
Python面向对象与异常

本周内容

 面向对象

 异常

面向对象

异常

初识面向对象编程

本节课内容

什么是面向对象编程（类）

类的定义与调用

self

类的构造函数

什么是面向对象编程

利用（面向）对象（属性与方法）去进行编码的过程

自定义对象数据类型就是面向对象中的类（class）的概念

属性：名叫小慕

方法：唱歌，跳舞

类：class

类变量（属性）

类函数

类的关键字class

class来声明类，类的名称首字母大小，
多单词情况下每个单词首字母大写

类的定义

class Name(object):

attr = something

def func(self):
do

注意
缩进

类的使用

类的实例化

通过实例化进行属性调用

通过实例化进行函数调用

类的参数self

 self 是类函数中的必传参数，且必须放在第一个参数位置

 self 是一个对象，他代表实例化的变量自身

 self 可以直接通过点来定义一个类变量

 self中的变量与含有self参数的函数可以在类中的任何一个函数内随意调用

非函数中定义的变量在定义的时候不用self

self.name = ‘dewei’

类的构造函数

类中的一种默认函数， 用来将类
实例化的同时， 将参数传入类中

构造函数的创建

def __init__(self, a, b):

self.a = a
self.b = b

构造函数的用法

对象的生命周期

本节课内容

 对象的生命周期

对象的生命周期

 __开头 __结尾的类函数都是类的默认函数

实例化__init__：对象生命的开始内存中分配一个内存块

__del__：删除对象从内存中释放这个内存块

私有函数和私有变量

本节课内容

 什么是私有函数和私有变量

 私有函数与私有变量的定义方法

什么是私有函数私有变量

 无法被实例化后的对象调用的类中的函数与变量

 类内部可以调用私有函数与变量

 只希望类内部业务调用使用，不希望被使用者调用

私有函数与私有变量的定义方法

 在变量或函数前添加__(2个下横线），变量或函数名后边无需添加

class Person(object):

def __init__(self, name):

self.name = name

self.__age = 33

def dump(self):

print(self.name, self.__age)

def __cry(self):

return ‘I want cry’

Python中的封装

本节课内容

python中的封装概念

python中封装的概念

将不对外的私有属性或方法通过可对外使
用的函数而使用（类中定义私有的,只有类
内部使用,外部无法访问）

这样做的主要原因：保护私隐，明确区分内外

封装的例子

装饰器

本节课内容

 什么是装饰器

 装饰器的定义

 装饰器的用法

什么是装饰器

 也是一种函数

 可以接受函数作为参数

 可以返回函数

 接收一个函数，内部对其处理，然后返回一个新函数，动态的增强函数功能

 将b函数在a函数中执行，在a函数中可以选择执行或不执行b函数，也可以

对b函数的结果进行二次加工处理

装饰器的定义

def out(func_args): 外围函数

def inter(*args, **kwargs): 内嵌函数

return func_args(*args, **kwargs)

return inter 外围函数返回内嵌函数

装饰器的用法

将被调用的函数直接作为参数传入装饰器的外围函数括弧

将装饰器与被调用函数绑定在一起

@符号+装饰器函数放在被调用函数的上一行，下一行创建函数，

只需要直接调用被执行函数即可

类中的装饰器

本节课内容

 classmethod

 staticmethod

 property

classmethod的功能

将类函数可以不经过实例化而直接被调用

classmethod的功能与用法

用法：

@classmethod

def func(cls, …):

do

参数介绍：

cls 替代普通类函数中的self，

变为cls，代表当前操作的是类

staticmethod的功能

 将类函数可以不经过实例化而直接被调用,被该装饰器调用的函数不

许传递self或cls参数，且无法再该函数内调用其它类函数或类变量

staticmethod的用法

用法：
@staticmethod
def func(…):

do
参数介绍：

函数题内无cls或self参数

property的功能

将类函数的执行免去括弧，类似于调用属性（变
量）,只适用于无参数的类函数（self与cls除外）

property的用法

用法：

@property

def func(self):

do

参数介绍：

无重要函数说明

类的继承

本节课内容

 什么是继承

 父（基）类与子类

 继承的用法

什么是继承

 通过继承基类来得到基类的功能

 所以我们把被继承的类称作父类或基类，继承者被称作子类

 代码的重用

说话
直立行走

独立思考

父类与子类的关系

 子类拥有父类的所有属性和方法

 父类不具备子类自有的属性和方法

Python中类的继承

 定义子类时，将父类传入子类参数内

 子类实例化可以调用自己与父类的函数与变量

 父类无法调用子类的函数与变量

类的super函数

本节课内容

 super函数的作用

 super函数的用法

super函数的作用

python子类继承父类的方法而使用的关键字，
当子类继承父类后，就可以使用父类的方法

super的用法

当前类 类的实例 使用父类的方法

类的多态

本节课内容

 什么是类的多态

 多态的用法

什么是类的多态

 同一个功能的多状态化
小慕爸爸

平淡的说话

小慕哥哥

说话，语速很快
小慕
说话，语速很慢

多态的用法

子类中重写父类的方法

类的多重继承

本节课内容

 什么是多重继承

 多重继承的方法

什么是多重继承

可以继承多个基（父）类

多重继承的方法

将被继承的类放入子类的参数位中，用逗号隔开

 从左向右一次继承

class Child(Parent1, Parent2, Parent3…)

类的高级函数

本节课内容

 __str__

 __getattr__

 __setattr__

 __call__

__str__的功能

如果定义了该函数，当print当前实例化对象
的时候，会返回该函数的return信息

__str__的用法

用法：

def __str__(self):

return str_type

参数：

无

返回值：

一般返回对于该类的描述信息

___getattr__的功能

当调用的属性或者方法不存在
时，会返回该方法定义的信息

___getattr__的用法

用法：

def __getattr__(self, key):

print(something…)

参数：

key： 调用任意不存在的属性名

返回值：

可以是任意类型也可以不进行返回

__setattr__的功能

拦截当前类中不存在的属性与值

__setattr__的用法

用法：

def __settattr__(self, key, value):

self.__dict__[key] = value

参数：

key 当前的属性名

value 当前的参数对应的值

返回值：

无

__call__的功能

本质是将一个类变成一个函数

__call__的用法

用法：

def __call__(self, *args, **kwargs):

print(‘call will start’)

参数：

可传任意参数

返回值：

与函数情况相同可有可无

