
拓展 2：⽆所不知 —— Info 指令
在使⽤ Redis 时，时常会遇到很多问题需要诊断，在诊断之前需要
了解 Redis 的运⾏状态，通过强⼤的 Info 指令，你可以清晰地知道
Redis 内部⼀系列运⾏参数。

Info 指令显示的信息⾮常繁多，分为 9 ⼤块，每个块都有⾮常多的
参数，这 9 个块分别是:

1. Server 服务器运⾏的环境参数
2. Clients 客户端相关信息
3. Memory 服务器运⾏内存统计数据
4. Persistence 持久化信息
5. Stats 通⽤统计数据
6. Replication 主从复制相关信息
7. CPU CPU 使⽤情况
8. Cluster 集群信息
9. KeySpace 键值对统计数量信息

Info 可以⼀次性获取所有的信息，也可以按块取信息。

获取所有信息
> info
获取内存相关信息
> info memory
获取复制相关信息
> info replication

考虑到参数⾮常繁多，⼀⼀说明⼯作量巨⼤，下⾯我只挑⼀些关键性
的、⾮常实⽤和最常⽤的参数进⾏详细讲解。如果读者想要了解所有
的参数细节，请参考阅读 Redis 官⽹⽂档
(https://redis.io/commands/info)。

https://redis.io/commands/info

Redis 每秒执⾏多少次指令？

这个信息在 Stats 块⾥，可以通过 info stats 看到。

ops_per_sec: operations per second，也就是每秒操作
数
> redis-cli info stats |grep ops
instantaneous_ops_per_sec:789

以上，表示 ops 是 789，也就是所有客户端每秒会发送 789 条指
令到服务器执⾏。极限情况下，Redis 可以每秒执⾏ 10w 次指令，
CPU ⼏乎完全榨⼲。如果 qps 过⾼，可以考虑通过 monitor 指令

快速观察⼀下究竟是哪些 key 访问⽐较频繁，从⽽在相应的业务上
进⾏优化，以减少 IO 次数。monitor 指令会瞬间吐出来巨量的指
令⽂本，所以⼀般在执⾏ monitor 后⽴即 ctrl+c中断输出。

> redis-cli monitor

Redis 连接了多少客户端？

这个信息在 Clients 块⾥，可以通过 info clients 看到。

> redis-cli info clients
Clients
connected_clients:124 # 这个就是正在连接的客户端数量
client_longest_output_list:0
client_biggest_input_buf:0
blocked_clients:0

这个信息也是⽐较有⽤的，通过观察这个数量可以确定是否存在意料
之外的连接。如果发现这个数量不对劲，接着就可以使⽤client
list指令列出所有的客户端链接地址来确定源头。

关于客户端的数量还有个重要的参数需要观察，那就
是rejected_connections，它表示因为超出最⼤连接数限制⽽被
拒绝的客户端连接次数，如果这个数字很⼤，意味着服务器的最⼤连
接数设置的过低需要调整 maxclients 参数。

> redis-cli info stats |grep reject
rejected_connections:0

Redis 内存占⽤多⼤ ?

这个信息在 Memory 块⾥，可以通过 info memory 看到。

> redis-cli info memory | grep used | grep human
used_memory_human:827.46K # 内存分配器 (jemalloc)
从操作系统分配的内存总量
used_memory_rss_human:3.61M # 操作系统看到的内存占⽤
,top 命令看到的内存
used_memory_peak_human:829.41K # Redis 内存消耗的
峰值
used_memory_lua_human:37.00K # lua 脚本引擎占⽤的内
存⼤⼩

如果单个 Redis 内存占⽤过⼤，并且在业务上没有太多压缩的空间
的话，可以考虑集群化了。

复制积压缓冲区多⼤？

这个信息在 Replication 块⾥，可以通过 info replication 看
到。

> redis-cli info replication |grep backlog
repl_backlog_active:0
repl_backlog_size:1048576 # 这个就是积压缓冲区⼤⼩
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0

复制积压缓冲区⼤⼩⾮常重要，它严重影响到主从复制的效率。当从
库因为⽹络原因临时断开了主库的复制，然后⽹络恢复了，⼜重新连
上的时候，这段断开的时间内发⽣在 master 上的修改操作指令都会
放在积压缓冲区中，这样从库可以通过积压缓冲区恢复中断的主从同
步过程。

积压缓冲区是环形的，后来的指令会覆盖掉前⾯的内容。如果从库断
开的时间过⻓，或者缓冲区的⼤⼩设置的太⼩，都会导致从库⽆法快
速恢复中断的主从同步过程，因为中间的修改指令被覆盖掉了。这时
候从库就会进⾏全量同步模式，⾮常耗费 CPU 和⽹络资源。

如果有多个从库复制，积压缓冲区是共享的，它不会因为从库过多⽽
线性增⻓。如果实例的修改指令请求很频繁，那就把积压缓冲区调⼤
⼀些，⼏⼗个 M ⼤⼩差不多了，如果很闲，那就设置为⼏个 M。

> redis-cli info stats | grep sync
sync_full:0
sync_partial_ok:0
sync_partial_err:0 # 半同步失败次数

通过查看sync_partial_err变量的次数来决定是否需要扩⼤积压
缓冲区，它表示主从半同步复制失败的次数。

思考

平时你们在使⽤ Redis 时还需要查看哪些重要的信息，能不能直接
在 Info 信息⾥获取？

