
原理 5：同⾈共济 —— 事务
为了确保连续多个操作的原⼦性，⼀个成熟的数据库通常都会有事务
⽀持，Redis 也不例外。Redis 的事务使⽤⾮常简单，不同于关系数
据库，我们⽆须理解那么多复杂的事务模型，就可以直接使⽤。不过
也正是因为这种简单性，它的事务模型很不严格，这要求我们不能像
使⽤关系数据库的事务⼀样来使⽤ Redis。

Redis 事务的基本使⽤

每个事务的操作都有 begin、commit 和 rollback，begin 指示事
务的开始，commit 指示事务的提交，rollback 指示事务的回滚。
它⼤致的形式如下。

begin();
try {
 command1();
 command2();

 commit();
} catch(Exception e) {
 rollback();
}

Redis 在形式上看起来也差不多，分别是 multi/exec/discard。
multi 指示事务的开始，exec 指示事务的执⾏，discard 指示事务
的丢弃。

> multi
OK
> incr books
QUEUED
> incr books
QUEUED
> exec
(integer) 1
(integer) 2

上⾯的指令演示了⼀个完整的事务过程，所有的指令在 exec 之前不
执⾏，⽽是缓存在服务器的⼀个事务队列中，服务器⼀旦收到 exec
指令，才开执⾏整个事务队列，执⾏完毕后⼀次性返回所有指令的运
⾏结果。因为 Redis 的单线程特性，它不⽤担⼼⾃⼰在执⾏队列的
时候被其它指令打搅，可以保证他们能得到的「原⼦性」执⾏。

上图显示了以上事务过程完整的交互效果。QUEUED 是⼀个简单字
符串，同 OK 是⼀个形式，它表示指令已经被服务器缓存到队列⾥
了。

原⼦性

事务的原⼦性是指要么事务全部成功，要么全部失败，那么 Redis
事务执⾏是原⼦性的么？

下⾯我们来看⼀个特别的例⼦。

> multi
OK
> set books iamastring
QUEUED
> incr books
QUEUED
> set poorman iamdesperate
QUEUED
> exec
1) OK
2) (error) ERR value is not an integer or out of
range
3) OK
> get books
"iamastring"
> get poorman
"iamdesperate

上⾯的例⼦是事务执⾏到中间遇到失败了，因为我们不能对⼀个字符
串进⾏数学运算，事务在遇到指令执⾏失败后，后⾯的指令还继续执
⾏，所以 poorman 的值能继续得到设置。

到这⾥，你应该明⽩ Redis 的事务根本不能算「原⼦性」，⽽仅仅
是满⾜了事务的「隔离性」，隔离性中的串⾏化——当前执⾏的事务
有着不被其它事务打断的权利。

discard(丢弃)

Redis 为事务提供了⼀个 discard 指令，⽤于丢弃事务缓存队列中
的所有指令，在 exec 执⾏之前。

> get books
(nil)
> multi
OK
> incr books
QUEUED
> incr books
QUEUED
> discard
OK
> get books
(nil)

我们可以看到 discard 之后，队列中的所有指令都没执⾏，就好像
multi 和 discard 中间的所有指令从未发⽣过⼀样。

优化

上⾯的 Redis 事务在发送每个指令到事务缓存队列时都要经过⼀次
⽹络读写，当⼀个事务内部的指令较多时，需要的⽹络 IO 时间也会
线性增⻓。所以通常 Redis 的客户端在执⾏事务时都会结合
pipeline ⼀起使⽤，这样可以将多次 IO 操作压缩为单次 IO 操作。
⽐如我们在使⽤ Python 的 Redis 客户端时执⾏事务时是要强制使
⽤ pipeline 的。

pipe = redis.pipeline(transaction=true)
pipe.multi()
pipe.incr("books")
pipe.incr("books")
values = pipe.execute()

Watch

考虑到⼀个业务场景，Redis 存储了我们的账户余额数据，它是⼀个
整数。现在有两个并发的客户端要对账户余额进⾏修改操作，这个修
改不是⼀个简单的 incrby 指令，⽽是要对余额乘以⼀个倍数。
Redis 可没有提供 multiplyby 这样的指令。我们需要先取出余额然
后在内存⾥乘以倍数，再将结果写回 Redis。

这就会出现并发问题，因为有多个客户端会并发进⾏操作。我们可以
通过 Redis 的分布式锁来避免冲突，这是⼀个很好的解决⽅案。分
布式锁是⼀种悲观锁，那是不是可以使⽤乐观锁的⽅式来解决冲突
呢？

Redis 提供了这种 watch 的机制，它就是⼀种乐观锁。有了 watch
我们⼜多了⼀种可以⽤来解决并发修改的⽅法。
watch 的使⽤⽅式如下：

while True:
 do_watch()
 commands()
 multi()
 send_commands()
 try:
 exec()
 break
 except WatchError:
 continue

watch 会在事务开始之前盯住 1 个或多个关键变量，当事务执⾏
时，也就是服务器收到了 exec 指令要顺序执⾏缓存的事务队列时，
Redis 会检查关键变量⾃ watch 之后，是否被修改了 (包括当前事务
所在的客户端)。如果关键变量被⼈动过了，exec 指令就会返回 null
回复告知客户端事务执⾏失败，这个时候客户端⼀般会选择重试。

> watch books
OK
> incr books # 被修改了
(integer) 1
> multi
OK
> incr books
QUEUED
> exec # 事务执⾏失败
(nil)

当服务器给 exec 指令返回⼀个 null 回复时，客户端知道了事务执
⾏是失败的，通常客户端 (redis-py) 都会抛出⼀个 WatchError 这
种错误，不过也有些语⾔ (jedis) 不会抛出异常，⽽是通过在 exec
⽅法⾥返回⼀个 null，这样客户端需要检查⼀下返回结果是否为
null 来确定事务是否执⾏失败。

注意事项

Redis 禁⽌在 multi 和 exec 之间执⾏ watch 指令，⽽必须在
multi 之前做好盯住关键变量，否则会出错。

接下来我们使⽤ Python 语⾔来实现对余额的加倍操作。

-*- coding: utf-8
import redis

def key_for(user_id):
 return "account_{}".format(user_id)

def double_account(client, user_id):
 key = key_for(user_id)
 while True:
 client.watch(key)
 value = int(client.get(key))
 value *= 2 # 加倍
 pipe = client.pipeline(transaction=True)
 pipe.multi()
 pipe.set(key, value)
 try:
 pipe.execute()
 break # 总算成功了
 except redis.WatchError:
 continue # 事务被打断了，重试
 return int(client.get(key)) # 重新获取余额

client = redis.StrictRedis()
user_id = "abc"
client.setnx(key_for(user_id), 5) # setnx 做初始化
print double_account(client, user_id)

下⾯我们再使⽤ Java 语⾔实现⼀遍。

import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Transaction;

public class TransactionDemo {

 public static void main(String[] args) {
 Jedis jedis = new Jedis();
 String userId = "abc";
 String key = keyFor(userId);
 jedis.setnx(key, String.valueOf(5)); # setnx
做初始化
 System.out.println(doubleAccount(jedis,
userId));
 jedis.close();
 }

 public static int doubleAccount(Jedis jedis,
String userId) {
 String key = keyFor(userId);
 while (true) {
 jedis.watch(key);
 int value =
Integer.parseInt(jedis.get(key));
 value *= 2; // 加倍
 Transaction tx = jedis.multi();
 tx.set(key, String.valueOf(value));
 List<Object> res = tx.exec();
 if (res != null) {
 break; // 成功了
 }
 }
 return Integer.parseInt(jedis.get(key)); // 重
新获取余额
 }

 public static String keyFor(String userId) {

 return String.format("account_%s", userId);
 }

}

我们常常听说 Python 的代码要⽐ Java 简短太多，但是从这个例⼦
中我们看到 Java 的代码⽐ python 的代码也多不了多少，⼤约只多
出 50%。

思考题

为什么 Redis 的事务不能⽀持回滚？

