
Software Defined
Networking (SDN)

Introducing ONOS - a SDN network operating system for
Service Providers

!

WHITEPAPER!

This%whitepaper%describes%ONOS,%a%SDN%network%operating%system%designed%for%high%
availability,%performance,%scale=out%and%rich%abstractions.%

!

! 2!

SUMMARY%

The% Open% Network% Operating% System% (ONOS)% is% the% first% open% source% SDN% network% operating%
system%targeted%specifically%at%the%Service%Provider%and%mission%critical%networks.%ONOS%is%purpose%
built%to%provide%the%high%availability% (HA),%scale=out,%and%performance%these%networks%demand.%In%
addition,%ONOS%has%created%useful%Northbound%abstractions%and%APIs%to%enable%easier%application%
development%and%Southbound%abstractions%and%interfaces%to%allow%for%control%of%OpenFlow=ready%
and%legacy%devices.%Thus,%ONOS%will%%

• bring%carrier%grade%features%(scale,%availability,%and%performance)%to%the%SDN%control%plane%
• enable%Web%style%agility%%
• help%service%providers%migrate%their%existing%networks%to%white%boxes%
• lower%service%provider%CapEx%and%OpEx%

%
ONOS%has%been%developed%in%concert%with%leading%service%providers%(AT&T,%NTT%Communications),%%
with% demanding% network% vendors% (Ciena,% Ericsson,% Fujitsu,% Huawei,% Intel,% NEC),% R&E% network%
operators%(Internet2,%CNIT,%CREATE=NET),%collaborators%(SRI,%Infoblox),%and%with%ONF%to%validate%its%
architecture%through%real%world%use%cases.%%

THE%SERVICE%PROVIDER%NEED!

The%proliferation%of%mobile%devices,%OTT%services%and%distribution%of%content%across%the%cloud%have%
pushed%Service%Provider%networks%to%a%point%where%they%are%in%urgent%need%of%reinvention.%Service%
Providers%want%to%make%their%networks%agile%and%efficient%in%order%to%meet%the%challenges%of%these%
exponential%bandwidth%demands%and%want%to%be%able%to%create%revenue% streams%with% innovative%
services%and%new%business%models.%%
%
SDN%AND%ONOS%TO%THE%RESCUE!

In%just%a%short%time,%Software%Defined%Networking%(SDN)%has%become%the%technology%of%choice%for%
enabling%mobility,%virtualization,%and%the%Cloud.%Storage%and%compute%have%been%virtualized%for%
years,%yet%one%could%not%capture%the%full%value%of%these%advancements%because%the%network%is%what%
enables%the%value%to%be%unlocked%=%it%is%the%fabric%that%connects%them%together%and%to%applications.%%
%
The%key%SDN%concept%that%enables%similar%network%innovation%is%the%separation%of%the%control%plane%
from%the%data%plane%in%vertically%integrated%network%devices.%A%non=proprietary%protocol%such%as%
OpenFlow%allows%the%control%plane%to%program%the%data%plane%in%a%much%more%open%and%efficient%
way.%In%addition,%this%separation%allows%network%hardware%and%software%to%evolve%independently%
and%facilitates%the%replacement%of%expensive,%proprietary%hardware%and%firmware%with%commodity%
hardware%and%open%source%software.%Having%an%operating%system%that%manages%network%resources%
and%provides%the%abstractions%and%APIs%for%managing,%monitoring,%and%programming%network%
devices%greatly%simplifies%the%creation%of%innovative%and%beneficial%network%applications%and%
services%that%operate%across%a%wide%range%of%hardware.%Open%Network%Operating%System%(ONOS)%
was%created%to%be%this%operating%system%and%has%the%following%goals:%%

• Liberate%network%application%developers%from%knowing%the%intricacies%of%proprietary%
hardware.%%

• Allow%network%operators%to%break%free%from%the%operational%complexities%of%proprietary%
interfaces%and%protocols.%%

• Re=enable%innovation%to%happen%for%both%network%hardware%and%software,%independently,%
on%their%own%time%scales.%

%

!

! 3!

WHY%A%NETWORK%OPERATING%SYSTEM?%

There%are%many%open%source%SDN%controllers;% it% is% therefore% reasonable%to%ask% “Why%ONOS,%and%
why%a%network%OS?”.%Collaborators%at%Stanford,%Berkeley,%and%Nicira%Networks%%developed%several%
open%source%controllers%during%the%past%seven%years,%including%NOX,%Beacon,%SNAC%and%POX.%These%
controllers% were% designed% to% explore% and% demonstrate% SDN% potential.% Much% was% learned% from%
working%with%these%controllers%and%by%building%the%applications%and%demonstrations%they%enabled.%
However,%it%is%important%to%understand%these%controllers%were%not%designed%to%be%a%foundation%for%
commercial% products.% They% don’t% have% the%key% features% such% as% scalability,%high% availability,% and%
performance.%Moreover,%they%have%primitive%programming%and%device=oriented%abstractions.%

These% controllers% fundamentally% relayed% OpenFlow% messages% directly% to% applications,% and%
applications% directly% created% OpenFlow% messages% for% the% network% devices.% In% this% way,% these%
controllers% are% more% like% device% drivers.% They% are% not% designed% to% have% the% critical% scalability,%
availability% and% performance% features% of% a% complete% SDN% control% platform.%What% is% needed% is% a%
network%OS%–%ONOS%has%been%created%to%fulfill%this%need.%%

Recall%that%an%operating%system%is%responsible%for%the%following%functions:%%

• It%manages%finite%resources%on%behalf%of%resource%consumers.%In%doing%so,%it%ensures%that%all%
consumers%have%appropriate%access%=%none%is%starved,%all%are%handled%fairly.%%

• It%isolates%and%protects%NOS%users%from%each%other%=%each%user%appears%to%have%access%to%a%
full% set%of%resources.% It%multiplexes%between%multiple%applications%and%multiple%devices.% It%
may% also% virtualize% some% or% all% of% the% resources% to% allow% consumers% their% own% virtual%
instantiation%of%the%OS.%

• It% provides% useful% abstractions% to% enable% users% to% more% easily% consume% services% and%
resources% managed% by% the% operating% system,% without% having% to% understand% all% of% the%
complexity.% It% provides% mechanisms% for% different% devices% to% be% easily% added% to% and%
controlled%by%the%operating%system%without%requiring%the%application%to%change.%

• It%provides%security%from%the%external%world%to%the%users%of%the%operating%system.%

• It% supplies% useful% services% so% that% users% of% the% operating% system%don’t% have% to% build% and%
rebuild%the%same%services.%

These%are%exactly%the%things%needed%by%applications%running%on%a%network.%A%controller%is%typically%
too% limited% in% scope% =% it% sets% out% to% control% a% device.% It% does% not% necessarily% provide% useful%
abstractions;%it%does%not%necessarily%protect%different%controller%users%from%each%other;%it%does%not%
provide%additional%useful%services.%ONOS%sets%out%to%provide%all%of%the%functionality%of%an%operating%
system%=%not%just%the%functionality%of%a%controller.%How%does%ONOS%accomplish%this?%By%architecting%
the%software%with%service%provider%features.%%

ONOS%ARCHITECTURE%

ONOS%has%been%architected%from%the%beginning%with%the%service%provider%in%mind.%High%Availability,%
Scale=out,%and%Performance%are%fundamental,%as%are%powerful%abstractions%at%the%Northbound%and%
Southbound%interfaces.%%

%

%

!

! 4!

The%following%are%the%defining%features%of%ONOS:%%
• Distributed!Core%that%provides%scalability,%high%availability,%and%performance%–!bring%

carrier%grade%features%to%the%SDN%control%plane.%%The%ability%of%ONOS%to%run%as%a%cluster%is%
one%way%that%ONOS%brings%web%style%agility%to%the%SDN%control%plane%and%to%service%
provider%networks.%

• Northbound!abstraction/APIs%that%include%network%graph%and%application%intents%to%ease%
development%of%control,%management,%and%configuration%services.%This%abstraction%is%
another%good%example%of%how%ONOS%brings%web%style%agility%to%the%SDN%control%plane%and%
to%service%provider%networks.%

• Southbound!abstraction/APIs%that%enable%pluggable%southbound%protocols%for%
controlling%both%OpenFlow%and%Legacy%devices.%The%southbound%abstraction%insulates%the%
core%of%ONOS%from%the%details%of%different%devices%and%protocols.%The%southbound%is%a%key%
enabler%for%migration%from%legacy%devices%to%OpenFlow=based%white%boxes.%

• Software!Modularity%makes%it%easy%to%develop,%debug,%maintain,%and%upgrade%ONOS%as%a%
software%system%by%a%community%of%developers%and%by%the%providers.%%%

%%
Each%of%these%architectural%features%is%described%in%more%detail%in%the%following%sections.%%
%
DISTRIBUTED%CORE!

ONOS%is%deployed%as%a%service%on%a%cluster%of%servers,%and%the%same%ONOS%software%runs%on%each%
server.%Deployment%symmetry%is%an%important%design%consideration%as%it%enables%rapid%failover%in%
the%event%of%an%ONOS%server%failure.%The%network%operator%can%add%servers%incrementally,%
without%disruption,%as%needed%for%additional%control%plane%capacity.%The%ONOS%instances%work%
together%to%create%what%appears%to%the%rest%of%the%network%and%applications%as%a%single%platform.%
Applications%and%network%devices%do%not%have%to%know%if%they%are%working%with%a%single%instance%
or%with%multiple%instances%of%ONOS.%This%feature%makes%ONOS%scalable%–%one%can%scale%ONOS%
capacity%seamlessly.%It%is%the%Distributed%Core%that%does%the%heavy%lifting%to%realize%these%
capabilities.%
%
%
%

%
%

2126�
LQVWDQFHV

3K\VLFDO�
QHWZRUN

$SSOLFDWLRQV

Figure!1.!Distributed!Core!

!

! 5!

The%distributed%core%provides%messaging,%state%management%and%leader%election%services%to%and%
between%instances.%As%a%result,%multiple%instances%behave%as%a%single%logical%entity.%Using%high%
speed%messaging%in%a%publish/subscribe%model,%instances%can%quickly%inform%other%instances%of%
updates.%Built%into%ONOS%are%recovery%protocols%for%dealing%with%updates%that%are%lost%due%to%
instance%failures.%A%variety%of%operational%state%is%managed%between%instances%using%several%
mechanisms%=%each%being%appropriate%for%the%type%of%state.%Three%examples%include%the%application%
intents,%the%topology%database,%and%the%flow%tables%=%each%has%unique%size,%read/write%pattern,%and%
durability%requirements.%A%leader%election%service%ensures%that%switches%have%one%and%only%one%
master%instance.%Together,%the%messaging,%state%management,%and%leader%election%mechanisms%
enable%high%throughput,%low%latency,%and%high%availability%of%the%cluster.%%
%
What%does%this%mean?%For%devices,%they%will%always%have%a%single%master%and%if%the%master%goes%
down,%they%will%be%able%to%connect%to%another%instance%without%having%to%recreate%and%
resynchronize%the%flow%tables.%For%applications,%they%can%count%on%having%a%consistent%view%of%the%
network%through%the%network%graph%abstraction.%In%addition,%a%failure%of%an%instance%or%a%failure%in%
the%data%plane%is%transparent%to%the%application.%These%both%greatly%simplify%application%
development%and%error%handling.%

From%a%business%perspective,%it%brings%a%very%highly%available%environment%so%that%applications%
do%not%experience%network=related%downtime.%It%also%means%that%the%service%provider%can%easily%
add%control%plane%capacity%as%the%network%grows,%without%disruption%to%the%network.%Through%
the%same%mechanism,%the%network%operator%also%has%the%capability%to%update%software%with%
zero%system%downtime%by%taking%an%instance%offline,%upgrading%it,%and%bringing%it%back%online.%%

In%summary,%the%distributed%core%is%the%key%architectural%feature%of%ONOS%that%brings%carrier%
grade%features%to%the%SDN%control%plane.%

NORTHBOUND%ABSTRACTIONS!

There%are%two%powerful%Northbound%abstractions:%the%Intent%Framework%and%the%Global%
Network%View.%%
%
The%Intent%Framework%allows%an%application%to%request%a%service%from%the%network%without%
having%to%know%details%of%how%the%service%will%be%performed.%This%allows%network%operators%as%
well%as%application%developers%to%program%the%network%at%a%high%level;%they%can%simply%specify%
their%intent:%a%policy%statement%or%connectivity%requirement.%%
%
Some%example%intents:%

• Set%up%a%connection%between%Host%A%and%Host%B%
• Set%up%an%Optical%Path%from%Switch%X%to%Switch%Y%with%Z%amount%of%bandwidth%
• Don’t%allow%host%A%to%talk%to%host%B%

!

! 6!

The%Intent%Framework%takes%such%requests%from%all%applications,%figures%out%which%ones%can%
and%cannot%be%accommodated,%resolves%conflicts%between%applications,%applies%policies%set%by%
an%administrator,%programs%the%network%to%provide%the%requested%functionality,%and%delivers%
the%requested%services%to%the%application.%%
%
An%intent%is%translated%into%multiple%objectives%=%for%example,%an%intent%to%have%a%connection%
between%two%hosts%translates%into%two%objectives,%each%providing%one%direction%of%flow.%The%
objectives%are%compiled%into%instructions%that%are%sent%to%the%network%devices.%This%process%is%
done%under%the%control%of%policies%specified%by%the%network%operator%and%in%a%way%that%resolves%
conflicts%between%different%intents.%
%
The%Global%Network%View%provides%the%application%with%a%view%of%the%Network%=%the%hosts,%
switches,%links,%and%any%other%state%associated%with%the%network%such%as%utilization.%An%
application%can%program%this%network%view%through%APIs.%One%API%lets%an%application%look%at%
the%view%as%a%network%graph.%Some%examples%of%what%can%be%done%with%the%network%graph%
include:%

• create%a%simple%application%to%calculate%shortest%paths%since%the%application%already%has%
a%graphical%view%of%the%network%

• maximize%network%utilization%by%monitoring%the%network%view%and%programming%
changes%to%paths%to%adjust%load%(traffic%engineering)%%

• steer%traffic%away%from%a%part%of%the%network%that%is%being%upgraded%or%that%is%being%
quarantined%for%a%virus.%

Technically,%the%northbound%abstractions%and%APIs%insulate%applications%from%details%of%the%
network%that%are%not%needed%by%the%application.%The%abstractions%can%also%insulate%applications%
from%network%events%(like%link%down)%when%desired%by%the%application.%Conversely,%it%insulates%%
%%

Figure!2.!Intent!Framework!

!

! 7!

the%operating%system%from%the%applications%allowing%the%operating%system%to%do%its%job%of%
managing%requests%from%multiple,%competing%applications.%From%a%business%perspective,%this%
increases%application%development%velocity%and%allows%network%changes%without%application%
downtime.%
%

SOUTHBOUND%ABSTRACTIONS!

The%southbound%abstraction%is%built%using%network%elements,%such%as%switches,%hosts,%or%links.%The%
southbound%abstraction%of%ONOS%represents%each%network%element%as%an%object%in%a%generic%
form.%Through%this%abstraction,%the%distributed%core%can%maintain%the%state%of%the%network%
element%without%having%to%know%the%specifics%of%the%element%represented%by%the%underlying%
driver.%In%effect,%it%allows%the%core%to%be%southbound%protocol%and%device%agnostic.%The%network%
element%abstraction%is%also%what%allows%addition%of%new%devices%and%protocols.%ONOS%and%its%
southbound%abstraction%allow%plug=ins%for%various%southbound%protocols%and%devices,%where%a%
plug=in%maps%or%translates%generic%network%element%description%or%operation%on%the%device%to%the%
specific%and%vice=versa.%Thus%the%southbound%enables%ONOS%to%control%or%manage%multiple%diverse%
devices,%even%if%they%use%different%protocols%(OpenFlow,%NetConf,%etc.).%%
%
Architecturally,%the%southbound%is%composed%of%the%layers%shown%in%figure%3.%At%the%bottom%are%
the%network%devices%or%elements.%ONOS%interacts%with%devices%through%protocols.%The%protocol%
specifics%are%abstracted%away%by%the%network%element%plug=in%or%adapter.%As%a%result,%the%core%of%
the%southbound%can%maintain%its%network%element%objects%(devices,%hosts,%links)%without%having%to%
know%the%specifics%of%the%protocols%and%network%elements.%Through%the%adapter%API,%the%
distributed%core%is%kept%up%to%date%on%the%status%of%the%network%element%objects.%The%adapter%API%
insulates%the%distributed%core%from%having%to%know%details%about%protocols%and%network%elements.%
%
The%main%benefits%of%the%southbound%abstractions%include:%

• ability%to%manage%different%devices%using%different%protocols%=%without%effect%on%the%
distributed%core%of%the%system%

• ability%to%add%new%devices%and%protocols%to%the%system%
• ease%of%migration%from%legacy%devices%and%protocols%to%white%boxes%supporting%OpenFlow%

%
SOFTWARE%MODULARITY%!

Software%construction%matters.%Done%correctly,%software%is%easy%to%enhance,%change,%and%
maintain.%The%ONOS%team%has%put%great%care%into%modularity%to%make%it%easy%for%developers%to%
work%with%the%software.%%
%
What%is%modularity?%It%is%how%the%software%is%structured%into%components%and%how%those%
components%relate%to%one%another.%As%apparent%from%diagram%below,%the%major%structures%of%
ONOS%are%its%tiers%centered%around%the%distributed%core.%Thus,%at%the%macro%level%the%Northbound%
and%Southbound%APIs%provide%an%initial%basis%for%insulating%Applications,%Core%and%Adapters%from%
each%other.%New%applications%or%new%protocol%adapters%can%be%added%as%needed%without%each%
needing%to%know%about%the%other.%
%
%

%

!

! 8!

Similarly,%beneath%this%macro%level%depiction%are%smaller%substructures%within%the%Core%itself,%
which%exist%to%limit%the%size%of%any%particular%subsystem%and%to%facilitate%modular%extensibility.%
Again,%these%rely%heavily%on%interfaces%to%serve%as%contracts%for%interactions%between%different%
parts%of%the%core,%allowing%each%part%of%the%core%to%evolve%independently%from%others.%This%
enables%new%algorithms%or%more%efficient%data%structures%can%be%provided%over%time,%without%
affecting%large%parts%of%the%system%or%the%applications.%
%
Clearly,%major%focus%has%been%placed%on%making%sure%the%interfaces%encourage%separation%of%
concerns%and%responsibilities%in%order%to%keep%the%interactions%between%subsystems%as%natural%
and%simple%as%possible.%This%is%essential%for%stable%evolution%of%the%software%base.%For%example,%
on%the%Southbound%API,%care%was%taken%to%raise%the%level%of%abstraction%in%order%to%avoid%
general%bias%towards%any%specific%protocol%and%also%to%enforce%the%convention%where%the%Core,%
and%not%the%Adapters%create%the%network%model%objects.%
%
ONOS%source%tree%structure%is%setup%to%not%only%follow,%but%to%enforce%these%architectural%
principles.%Modules%are%kept%reasonably%small%and%dependencies%among%them%form%an%acyclic%
graph,%where%direct%dependencies%between%modules%are%realized%through%API%modules%as%
depicted%in%diagram%below.%

Figure!3.!ONOS!Layers!

Figure!4.!ONOS!Modules!

!

! 9!

In%summary,%there%are%many%benefits%to%software%modularity:%
• Architectural%integrity%and%coherence%
• Simplified%test%structure,%allowing%more%comprehensive%testing%
• Easier%maintenance%with%fewer%side%effects%of%changes%
• Extensibility%and%customization%of%components%
• Avoidance%of%cyclic%dependencies%

ONOS%VALUE%PROPOSITION%=%ENABLING%OPERATOR%USE%CASES!

• Multi=layer%SDN%control%of%packet=optical%core!

Service%Providers%operate%multi=layer%networks.%For%example,%a%service%provider%operates%IP%
packet%network%as%well%as%a%transport%or%optical%network.%A%tunneling%layer%may%also%exist%on%top%
of%the%IP%substrate%to%create%services%such%as%virtual%IP%layer%networks.%Each%of%these%layers%is%
managed%independently%today%resulting%in%low%levels%of%network%utilization,%high%operational%
costs,%and%reconfiguration%cycles%that%are%in%months%rather%than%minutes.%For%example,%in%today’s%
environment,%packet%network%designers%provision%additional%capacity%to%handle%network%failures%
and%peak%bursty%traffic%loads%as%well%as%failures;%and%independently,%transport%networks%designers%
do%the%same%at%the%optical%level.%Moreover,%packet%network%designers%like%to%operate%at%30%%
average%utilization.%This,%in%aggregate,%leads%to%4=5x%total%over=provisioning%of%capacity.%%
%
SDN%control%of%multi=layer%networks%addresses%the%problems%mentioned%above.%The%solution%
includes%three%components:%(1)%addition%of%OpenFlow%like%programmability%to%optical%transport%
elements%such%as%ROADMs;%(2)%ONOS%to%build%a%network%graph%view%for%each%layer%of%the%network%
and%maintain%the%mapping%or%correspondence%among%them;%and%(3)%development%of%a%PCE%
application%on%ONOS%that%set%ups%and%tears%down%path,%taking%into%account%multiple%correlated%
network%graphs.%%
%
ONOS%PCE%application%is%able%to%configure,%monitor%and%orchestrate%the%layers%as%though%it%were%a%
single%entity.%For%example,%IP%connection%changes%can%trigger%automatic%provisioning%of%optical%
paths.%The%operator%now%has%the%ability%to%lower%operational%costs%through%central%control,%to%
raise%network%utilization%on%all%layers,%and%to%reconfigure%the%network%in%minutes.%One%of%the%first%
applications%of%this%capability%is%a%bandwidth%calendaring%application%that%allows%bandwidth%to%be%
reserved%in%the%future.%ONOS%provisions%the%packet%and%optical%layers%to%provide%the%bandwidth,%
and%then%monitors%the%resources%to%perform%re=routing%and%adjustments%based%on%real%time%
network%events%and%other%changes.%%
%

%
%
%
%
%

%
SDN%control%of%multi=layer%networks%is%an%excellent%example%of%how%SDN%control%implemented%
with%ONOS%can%lead%to%significant%savings%in%CapEx%and%OpEx%as%well%as%enable%new%class%of%
services.%%

Figure!5!.!MultiNlayer!SDN!control!!

!

! 10!

• SDN=IP%Peering%and%Scaling%SDN%Control%Plane!

Today,%Autonomous%Systems%(AS)%connect%to%the%Internet%and%with%each%other%using%BGP%to%
share%routing%information.%The%SDN=IP%peering%application%on%ONOS%is%designed%to%help%service%
providers%start%small%and%grow%their%SDN%deployments.%A%service%provider%can%deploy%a%small%
SDN%network%or%an%SDN%island%as%an%AS%and%use%the%SDN=IP%peering%application%to%seamlessly%
connect%the%SDN%network%to%the%rest%of%the%Internet%using%BGP.%With%the%SDN=IP%application,%an%
SDN%network%appears%as%just%another%AS%to%the%rest%of%the%Internet.%Over%time,%the%service%
provider%can%keeping%scaling%the%SDN%network%and%realize%all%the%benefits%without%impacting%its%
peering%with%the%Internet.%Moreover,%a%service%provider%can%use%the%SDN=IP%peering%application%
to%inter=connect%multiple%SDN%networks%to%create%a%large%SDN%Autonomous%System%(AS)%that%
peers%with%the%Internet%the%same%way%as%other%AS.%%
%
The%SDN=IP%application%peers%with%AS%border%routers%and%exchanges%route%information%for%IP%
prefixes%as%is%done%between%standard%AS%today.%The%SDN=IP%peering%application%uses%the%routing%
information%to%set%up%forwarding%paths%for%various%Internet%prefixes%on%the%SDN%network.%Thus%
SDN%network%can%act%as%a%transit%network%for%some%prefixes%and%can%forward%IP%traffic%to%and%
from%any%IP%address%that%is%reachable.%%%
%
In%addition,%SDN=IP%application%can%be%used%to%scale%ONOS=based%SDN%control%plane.%For%example%
SDN%networks%or%domains%can%be%interconnected%through%BGP%similar%to%non=SDN%AS%today.%
Confederation%works%in%a%similar%way%as%well%=%a%group%of%SDN%domains%can%be%viewed%by%the%rest%
of%the%Internet%as%a%single%AS.%%
%

Figure!6.!SDNNIP!

Thus%SDN=IP%peering%application%plays%an%important%role%in%incremental%and%seamless%SDN%
deployment%in%a%service%provider%infrastructure.%ON.Lab%is%deploying%SDN=IP%peering%application%
on%Internet%2,%and%it%is%being%used%to%interconnect%campus%networks%that%are%migrating%to%SDN%
via%Internet2’s%SDN%backbone.!

!

! 11!

• Network%Functions%as%a%Service%(NFaaS)%in%Central%Office!

Telecom%providers%have%a%valuable%asset%in%their%networks%today%=%the%central%offices.%These%
central%offices%are%geographically%close%to%a%large%number%of%end%users,%and%thus%they%are%strategic%
in%that%they%enable%the%telecom%providers%to%offer%services%at%scale%to%a%large%number%of%
customers%with%performance%and%predictability.%For%example,%AT&T%operates%close%to%4,500%
central%offices%in%the%country%and%a%typical%central%office%in%a%large%metro%area%can%serve%as%many%
as%~100K%wired%and%~100K%cellular%subscribers,%and%100s%of%enterprises.%A%typical%central%office%
has%lot%of%access%and%switching%capacity%and%many%purpose%built%middle%boxes%for%various%network%
functions.%Though%central%offices%are%strategic%to%telecom%operators,%they%have%evolved%over%
many%decades%and%have%significant%complexity%in%terms%of%network%switching/routing,%middle%
boxes,%and%termination%of%customers.%They%represent%significant%CapEx%and%OpEx%for%the%service%
providers.%%
%
Not%surprisingly,%service%providers%want%to%re=architect%the%central%office.%They%want%to%bring%the%
data%center%economies%and%agility%to%the%central%office.%This%means%building%the%central%office%
network%fabric%using%SDN,%transforming%network%functions%implemented%using%purpose%built%
middle%boxes%to%software%running%on%x86%servers%(so%called%NFV),%and%an%orchestration%system%
that%can%orchestrate%network%functions%and%network%flows%for%a%subscriber%or%enterprise%
customer%==%dynamically%to%serve%individual%customers%while%realizing%various policies of both the
customer and the provider.

This%transformation%of%the%central%office%will%allow%the%service%providers%to%quickly%create,%
deploy%and%offer%new%services%to%customers%at%scale%and%at%the%same%time,%significantly%cut%the%
CapEx%and%OpEx.%%
%
This%ONOS%use%case%demonstrates%the%potential%of%this%re=architected%central%office%at%a%small%
scale.%ONOS,%its%applications%and%OpenFlow%enabled%switches%help%transform%the%network%
fabric%of%the%central%office%to%SDN%providing%the%agility%required%for%the%Network%Functions%as%a%
Service.%We%expect%to%build%on%this%use%case%in%two%important%directions:%demonstrate%ONOS%
can%be%the%network%OS%for%the%re=architected%central%office%network%in%terms%of%scale%and%
performance;%and%demonstrate%how%SDN%and%Network%Functions%as%a%Service%fit%within%the%
same%larger%architecture%of%the%central%office.%

Figure!7.!NFaaS!in!Central!Office!

!

! 12!

%
• Segment%Routing=%Evolving%and%Improving%MPLS!

Today’s% IP/MPLS% networks% are% complex% and% hard% to% manage.% Label% distribution,% traffic%
engineering,%and%VPNs%are%very%complex%operations%and%services%that%depend%on%a%collection%of%
distributed% protocols% in% the% control% plane.% Furthermore% debugging% such% networks% is% incredibly%
hard% given% synchronization% and% state=management% issues% between% multiple% protocols% in% the%
control%plane%and%a%locally=significant%label=swapped%data%plane.%!

The%IETF%has%introduced%the%concept%of%Segment%Routing%(SR)%for%MPLS%(known%by%its%IETF%name%
SPRING).%%It%introduces%globally=significant%labels%that%don't%need%to%be%swapped%at%each%hop.%It%
also%introduces%source=routing%based%on%labels,%which%eliminates%dependence%on%complex%
protocols%like%LDP%and%RSVP%for%label%distribution%and%LSP%setup.%Segment%Routing%thus%simplifies%
both%the%control%and%data%plane%of%MPLS%networks.%While%SR%continues%to%depend%on%an%IGP%for%
routing%and%label%distribution,%it%opens%the%possibility%for%an%external%controller%to%program%end%to%
end%tunnels%originating%at%the%source%router.%%
%
The%use%case%on%Segment%Routing%is%being%pursued%in%collaboration%with%the%Open%Networking%
Foundation's%SPRING=OPEN%project%led%by%Saurav%Das.%The%project%demonstrates%how%SR%can%be%
realized%using%the%SDN%control%plane%implemented%with%ONOS%and%an%SR%application,%working%
with%bare=metal%hardware%routers%built%on%merchant%silicon%that%exists%today.%This%solution%does%
not%use%a%distributed%IGP%embedded%in%the%routers.%Instead%it%uses%a%routing%application%on%ONOS.%
And%the%application%programs%the%edge=routers%and%core=routers%for%forwarding%with%segment%
routing%rules%for%default%routing%and%policy=based%routing.%With%ONOS%providing%the%control%and%
an%application%managing%the%labels%in%the%network,%network%operators%can%express%their%policy%
requirements%to%the%controller,%and%the%app%together%with%ONOS%implements%the%policy%in%the%
IP/MPLS%network.%
%

Thus%segment%routing%with%ONOS%demonstrates%how%service%providers%can%build%on%the%MPLS%
data%plane%without%the%complexity%of%its%control%plane.%They%can%have%best%of%both:%simplicity%of%
the%SR%MPLS%data%plane%and%agility%of%the%SDN%control%plane.%%

Figure!8.!Segment!Routing*!!

*"Source:"ONF"

!

! 13!

CONCLUSION!

Our%goal%with%ONOS%has%been%to%create%an%open%source%SDN%network%OS%for%the%Service%Provider%
and%other%mission%critical%networks.%ONOS%is%designed%to%provide%(1)%carrier%grade%features%such%
as%scalability,%high%availability,%performance%in%terms%of%throughput%(application%intents%per%
second)%and%latency%(time%to%process%network%events);%(2)%northbound%abstraction/APIs%to%make%
it%easy%to%create%new%services%using%ONOS%–%that%is%to%bring%web%style%agility%to%networks;%and%(3)%
southbound%abstraction%with%device/protocol%plug=ins%so%ONOS%can%provide%SDN%control%for%
OpenFlow%enabled%white%boxes%as%well%as%legacy%devices.%This%enables%easy%migration%to%SDN%
based%on%white%boxes.%
%
Our%work%on%ONOS%has%been%guided%by%a%set%of%use%cases%proposed%by%our%partners%that%include%
leading%service%providers%and%vendors.%%
%
The%ONOS%November%release%represents%a%solid%network%operating%system%platform%to%seed%an%
open%source%project.%However,%we%still%have%some%ways%to%go%to%turn%ONOS%into%a%production%
ready%platform.%We%have%to%develop%many%more%use%cases,%continue%to%improve%the%
performance,%enhance%key%features%and%do%trials%and%deployment%to%provide%real%proof%points.%%
Open%Sourcing%ONOS%is%a%crucial%milestone%because%it%brings%in%the%broader%community%to%join%us%
in%evolving%this%platform%and%truly%delivering%on%our%mission%of%creating%a%carrier=grade,%open%
source%SDN%OS%for%mission%critical%networks.%%
%
%
%

!

! 14!

!

ABOUT%ON.LAB%
%

The%Open%Networking%Lab%(ON.Lab)% is%a%non=profit%organization%founded%by%SDN% inventors%and%
leaders% from% Stanford% University% and% UC% Berkeley% to% foster% an% open% source% community% for%
developing% tools% and% platforms% to% realize% the% full% potential% of% SDN.% ON.Lab% brings% innovative%
ideas% from% leading% edge% research% and% delivers% high% quality% open% source% platforms% on% which%
members%of%its%ecosystem%and%the%industry%can%build%real%products%and%solutions.%ON.Lab%has%a%
team%of% highly%motivated% and% talented% individuals,%with% expertise%and% a% stellar% track% record% in%
industry%and%research%institutions.%ON.Lab’s%team%is%focused%on%creating%high%quality%open%source%
tools%and%platforms%that%benefit%and%bring%true%SDN%value%to%the%community.%

©%2014%ON.Lab.%All%Rights%Reserved.%

