Getting Started With OpenDaylight and
OpenStack

Posted by mestery on December 16, 2013

If you’re a fan of networking, you are no doubt very excited by all of the recent excitement in the industry as
of late. And there is no larger area of innovation in networking at the moment than Open Source networking.

Two of the projects at the forefront of Open Source networking innovation are OpenStack Neutron and

OpenDaylight. OpenStack Neutron is driving an API around networking for Infrastructure as a Service
Clouds, and has been very successful at driving mindshare in this area. There are a large number of Plugins
and ML2 MechanismDrivers for Neutron in existence already. However, so far, there is no OpenDaylight
integration with OpenStack, at least upstream. I am pleased to announce that a team of us are working on
making this happen, however. We have a blueprint filed and we are actively working towards the support in
OpenDaylight required to support the Neutron APIs. What I’'m going to show you in this blog post is how to

take what we currently have for a test run and try it out yourself.

OpenDaylight Integration with OpenStack: The Details

OpenDaylight is a highly scalable controller written in Java. It is designed from the start to be modular.
Perhaps the best way to understand the Modular nature of OpenDaylight is to look at an architecture

diagram of it:

http://www.siliconloons.com/author/mestery/
http://www.siliconloons.com/getting-started-with-opendaylight-and-openstack/
http://openstack.org/
http://www.opendaylight.org/

OPEN
DAY GHT Hydrogen Release (Jan 2014)

VTN DDoS OpenStack Network Applications
Coordinator Protection Neutron Orchestration & Services

Management
GulCcLI

= ; Affinity | .
= B = Shortest 'Y Service

Topol H Ories! Network = .. -
o;;;)g;)gy Stats Tra?:?(:ar Path Config i Controller Platform
{ Forwarding LISP VTN DOVE Mar
| ———— L - - = ———— | Service | Manager = g

Service Abstraction Layer (SAL)

(plug-in mgr., capability abstractions, flow programming, inventory, .

OpenFlow Southbound Interfaces
- - NETCONF OVSDB BGP-LS PCEP LISP & Protocol Plugins

Data Plane Elements

OpenFlow Enabled (Virtual Switches,

Devices

: Additional Virtual &
Openivewiiches Physical Devices

Physical Device
Interfaces)

VTN: Virtual Tenant Network

DOVE: Distributed Overlay Virtual Ethernet

DDoS: Distributed Denial Of Service

LISP: Locator/Identifier Separation Protocol

OVSDB: Open vSwitch DataBase Protocol

BGP: Border Gateway Protocol

PCEP: Path Computation Element Communication Protocol
SNMP: Simple Network Management

P OPENDAYLIGHT

OpenDaylight Hydrogen Release Architecture Diagram

You can see all the pieces of OpenDaylight, and there are quite a few. Because of the modular nature of

OpenDaylight it makes heavy use of the OSGI framework. I’'m not going to go into extreme details of how

this works, but suffice to say it allows for anyone to write a bundle which can run and interact with other

bundles in OpenDaylight.

As part of this, there exists a few bundles which are relevant to the OpenStack integration efforts:

e NeutronAPIService

e OVSDB
e OpenFlow

Each of those bundles provides a necessary component in the OpenStack integration. The
NeutronAPIService provides an abstraction of the Neutron APIs into OpenDaylight. It caches all of the
Neutron objects inside of OpenDaylight providing access to this information to anything in OpenDaylight

which requires it. The OVSDB and OpenFlow OSGI bundles in OpenDaylight provide the code which

http://www.siliconloons.com/wp-content/uploads/2013/12/OpenDaylight_OpenStack_Icehouse_Summit-1.png
http://en.wikipedia.org/wiki/OSGi

actually programs things on each compute host. They allow for the creation and deletion of tunnel ports,

flow programming for ports as they come and go, and bridge creation and deletion on the host.

The main benefit of the above is that each compute host no longer needs an Open vSwitch Agent running on
each host. The combination of OpenFlow and OVSDB provide the equivalent functionality as the Open

vSwitch Agent.

OpenDaylight and OpenStack: Getting Started

To test out the latest OpenDaylight Modular Layer2 MechanismDriver, you will need the following:

¢ A machine to run the OpenDaylight Controller
e A machine to run the OpenStack control software

e At least one machine to run the OpenStack Compute service to run virtual machines

Now, you can combine some of the things above, and you should most certainly run all of the above as
virtual machines. I personally run all of the above as virtual machines on VMware Fusion and have one VM
in which I run OpenDaylight, one VM in which I run the OpenStack control software, and 3 other VMs in
which I run OpenStack compute services. A fairly minimum setup would be 3 VMs, however: One to run
the OpenDaylight controller, one to run OpenStack control and compute services, and another one to run

only OpenStack compute services.

In either case, your topology will look very similar to the following diagram:

> Mgmt Network

Control Node OpenDayligh
t Node
i Ly
- >
Compute Compute Compute
Node “A” Node “B" Node “C”

OpenStack and OpenDaylight Integration

OpenDaylight and OpenStack: Building and Installing
OpenDaylight

Lets get started with the actual configuration of the system now. The first piece is your OpenDaylight VM.
To build and install this, follow the steps below. I should note a much larger view of building the controller
is on the wiki page here, the instructions below are mostly meant to get you going very fast without having

to read that wiki page in detail.

http://www.siliconloons.com/wp-content/uploads/2013/12/OpenStack+OpenDaylight-1.png

mkdir ~/odl

cd odl

git clone https://git. opendaylight. org/gerrit/p/controller. git
cd opendaylight/distribution/opendaylight/

mvn clean install

cd ~/odl

git clone https://git.opendaylight. org/gerrit/p/ovsdb. git

cd ovsdb

At this point, you can cut and paste the script below as “build_ovsdb.sh” and use that to build OVSDB and

copy the bundles over to the controller:

#!/bin/sh

git pull

echo “Refreshing ovsdb/neutron..”
pwd

mvn clean install

cd .. /northbound/ovsdb/

echo “Refreshing northbound/ovsdb. .
pwd

mvn clean install

cd ../../ovsdb

echo “Refreshing ovsdb/ovsdb..”

pwd
mvn clean install

cd ..

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

echo “done!”

Once you’ve created the script, simply make sure it has execute permissions (chmod +x build ovsdb.sh) and
run it and you will have the OVSDB bundles created and installed into the plugins directory. To verify they

are there, look in the following location:

e odl/controller/opendaylight/distribution/opendaylight/target/distribution.opendaylight-osgipackage/opendaylight/pl

ugins

GRSEHOIA Firc up vi and add the management IP address for your ODL instance as the value for of.address.

Now it’s time to fire up your controller! To do that, execute the following:

cd

“/odl/controller/opendaylight/distribution/opendaylight/target/distribution. opendayligh

t-osgipackage/opendaylight

. /run. sh

Once the controller is running, you will want to disable the SimpleForwarding Application, so do the

following:

e In the OSGI console, run “lb | grep simple” to find the bundle ID of the simpleforwarding application.
¢ Run “stop <bundle ID>" to disable simpleforwarding.

e Run “Ib | grep simple” to verify it is in the “Resolved” state.

The entire thing looks like below:

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

osgi> 1b | grep simple

132|Active | 4|samples. simpleforwarding (0. 4. 1. SNAPSHOT)
true

0sgi> stop 132

osgi> 1b | grep simple

132|Resolved | 4|samples. simpleforwarding (0. 4. 1. SNAPSHOT)
true

0sgi>

OpenStack and OpenDaylight: Readying the devstack nodes

At this point, you have an OpenDaylight controller running. Now it’s time to fire up your devstack nodes.
You will need at least two virtual machines ready for this. They can run anything which devstack supports. I
am ardent user of Fedora Linux, so that’s what I use, but Ubuntu works fine as well. Note if you’re using
Ubuntu 12.04 LTS, that particular variant of Ubuntu is using OVS 1.4, which is quite a bit old. Fedora 19

uses a much newer version of OVS.

One thing to note is that you should make sure you have passwordless “sudo” access setup for the account

you’re running devstack as.
So, the next thing to do on each node is to checkout devstack:
cd ~/

git clone git://github. com/openstack—dev/devstack. git

cd devstack

git remote add opendaylight https://github. com/CiscoSystems/devstack. git

git fetch opendaylight

git checkout opendaylight

Run the above on each devstack node. It will checkout the customer OpenDaylight devstack branch. Now to

configure your local.conf files.

On the control node, your local.conf will look like the below:

[[local |localre]]

LOGFILE=stack. sh. log

#SCREEN LOGDIR=/opt/stack/data/log
#L.0G_COLOR=False

#OFFLINE=True

RECLONE=yes

Only uncomment the below two lines if you are running on Fedora
disable service rabbit
enable service gpid
disable service n—cpu
enable service n—cond
disable service n—net
enable service g—svc
enable service g—dhcp
enable service g-13
enable service g—meta
enable service quantum

enable service tempest

Q_HOST=$SERVICE_HOST

HOST_IP=192. 168. 64. 193

Q PLUGIN=m12

Q ML2 PLUGIN MECHANISM DRIVERS=opendaylight, logger
ENABLE TENANT TUNNELS=True

NEUTRON REPO=https://github. com/CiscoSystems/neutron. git

NEUTRON_BRANCH=od1_ml2

VNCSERVER_PROXYCLIENT_ADDRESS=192. 168. 64. 193

VNCSERVER_LISTEN=0. 0. 0.0

HOST NAME=km—dhcp—64-193. kmestery. cisco. com
SERVICE HOST NAME=$ {HOST NAME}

SERVICE _HOST=192. 168. 64. 193

FLOATING_RANGE=192. 168. 210. 0/24
PUBLIC_NETWORK GATEWAY=192. 168. 75. 254
MYSQL_HOST=$SERVICE HOST

RABBIT HOST=$SERVICE HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292
KEYSTONE_AUTH_HOST=$SERVICE HOST
KEYSTONE_SERVICE_HOST=$SERVICE_HOST

MYSQL_PASSWORD=mysql
RABBIT PASSWORD=rabbit
QPID PASSWORD=rabbit
SERVICE TOKEN=service
SERVICE_PASSWORD=admin

ADMIN_PASSWORD=admin

[[post—config|/etc/neutron/plugins/ml2/ml2 conf. ini]]

[agent]

minimize polling=True

[ml2 odl]
url=http://192. 168. 64. 131:8080/controller/nb/v2/neutron
username=admin

password=admin

You should note in the above you will want to change the following:

HOST IP: This is the management IP of the control host itself.

VNCSERVER PROXYCLIENT ADDRESS: The management IP address of the control node itself.

HOST NAME: The host name of the control node.

SERVICE HOST: The management IP of the control node.

The “url” parameter in the mI2_odl section near the bottom: Make sure the url and credentials match your
OpenDaylight configuration. If you didn’t change the default username password for ODL, you can leave those bits

alone.

Once you have that done, the next step is to setup your local.conf for the compute nodes:

[[local |localre]]

LOGFILE=stack. sh. log

#LOG COLOR=False

#SCREEN LOGDIR=/opt/stack/data/log
#OFFLINE=true

RECLONE=yes

disable all services

enable service neutron nova n—cpu quantum n—novnc gpid

HOST NAME=km—dhcp—64-197. kmestery. cisco. com

HOST _IP=192. 168. 64. 197

SERVICE HOST NAME=km—dhcp—64-193. kmestery. cisco. com
SERVICE_HOST=192. 168. 64. 193

VNCSERVER PROXYCLIENT ADDRESS=192. 168. 64. 197

VNCSERVER_LISTEN=0. 0. 0.0

FLOATING_RANGE=192. 168. 210. 0/24

NEUTRON REPO=https://github. com/CiscoSystems/neutron. git

NEUTRON_BRANCH=od1_ml2

Q PLUGIN=m12
Q ML2 PLUGIN MECHANISM DRIVERS=opendaylight, linuxbridge
ENABLE TENANT TUNNELS=True

Q_HOST=$SERVICE_HOST

MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292
KEYSTONE_AUTH_HOST=$SERVICE_HOST

KEYSTONE_SERVICE_HOST=$SERVICE_HOST

MYSQL PASSWORD=mysql
RABBIT PASSWORD=rabbit
QPID_PASSWORD=rabbit
SERVICE TOKEN=service
SERVICE_PASSWORD=admin

ADMIN_PASSWORD=admin

[[post—config|/etc/neutron/plugins/ml2/ml2 conf. ini]]

[agent]

minimize polling=True

[m12 odl]
url=http://192. 168. 64. 131:8080/controller/nb/v2/neutron
username=admin

password=admin

Again, the parts to edit above on the compute nodes are:

e HOST NAME: The host name of each compute node.

e HOST IP: The management IP address of each host.

e SERVICE HOST NAME: The hostname of the control node.
e SERVICE HOST: The management IP of the control node.

e ml2 odl: Modify the IP address there for the ODL controller.

Each local.conf file should be saved in the ~/devstack directory on each control and/or compute host.

Now you should be able to run “stack.sh” on all of the nodes (control and each compute) by doing this:

e cd ~/devstack

e /stack.sh

Once that completes, you should have a functioning OpenStack setup with OpenDaylight.
Possible Issues With devstack on Fedora

One possible issue you may hit if you’re using a fresh VM on Fedora is mysql errors. You will see keystone
errors and mysql access errors in the stack.sh run. To get around this, follow the workaround listed in this
post here. It’s worked for me every time I hit this error running devstack on Fedora. One other issue with
Fedora is that the latest devstack fails to kill all the nova processes when you run “unstack.sh.” To

workaround this, simply run the following after “unstack.sh™:

o killall nova-api nova-cert nova-scheduler nova-consoleauth nova-api nova-conductor

OpenStack and OpenDaylight: Verifying The Install
At this point, you should have the entire system up and running. To verify this, you can do the following:
e Point your web browser at the OpenStack Horizon GUI:

e http://<control node IP>/auth/login/

e Login using “admin/admin” and you can see you OpenStack install.
e Point your web browser at the OpenDaylight GUI:

e http://<odl IP>:8080/

e Login using “admin/admin”

http://www.tikalk.com/alm/blog/solution-mysql-error-1045-access-denied-userlocalhost-breaks-openstack

You can play around in the GUIs, launch VMs, etc. As you launch VMs, you will see ODL create tunnel

ports and links between compute hosts, which will become visible with a refresh in the OpenDaylight GUL

OpenStack and OpenDaylight: Getting Help

The most appropriate place to get help at this early stage is on #opendaylight-ovsdb on Freenode. A long list
of OpenStack Neutron and OpenDaylight developers hang out there and can provide help. Besides myself

(IRC nick “mestery”), you can also expect to find the following people online:

Madhu Venugopal (IRC Nick “Madhu”)

Brent Salisbury (IRC Nick “networkstatic’)

Keith Burns (IRC Nick “alagalah™)

Florian Otel (IRC Nick “FlorianOtel”)

You can ping any of us and we should be able to help you debug any issues. Florian in particular has some
VM images which may expedite the process above for folks trying this out for the first time. The
instructions above were meant to walk through all of the steps necessary to get this up and running from

scratch.

OpenStack and OpenDaylight: What’ s Next

In a future post, I will walk through debugging this setup and using it see flows and how different pieces
interact. In particular, I’ll walk through debugging this system so you understand exactly how things are
done when networks, subnets, ports, routers and other OpenStack Neutron API objects are created and how

OpenDaylight handles programming them onto each host.

Tweet

(Visited 8,642 times, 31 visits today)

http://twitter.com/share?url=http://www.siliconloons.com/getting-started-with-opendaylight-and-openstack/

	GettingStartedWithOpenDaylightandOpenStack
	OpenDaylightIntegrationwithOpenStack:TheDetai
	OpenDaylightandOpenStack:GettingStarted
	OpenDaylightandOpenStack:BuildingandInstallin
	OpenStackandOpenDaylight:Readyingthedevstack
	PossibleIssuesWithdevstackonFedora

	OpenStackandOpenDaylight:VerifyingTheInstall
	OpenStackandOpenDaylight:GettingHelp
	OpenStackandOpenDaylight:What’sNext

