
集群 3：众志成城 —— Cluster

RedisCluster 是 Redis 的亲⼉⼦，它是 Redis 作者⾃⼰提供的
Redis 集群化⽅案。

相对于 Codis 的不同，它是去中⼼化的，如图所示，该集群有三个
Redis 节点组成，每个节点负责整个集群的⼀部分数据，每个节点负
责的数据多少可能不⼀样。这三个节点相互连接组成⼀个对等的集
群，它们之间通过⼀种特殊的⼆进制协议相互交互集群信息。

Redis Cluster 将所有数据划分为 16384 的 slots，它⽐ Codis 的
1024 个槽划分的更为精细，每个节点负责其中⼀部分槽位。槽位的
信息存储于每个节点中，它不像 Codis，它不需要另外的分布式存储
来存储节点槽位信息。

当 Redis Cluster 的客户端来连接集群时，它也会得到⼀份集群的槽
位配置信息。这样当客户端要查找某个 key 时，可以直接定位到⽬
标节点。

这点不同于 Codis，Codis 需要通过 Proxy 来定位⽬标节点，
RedisCluster 是直接定位。客户端为了可以直接定位某个具体的
key 所在的节点，它就需要缓存槽位相关信息，这样才可以准确快速
地定位到相应的节点。同时因为槽位的信息可能会存在客户端与服务
器不⼀致的情况，还需要纠正机制来实现槽位信息的校验调整。

另外，RedisCluster 的每个节点会将集群的配置信息持久化到配置
⽂件中，所以必须确保配置⽂件是可写的，⽽且尽量不要依靠⼈⼯修
改配置⽂件。

槽位定位算法

Cluster 默认会对 key 值使⽤ crc16 算法进⾏ hash 得到⼀个整数
值，然后⽤这个整数值对 16384 进⾏取模来得到具体槽位。

Cluster 还允许⽤户强制某个 key 挂在特定槽位上，通过在 key 字
符串⾥⾯嵌⼊ tag 标记，这就可以强制 key 所挂在的槽位等于 tag
所在的槽位。

def HASH_SLOT(key)
 s = key.index "{"
 if s
 e = key.index "}",s+1
 if e && e != s+1
 key = key[s+1..e-1]
 end
 end
 crc16(key) % 16384
end

跳转

当客户端向⼀个错误的节点发出了指令，该节点会发现指令的 key
所在的槽位并不归⾃⼰管理，这时它会向客户端发送⼀个特殊的跳转
指令携带⽬标操作的节点地址，告诉客户端去连这个节点去获取数
据。

GET x
-MOVED 3999 127.0.0.1:6381

MOVED 指令的第⼀个参数 3999 是 key 对应的槽位编号，后⾯是
⽬标节点地址。MOVED 指令前⾯有⼀个减号，表示该指令是⼀个错
误消息。

客户端收到 MOVED 指令后，要⽴即纠正本地的槽位映射表。后续
所有 key 将使⽤新的槽位映射表。

迁移

Redis Cluster 提供了⼯具 redis-trib 可以让运维⼈员⼿动调整槽位
的分配情况，它使⽤ Ruby 语⾔进⾏开发，通过组合各种原⽣的
Redis Cluster 指令来实现。这点 Codis 做的更加⼈性化，它不但

提供了 UI 界⾯可以让我们⽅便的迁移，还提供了⾃动化平衡槽位⼯
具，⽆需⼈⼯⼲预就可以均衡集群负载。不过 Redis 官⽅向来的策
略就是提供最⼩可⽤的⼯具，其它都交由社区完成。

迁移过程

Redis 迁移的单位是槽，Redis ⼀个槽⼀个槽进⾏迁移，当⼀个槽正
在迁移时，这个槽就处于中间过渡状态。这个槽在原节点的状态
为migrating，在⽬标节点的状态为importing，表示数据正在从
源流向⽬标。

迁移⼯具 redis-trib ⾸先会在源和⽬标节点设置好中间过渡状态，
然后⼀次性获取源节点槽位的所有 key 列表(keysinslot指令，可以
部分获取)，再挨个key进⾏迁移。每个 key 的迁移过程是以原节点
作为⽬标节点的「客户端」，原节点对当前的key执⾏dump指令得
到序列化内容，然后通过「客户端」向⽬标节点发送指令restore携
带序列化的内容作为参数，⽬标节点再进⾏反序列化就可以将内容恢
复到⽬标节点的内存中，然后返回「客户端」OK，原节点「客户
端」收到后再把当前节点的key删除掉就完成了单个key迁移的整个
过程。

从源节点获取内容 => 存到⽬标节点 => 从源节点删除内容。

注意这⾥的迁移过程是同步的，在⽬标节点执⾏restore指令到原节
点删除key之间，原节点的主线程会处于阻塞状态，直到key被成功
删除。

如果迁移过程中突然出现⽹络故障，整个slot的迁移只进⾏了⼀半。
这时两个节点依旧处于中间过渡状态。待下次迁移⼯具重新连上时，
会提示⽤户继续进⾏迁移。

在迁移过程中，如果每个key的内容都很⼩，migrate指令执⾏会很
快，它就并不会影响客户端的正常访问。如果key的内容很⼤，因为
migrate指令是阻塞指令会同时导致原节点和⽬标节点卡顿，影响集
群的稳定型。所以在集群环境下业务逻辑要尽可能避免⼤key的产
⽣。

在迁移过程中，客户端访问的流程会有很⼤的变化。

⾸先新旧两个节点对应的槽位都存在部分 key 数据。客户端先尝试
访问旧节点，如果对应的数据还在旧节点⾥⾯，那么旧节点正常处
理。如果对应的数据不在旧节点⾥⾯，那么有两种可能，要么该数据
在新节点⾥，要么根本就不存在。旧节点不知道是哪种情况，所以它
会向客户端返回⼀个-ASK targetNodeAddr的重定向指令。客户
端收到这个重定向指令后，先去⽬标节点执⾏⼀个不带任何参数的
asking指令，然后在⽬标节点再重新执⾏原先的操作指令。

为什么需要执⾏⼀个不带参数的asking指令呢？

因为在迁移没有完成之前，按理说这个槽位还是不归新节点管理的，
如果这个时候向⽬标节点发送该槽位的指令，节点是不认的，它会向
客户端返回⼀个-MOVED重定向指令告诉它去源节点去执⾏。如此就
会形成 重定向循环。asking指令的⽬标就是打开⽬标节点的选项，
告诉它下⼀条指令不能不理，⽽要当成⾃⼰的槽位来处理。

从以上过程可以看出，迁移是会影响服务效率的，同样的指令在正常
情况下⼀个 ttl 就能完成，⽽在迁移中得 3 个 ttl 才能搞定。

容错

Redis Cluster 可以为每个主节点设置若⼲个从节点，单主节点故障
时，集群会⾃动将其中某个从节点提升为主节点。如果某个主节点没
有从节点，那么当它发⽣故障时，集群将完全处于不可⽤状态。不过
Redis 也提供了⼀个参数cluster-require-full-coverage可
以允许部分节点故障，其它节点还可以继续提供对外访问。

⽹络抖动

真实世界的机房⽹络往往并不是⻛平浪静的，它们经常会发⽣各种各
样的⼩问题。⽐如⽹络抖动就是⾮常常⻅的⼀种现象，突然之间部分
连接变得不可访问，然后很快⼜恢复正常。

为解决这种问题，Redis Cluster 提供了⼀种选项cluster-node-
timeout，表示当某个节点持续 timeout 的时间失联时，才可以认
定该节点出现故障，需要进⾏主从切换。如果没有这个选项，⽹络抖
动会导致主从频繁切换 (数据的重新复制)。

还有另外⼀个选项cluster-slave-validity-factor作为倍乘
系数来放⼤这个超时时间来宽松容错的紧急程度。如果这个系数为
零，那么主从切换是不会抗拒⽹络抖动的。如果这个系数⼤于 1，它
就成了主从切换的松弛系数。

可能下线 (PFAIL-Possibly Fail) 与确定下
线 (Fail)

因为 Redis Cluster 是去中⼼化的，⼀个节点认为某个节点失联了并
不代表所有的节点都认为它失联了。所以集群还得经过⼀次协商的过
程，只有当⼤多数节点都认定了某个节点失联了，集群才认为该节点
需要进⾏主从切换来容错。

Redis 集群节点采⽤ Gossip 协议来⼴播⾃⼰的状态以及⾃⼰对整个
集群认知的改变。⽐如⼀个节点发现某个节点失联了 (PFail)，它会
将这条信息向整个集群⼴播，其它节点也就可以收到这点失联信息。
如果⼀个节点收到了某个节点失联的数量 (PFail Count) 已经达到了
集群的⼤多数，就可以标记该节点为确定下线状态 (Fail)，然后向整
个集群⼴播，强迫其它节点也接收该节点已经下线的事实，并⽴即对
该失联节点进⾏主从切换。

Cluster 基本使⽤

redis-py 客户端不⽀持 Cluster 模式，要使⽤ Cluster，必须安装
另外⼀个包，这个包是依赖 redis-py 包的。

pip install redis-py-cluster

下⾯我们看看 redis-py-cluster 如何使⽤。

>>> from rediscluster import StrictRedisCluster
>>> # Requires at least one node for cluster
discovery. Multiple nodes is recommended.
>>> startup_nodes = [{"host": "127.0.0.1",
"port": "7000"}]
>>> rc =
StrictRedisCluster(startup_nodes=startup_nodes,
decode_responses=True)
>>> rc.set("foo", "bar")
True
>>> print(rc.get("foo"))
'bar'

Cluster 是去中⼼化的，它有多个节点组成，构造
StrictRedisCluster 实例时，我们可以只⽤⼀个节点地址，其它地址
可以⾃动通过这个节点来发现。不过如果提供多个节点地址，安全性
会更好。如果只提供⼀个节点地址，那么当这个节点挂了，客户端就
必须更换地址才可以继续访问 Cluster。
第⼆个参数 decode_responses 表示是否要将返回结果中的 byte
数组转换成 unicode。

Cluster 使⽤起来⾮常⽅便，⽤起来和普通的 redis-py 差别不⼤，
仅仅是构造⽅式不同。但是它们也有相当⼤的不⼀样之处，⽐如
Cluster 不⽀持事务，Cluster 的 mget ⽅法相⽐ Redis 要慢很多，
被拆分成了多个 get 指令，Cluster 的 rename ⽅法不再是原⼦
的，它需要将数据从原节点转移到⽬标节点。

槽位迁移感知

如果 Cluster 中某个槽位正在迁移或者已经迁移完了，client 如何能
感知到槽位的变化呢？客户端保存了槽位和节点的映射关系表，它需
要即时得到更新，才可以正常地将某条指令发到正确的节点中。

我们前⾯提到 Cluster 有两个特殊的 error 指令，⼀个是 moved，
⼀个是 asking。

第⼀个 moved 是⽤来纠正槽位的。如果我们将指令发送到了错误的
节点，该节点发现对应的指令槽位不归⾃⼰管理，就会将⽬标节点的
地址随同 moved 指令回复给客户端通知客户端去⽬标节点去访问。
这个时候客户端就会刷新⾃⼰的槽位关系表，然后重试指令，后续所
有打在该槽位的指令都会转到⽬标节点。

第⼆个 asking 指令和 moved 不⼀样，它是⽤来临时纠正槽位的。
如果当前槽位正处于迁移中，指令会先被发送到槽位所在的旧节点，
如果旧节点存在数据，那就直接返回结果了，如果不存在，那么它可
能真的不存在也可能在迁移⽬标节点上。所以旧节点会通知客户端去
新节点尝试⼀下拿数据，看看新节点有没有。这时候就会给客户端返
回⼀个 asking error 携带上⽬标节点的地址。客户端收到这个
asking error 后，就会去⽬标节点去尝试。客户端不会刷新槽位
映射关系表，因为它只是临时纠正该指令的槽位信息，不影响后续指
令。

重试 2 次

moved 和 asking 指令都是重试指令，客户端会因为这两个指令多
重试⼀次。读者有没有想过会不会存在⼀种情况，客户端有可能重试
2 次呢？这种情况是存在的，⽐如⼀条指令被发送到错误的节点，这
个节点会先给你⼀个 moved 错误告知你去另外⼀个节点重试。所以
客户端就去另外⼀个节点重试了，结果刚好这个时候运维⼈员要对这
个槽位进⾏迁移操作，于是给客户端回复了⼀个 asking 指令告知
客户端去⽬标节点去重试指令。所以这⾥客户端重试了 2 次。

重试多次

在某些特殊情况下，客户端甚⾄会重试多次，读者可以开发⼀下⾃⼰
的脑洞想⼀想什么情况下会重试多次。

正是因为存在多次重试的情况，所以客户端的源码⾥在执⾏指令时都

会有⼀个循环，然后会设置⼀个最⼤重试次数，Java 和 Python 都
有这个参数，只是设置的值不⼀样。当重试次数超过这个值时，客户
端会直接向业务层抛出异常。

集群变更感知

当服务器节点变更时，客户端应该即时得到通知以实时刷新⾃⼰的节
点关系表。那客户端是如何得到通知的呢？这⾥要分 2 种情况：

1. ⽬标节点挂掉了，客户端会抛出⼀个 ConnectionError，紧
接着会随机挑⼀个节点来重试，这时被重试的节点会通过
moved error 告知⽬标槽位被分配到的新的节点地址。

2. 运维⼿动修改了集群信息，将 master 切换到其它节点，并将
旧的 master 移除集群。这时打在旧节点上的指令会收到⼀个
ClusterDown 的错误，告知当前节点所在集群不可⽤ (当前节
点已经被孤⽴了，它不再属于之前的集群)。这时客户端就会关
闭所有的连接，清空槽位映射关系表，然后向上层抛错。待下
⼀条指令过来时，就会重新尝试初始化节点信息。

思考 & 作业

1. 请读者⾃⼰尝试搭建 Cluster 集群。
2. 使⽤客户端连接集群进⾏⼀些常规指令的操作体验。

