engineering, and VPNs are very complex operations and services that depend on a collection of
distributed protocols in the control plane. Furthermore debugging such networks is incredibly
hard given synchronization and state-management issues between multiple protocols in the
control plane and a locally-significant label-swapped data plane.

The IETF has introduced the concept of Segment Routing (SR) for MPLS (known by its IETF name
SPRING). It introduces globally-significant labels that don't need to be swapped at each hop. It
also introduces source-routing based on labels, which eliminates dependence on complex
protocols like LDP and RSVP for label distribution and LSP setup. Segment Routing thus simplifies
both the control and data plane of MPLS networks. While SR continues to depend on an IGP for
routing and label distribution, it opens the possibility for an external controller to program end to
end tunnels originating at the source router.

The use case on Segment Routing is being pursued in collaboration with the Open Networking
Foundation's SPRING-OPEN project led by Saurav Das. The project demonstrates how SR can be
realized using the SDN control plane implemented with ONOS and an SR application, working
with bare-metal hardware routers built on merchant silicon that exists today. This solution does
not use a distributed IGP embedded in the routers. Instead it uses a routing application on ONOS.
And the application programs the edge-routers and core-routers for forwarding with segment
routing rules for default routing and policy-based routing. With ONOS providing the control and
an application managing the labels in the network, network operators can express their policy
requirements to the controller, and the app together with ONOS implements the policy in the
IP/MPLS network.

Requests ———3 Routing

Service Routing,

Requests ———3 Discovery Forwarding Recovery,
Servlce Service

Label imposition
OM \\
SR Labels

Open
imposed by Segment

controller OSR FIB built by (Rg:;')éfs

controller

This use case has been developed in collaboration with ONF.

Figure 8. Segment Routing™*

Thus segment routing with ONOS demonstrates how service providers can build on the MPLS
data plane without the complexity of its control plane. They can have best of both: simplicity of
the SR MPLS data plane and agility of the SDN control plane.

*Source: ONF

CONCLUSION

Our goal with ONOS has been to create an open source SDN network OS for the Service Provider
and other mission critical networks. ONOS is designed to provide (1) carrier grade features such
as scalability, high availability, performance in terms of throughput (application intents per
second) and latency (time to process network events); (2) northbound abstraction/APIs to make
it easy to create new services using ONOS — that is to bring web style agility to networks; and (3)
southbound abstraction with device/protocol plug-ins so ONOS can provide SDN control for
OpenFlow enabled white boxes as well as legacy devices. This enables easy migration to SDN
based on white boxes.

Our work on ONOS has been guided by a set of use cases proposed by our partners that include
leading service providers and vendors.

The ONOS November release represents a solid network operating system platform to seed an
open source project. However, we still have some ways to go to turn ONOS into a production
ready platform. We have to develop many more use cases, continue to improve the
performance, enhance key features and do trials and deployment to provide real proof points.
Open Sourcing ONOS is a crucial milestone because it brings in the broader community to join us
in evolving this platform and truly delivering on our mission of creating a carrier-grade, open
source SDN OS for mission critical networks.

13

‘ O
Demonstration \‘

O Development Deployment O
BROADER
\ ON.LAB) ADOPTION
Support Dls?nbufe

O

© 2014 ON.Lab. All Rights Reserved.

ABOUT ON.LAB

The Open Networking Lab (ON.Lab) is a non-profit organization founded by SDN inventors and
leaders from Stanford University and UC Berkeley to foster an open source community for
developing tools and platforms to realize the full potential of SDN. ON.Lab brings innovative
ideas from leading edge research and delivers high quality open source platforms on which
members of its ecosystem and the industry can build real products and solutions. ON.Lab has a
team of highly motivated and talented individuals, with expertise and a stellar track record in
industry and research institutions. ON.Lab’s team is focused on creating high quality open source
tools and platforms that benefit and bring true SDN value to the community.

ON.LAB"

