
应⽤ 9：⼤海捞针 —— Scan
在平时线上 Redis 维护⼯作中，有时候需要从 Redis 实例成千上万
的 key 中找出特定前缀的 key 列表来⼿动处理数据，可能是修改它
的值，也可能是删除 key。这⾥就有⼀个问题，如何从海量的 key
中找出满⾜特定前缀的 key 列表来？

Redis 提供了⼀个简单暴⼒的指令 keys ⽤来列出所有满⾜特定正则
字符串规则的 key。

127.0.0.1:6379> set codehole1 a
OK
127.0.0.1:6379> set codehole2 b
OK
127.0.0.1:6379> set codehole3 c
OK
127.0.0.1:6379> set code1hole a
OK
127.0.0.1:6379> set code2hole b
OK
127.0.0.1:6379> set code3hole b
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole*
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole
1) "code3hole"
2) "code2hole"
3) "code1hole"

这个指令使⽤⾮常简单，提供⼀个简单的正则字符串即可，但是有很
明显的两个缺点。

1. 没有 offset、limit 参数，⼀次性吐出所有满⾜条件的 key，
万⼀实例中有⼏百 w 个 key 满⾜条件，当你看到满屏的字符

串刷的没有尽头时，你就知道难受了。
2. keys 算法是遍历算法，复杂度是 O(n)，如果实例中有千万级
以上的 key，这个指令就会导致 Redis 服务卡顿，所有读写
Redis 的其它的指令都会被延后甚⾄会超时报错，因为 Redis
是单线程程序，顺序执⾏所有指令，其它指令必须等到当前的
keys 指令执⾏完了才可以继续。

⾯对这两个显著的缺点该怎么办呢？

Redis 为了解决这个问题，它在 2.8 版本中加⼊了⼤海捞针的指令
——scan。scan 相⽐ keys 具备有以下特点:

1. 复杂度虽然也是 O(n)，但是它是通过游标分步进⾏的，不会阻
塞线程;

2. 提供 limit 参数，可以控制每次返回结果的最⼤条数，limit 只
是⼀个 hint，返回的结果可多可少;

3. 同 keys ⼀样，它也提供模式匹配功能;
4. 服务器不需要为游标保存状态，游标的唯⼀状态就是 scan 返
回给客户端的游标整数;

5. 返回的结果可能会有重复，需要客户端去重复，这点⾮常重要;
6. 遍历的过程中如果有数据修改，改动后的数据能不能遍历到是
不确定的;

7. 单次返回的结果是空的并不意味着遍历结束，⽽要看返回的游
标值是否为零;

scan 基础使⽤

在使⽤之前，让我们往 Redis ⾥插⼊ 10000 条数据来进⾏测试

import redis

client = redis.StrictRedis()
for i in range(10000):
 client.set("key%d" % i, i)

好，Redis 中现在有了 10000 条数据，接下来我们找出以 key99
开头 key 列表。

scan 参数提供了三个参数，第⼀个是 cursor 整数值，第⼆个是
key 的正则模式，第三个是遍历的 limit hint。第⼀次遍历时，
cursor 值为 0，然后将返回结果中第⼀个整数值作为下⼀次遍历的
cursor。⼀直遍历到返回的 cursor 值为 0 时结束。

127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"
2) 1) "key9911"
 2) "key9974"
 3) "key9994"
 4) "key9910"
 5) "key9907"
 6) "key9989"
 7) "key9971"
 8) "key99"
 9) "key9966"
 10) "key992"
 11) "key9903"
 12) "key9905"
127.0.0.1:6379> scan 13976 match key99* count
1000
1) "1996"
2) 1) "key9982"
 2) "key9997"

 3) "key9963"
 4) "key996"
 5) "key9912"
 6) "key9999"
 7) "key9921"
 8) "key994"
 9) "key9956"
 10) "key9919"
127.0.0.1:6379> scan 1996 match key99* count 1000
1) "12594"
2) 1) "key9939"
 2) "key9941"
 3) "key9967"
 4) "key9938"
 5) "key9906"
 6) "key999"
 7) "key9909"
 8) "key9933"
 9) "key9992"
......
127.0.0.1:6379> scan 11687 match key99* count
1000
1) "0"
2) 1) "key9969"
 2) "key998"
 3) "key9986"
 4) "key9968"
 5) "key9965"
 6) "key9990"
 7) "key9915"
 8) "key9928"
 9) "key9908"
 10) "key9929"

 11) "key9944"

从上⾯的过程可以看到虽然提供的 limit 是 1000，但是返回的结果
只有 10 个左右。因为这个 limit 不是限定返回结果的数量，⽽是限
定服务器单次遍历的字典槽位数量(约等于)。如果将 limit 设置为
10，你会发现返回结果是空的，但是游标值不为零，意味着遍历还
没结束。

127.0.0.1:6379> scan 0 match key99* count 10
1) "3072"
2) (empty list or set)

字典的结构

在 Redis 中所有的 key 都存储在⼀个很⼤的字典中，这个字典的结
构和 Java 中的 HashMap ⼀样，是⼀维数组 + ⼆维链表结构，第
⼀维数组的⼤⼩总是 2^n(n>=0)，扩容⼀次数组⼤⼩空间加倍，也
就是 n++。

scan 指令返回的游标就是第⼀维数组的位置索引，我们将这个位置
索引称为槽 (slot)。如果不考虑字典的扩容缩容，直接按数组下标挨
个遍历就⾏了。limit 参数就表示需要遍历的槽位数，之所以返回的

结果可能多可能少，是因为不是所有的槽位上都会挂接链表，有些槽
位可能是空的，还有些槽位上挂接的链表上的元素可能会有多个。每
⼀次遍历都会将 limit 数量的槽位上挂接的所有链表元素进⾏模式匹
配过滤后，⼀次性返回给客户端。

scan 遍历顺序

scan 的遍历顺序⾮常特别。它不是从第⼀维数组的第 0 位⼀直遍历
到末尾，⽽是采⽤了⾼位进位加法来遍历。之所以使⽤这样特殊的⽅
式进⾏遍历，是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗
漏。

⾸先我们⽤动画演示⼀下普通加法和⾼位进位加法的区别。

从动画中可以看出⾼位进位法从左边加，进位往右边移动，同普通加
法正好相反。但是最终它们都会遍历所有的槽位并且没有重复。

字典扩容

Java 中的 HashMap 有扩容的概念，当 loadFactor 达到阈值时，需
要重新分配⼀个新的 2 倍⼤⼩的数组，然后将所有的元素全部
rehash 挂到新的数组下⾯。rehash 就是将元素的 hash 值对数组

⻓度进⾏取模运算，因为⻓度变了，所以每个元素挂接的槽位可能也
发⽣了变化。⼜因为数组的⻓度是 2^n 次⽅，所以取模运算等价于
位与操作。

a mod 8 = a & (8-1) = a & 7
a mod 16 = a & (16-1) = a & 15
a mod 32 = a & (32-1) = a & 31

这⾥的 7, 15, 31 称之为字典的 mask 值，mask 的作⽤就是保留
hash 值的低位，⾼位都被设置为 0。

接下来我们看看 rehash 前后元素槽位的变化。

假设当前的字典的数组⻓度由 8 位扩容到 16 位，那么 3 号槽位
011 将会被 rehash 到 3 号槽位和 11 号槽位，也就是说该槽位链
表中⼤约有⼀半的元素还是 3 号槽位，其它的元素会放到 11 号槽
位，11 这个数字的⼆进制是 1011，就是对 3 的⼆进制 011 增加
了⼀个⾼位 1。

抽象⼀点说，假设开始槽位的⼆进制数是 xxx，那么该槽位中的元
素将被 rehash 到 0xxx 和 1xxx(xxx+8) 中。
如果字典⻓度由 16 位扩容到 32 位，那么对于⼆进制槽位 xxxx 中

的元素将被 rehash 到 0xxxx 和 1xxxx(xxxx+16) 中。

对⽐扩容缩容前后的遍历顺序

观察这张图，我们发现采⽤⾼位进位加法的遍历顺序，rehash 后的
槽位在遍历顺序上是相邻的。

假设当前要即将遍历 110 这个位置 (橙⾊)，那么扩容后，当前槽位
上所有的元素对应的新槽位是 0110 和 1110(深绿⾊)，也就是在槽
位的⼆进制数增加⼀个⾼位 0 或 1。这时我们可以直接从 0110 这
个槽位开始往后继续遍历，0110 槽位之前的所有槽位都是已经遍历
过的，这样就可以避免扩容后对已经遍历过的槽位进⾏重复遍历。

再考虑缩容，假设当前即将遍历 110 这个位置 (橙⾊)，那么缩容
后，当前槽位所有的元素对应的新槽位是 10(深绿⾊)，也就是去掉
槽位⼆进制最⾼位。这时我们可以直接从 10 这个槽位继续往后遍
历，10 槽位之前的所有槽位都是已经遍历过的，这样就可以避免缩
容的重复遍历。不过缩容还是不太⼀样，它会对图中 010 这个槽位
上的元素进⾏重复遍历，因为缩融后 10 槽位的元素是 010 和 110
上挂接的元素的融合。

渐进式 rehash

Java 的 HashMap 在扩容时会⼀次性将旧数组下挂接的元素全部转
移到新数组下⾯。如果 HashMap 中元素特别多，线程就会出现卡
顿现象。Redis 为了解决这个问题，它采⽤渐进式 rehash。

它会同时保留旧数组和新数组，然后在定时任务中以及后续对 hash
的指令操作中渐渐地将旧数组中挂接的元素迁移到新数组上。这意味
着要操作处于 rehash 中的字典，需要同时访问新旧两个数组结构。
如果在旧数组下⾯找不到元素，还需要去新数组下⾯去寻找。

scan 也需要考虑这个问题，对与 rehash 中的字典，它需要同时扫
描新旧槽位，然后将结果融合后返回给客户端。

更多的 scan 指令

scan 指令是⼀系列指令，除了可以遍历所有的 key 之外，还可以对
指定的容器集合进⾏遍历。⽐如 zscan 遍历 zset 集合元素，hscan
遍历 hash 字典的元素、sscan 遍历 set 集合的元素。

它们的原理同 scan 都会类似的，因为 hash 底层就是字典，set 也
是⼀个特殊的 hash(所有的 value 指向同⼀个元素)，zset 内部也使
⽤了字典来存储所有的元素内容，所以这⾥不再赘述。

⼤ key 扫描

有时候会因为业务⼈员使⽤不当，在 Redis 实例中会形成很⼤的对
象，⽐如⼀个很⼤的 hash，⼀个很⼤的 zset 这都是经常出现的。
这样的对象对 Redis 的集群数据迁移带来了很⼤的问题，因为在集
群环境下，如果某个 key 太⼤，会数据导致迁移卡顿。另外在内存
分配上，如果⼀个 key 太⼤，那么当它需要扩容时，会⼀次性申请
更⼤的⼀块内存，这也会导致卡顿。如果这个⼤ key 被删除，内存
会⼀次性回收，卡顿现象会再⼀次产⽣。

在平时的业务开发中，要尽量避免⼤ key 的产⽣。

如果你观察到 Redis 的内存⼤起⼤落，这极有可能是因为⼤ key 导
致的，这时候你就需要定位出具体是那个 key，进⼀步定位出具体的
业务来源，然后再改进相关业务代码设计。

那如何定位⼤ key 呢？

为了避免对线上 Redis 带来卡顿，这就要⽤到 scan 指令，对于扫
描出来的每⼀个 key，使⽤ type 指令获得 key 的类型，然后使⽤相
应数据结构的 size 或者 len ⽅法来得到它的⼤⼩，对于每⼀种类
型，保留⼤⼩的前 N 名作为扫描结果展示出来。

上⾯这样的过程需要编写脚本，⽐较繁琐，不过 Redis 官⽅已经在
redis-cli 指令中提供了这样的扫描功能，我们可以直接拿来即⽤。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys

如果你担⼼这个指令会⼤幅抬升 Redis 的 ops 导致线上报警，还可
以增加⼀个休眠参数。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1

上⾯这个指令每隔 100 条 scan 指令就会休眠 0.1s，ops 就不会剧
烈抬升，但是扫描的时间会变⻓。

扩展阅读

感兴趣可以继续深⼊阅读 美团近期修复的Scan的⼀个bug
(https://mp.weixin.qq.com/s/ufoLJiXE0wU4Bc7ZbE9cDQ)

https://mp.weixin.qq.com/s/ufoLJiXE0wU4Bc7ZbE9cDQ

