
原理 3：未⾬绸缪 —— 持久化
Redis 的数据全部在内存⾥，如果突然宕机，数据就会全部丢失，因
此必须有⼀种机制来保证 Redis 的数据不会因为故障⽽丢失，这种
机制就是 Redis 的持久化机制。

Redis 的持久化机制有两种，第⼀种是快照，第⼆种是 AOF ⽇志。
快照是⼀次全量备份，AOF ⽇志是连续的增量备份。快照是内存数
据的⼆进制序列化形式，在存储上⾮常紧凑，⽽ AOF ⽇志记录的是
内存数据修改的指令记录⽂本。AOF ⽇志在⻓期的运⾏过程中会变
的⽆⽐庞⼤，数据库重启时需要加载 AOF ⽇志进⾏指令重放，这个
时间就会⽆⽐漫⻓。所以需要定期进⾏ AOF 重写，给 AOF ⽇志进
⾏瘦身。

快照原理

我们知道 Redis 是单线程程序，这个线程要同时负责多个客户端套
接字的并发读写操作和内存数据结构的逻辑读写。

在服务线上请求的同时，Redis 还需要进⾏内存快照，内存快照要求
Redis 必须进⾏⽂件 IO 操作，可⽂件 IO 操作是不能使⽤多路复⽤
API。

这意味着单线程同时在服务线上的请求还要进⾏⽂件 IO 操作，⽂件
IO 操作会严重拖垮服务器请求的性能。还有个重要的问题是为了不
阻塞线上的业务，就需要边持久化边响应客户端请求。持久化的同
时，内存数据结构还在改变，⽐如⼀个⼤型的 hash 字典正在持久
化，结果⼀个请求过来把它给删掉了，还没持久化完呢，这尼玛要怎
么搞？

那该怎么办呢？

Redis 使⽤操作系统的多进程 COW(Copy On Write) 机制来实现快
照持久化，这个机制很有意思，也很少⼈知道。多进程 COW 也是鉴
定程序员知识⼴度的⼀个重要指标。

fork(多进程)

Redis 在持久化时会调⽤ glibc 的函数fork产⽣⼀个⼦进程，快照
持久化完全交给⼦进程来处理，⽗进程继续处理客户端请求。⼦进程
刚刚产⽣时，它和⽗进程共享内存⾥⾯的代码段和数据段。这时你可
以将⽗⼦进程想像成⼀个连体婴⼉，共享身体。这是 Linux 操作系
统的机制，为了节约内存资源，所以尽可能让它们共享起来。在进程
分离的⼀瞬间，内存的增⻓⼏乎没有明显变化。

⽤ Python 语⾔描述进程分离的逻辑如下。fork函数会在⽗⼦进程
同时返回，在⽗进程⾥返回⼦进程的 pid，在⼦进程⾥返回零。如果
操作系统内存资源不⾜，pid 就会是负数，表示fork失败。

pid = os.fork()
if pid > 0:
 handle_client_requests() # ⽗进程继续处理客户端
请求
if pid == 0:
 handle_snapshot_write() # ⼦进程处理快照写磁盘
if pid < 0:
 # fork error

⼦进程做数据持久化，它不会修改现有的内存数据结构，它只是对数
据结构进⾏遍历读取，然后序列化写到磁盘中。但是⽗进程不⼀样，
它必须持续服务客户端请求，然后对内存数据结构进⾏不间断的修
改。

这个时候就会使⽤操作系统的 COW 机制来进⾏数据段⻚⾯的分离。
数据段是由很多操作系统的⻚⾯组合⽽成，当⽗进程对其中⼀个⻚⾯
的数据进⾏修改时，会将被共享的⻚⾯复制⼀份分离出来，然后对这
个复制的⻚⾯进⾏修改。这时⼦进程相应的⻚⾯是没有变化的，还是
进程产⽣时那⼀瞬间的数据。

随着⽗进程修改操作的持续进⾏，越来越多的共享⻚⾯被分离出来，
内存就会持续增⻓。但是也不会超过原有数据内存的 2 倍⼤⼩。另
外⼀个 Redis 实例⾥冷数据占的⽐例往往是⽐较⾼的，所以很少会
出现所有的⻚⾯都会被分离，被分离的往往只有其中⼀部分⻚⾯。每
个⻚⾯的⼤⼩只有 4K，⼀个 Redis 实例⾥⾯⼀般都会有成千上万的
⻚⾯。

⼦进程因为数据没有变化，它能看到的内存⾥的数据在进程产⽣的⼀
瞬间就凝固了，再也不会改变，这也是为什么 Redis 的持久化叫
「快照」的原因。接下来⼦进程就可以⾮常安⼼的遍历数据了进⾏序
列化写磁盘了。

AOF 原理

AOF ⽇志存储的是 Redis 服务器的顺序指令序列，AOF ⽇志只记录
对内存进⾏修改的指令记录。

假设 AOF ⽇志记录了⾃ Redis 实例创建以来所有的修改性指令序
列，那么就可以通过对⼀个空的 Redis 实例顺序执⾏所有的指令，
也就是「重放」，来恢复 Redis 当前实例的内存数据结构的状态。

Redis 会在收到客户端修改指令后，进⾏参数校验进⾏逻辑处理后，
如果没问题，就⽴即将该指令⽂本存储到 AOF ⽇志中，也就是先执
⾏指令才将⽇志存盘。这点不同于leveldb、hbase等存储引擎，它
们都是先存储⽇志再做逻辑处理。

Redis 在⻓期运⾏的过程中，AOF 的⽇志会越变越⻓。如果实例宕
机重启，重放整个 AOF ⽇志会⾮常耗时，导致⻓时间 Redis ⽆法对
外提供服务。所以需要对 AOF ⽇志瘦身。

AOF 重写

Redis 提供了 bgrewriteaof 指令⽤于对 AOF ⽇志进⾏瘦身。其原
理就是开辟⼀个⼦进程对内存进⾏遍历转换成⼀系列 Redis 的操作
指令，序列化到⼀个新的 AOF ⽇志⽂件中。序列化完毕后再将操作
期间发⽣的增量 AOF ⽇志追加到这个新的 AOF ⽇志⽂件中，追加
完毕后就⽴即替代旧的 AOF ⽇志⽂件了，瘦身⼯作就完成了。

fsync

AOF ⽇志是以⽂件的形式存在的，当程序对 AOF ⽇志⽂件进⾏写操
作时，实际上是将内容写到了内核为⽂件描述符分配的⼀个内存缓存
中，然后内核会异步将脏数据刷回到磁盘的。

这就意味着如果机器突然宕机，AOF ⽇志内容可能还没有来得及完
全刷到磁盘中，这个时候就会出现⽇志丢失。那该怎么办？

Linux 的glibc提供了fsync(int fd)函数可以将指定⽂件的内容
强制从内核缓存刷到磁盘。只要 Redis 进程实时调⽤ fsync 函数就
可以保证 aof ⽇志不丢失。但是 fsync 是⼀个磁盘 IO 操作，它很
慢！如果 Redis 执⾏⼀条指令就要 fsync ⼀次，那么 Redis ⾼性能
的地位就不保了。

所以在⽣产环境的服务器中，Redis 通常是每隔 1s 左右执⾏⼀次
fsync 操作，周期 1s 是可以配置的。这是在数据安全性和性能之间
做了⼀个折中，在保持⾼性能的同时，尽可能使得数据少丢失。

Redis 同样也提供了另外两种策略，⼀个是永不 fsync——让操作系
统来决定何时同步磁盘，很不安全，另⼀个是来⼀个指令就 fsync
⼀次——⾮常慢。但是在⽣产环境基本不会使⽤，了解⼀下即可。

运维

快照是通过开启⼦进程的⽅式进⾏的，它是⼀个⽐较耗资源的操作。

1. 遍历整个内存，⼤块写磁盘会加重系统负载
2. AOF 的 fsync 是⼀个耗时的 IO 操作，它会降低 Redis 性能，
同时也会增加系统 IO 负担

所以通常 Redis 的主节点是不会进⾏持久化操作，持久化操作主要
在从节点进⾏。从节点是备份节点，没有来⾃客户端请求的压⼒，它
的操作系统资源往往⽐较充沛。

但是如果出现⽹络分区，从节点⻓期连不上主节点，就会出现数据不
⼀致的问题，特别是在⽹络分区出现的情况下⼜不⼩⼼主节点宕机
了，那么数据就会丢失，所以在⽣产环境要做好实时监控⼯作，保证
⽹络畅通或者能快速修复。另外还应该再增加⼀个从节点以降低⽹络
分区的概率，只要有⼀个从节点数据同步正常，数据也就不会轻易丢
失。

Redis 4.0 混合持久化

重启 Redis 时，我们很少使⽤ rdb 来恢复内存状态，因为会丢失⼤
量数据。我们通常使⽤ AOF ⽇志重放，但是重放 AOF ⽇志性能相
对 rdb 来说要慢很多，这样在 Redis 实例很⼤的情况下，启动需要
花费很⻓的时间。

Redis 4.0 为了解决这个问题，带来了⼀个新的持久化选项——混合
持久化。将 rdb ⽂件的内容和增量的 AOF ⽇志⽂件存在⼀起。这⾥
的 AOF ⽇志不再是全量的⽇志，⽽是⾃持久化开始到持久化结束的
这段时间发⽣的增量 AOF ⽇志，通常这部分 AOF ⽇志很⼩。

于是在 Redis 重启的时候，可以先加载 rdb 的内容，然后再重放增
量 AOF ⽇志就可以完全替代之前的 AOF 全量⽂件重放，重启效率
因此⼤幅得到提升。

思考题

1. 有⼈说 Redis 只适合⽤来做缓存，当数据库来⽤并不合适，你
怎么看？

2. 为什么 Redis 先执⾏指令再记录aof⽇志⽽不是像其它存储引

擎⼀样反过来呢？

