
拓展 3：拾遗漏补 —— 再谈分布
式锁

在第三节，我们细致讲解了分布式锁的原理，它的使⽤⾮常简单，⼀
条指令就可以完成加锁操作。不过在集群环境下，这种⽅式是有缺陷
的，它不是绝对安全的。

⽐如在 Sentinel 集群中，主节点挂掉时，从节点会取⽽代之，客户
端上却并没有明显感知。原先第⼀个客户端在主节点中申请成功了⼀
把锁，但是这把锁还没有来得及同步到从节点，主节点突然挂掉了。
然后从节点变成了主节点，这个新的节点内部没有这个锁，所以当另
⼀个客户端过来请求加锁时，⽴即就批准了。这样就会导致系统中同
样⼀把锁被两个客户端同时持有，不安全性由此产⽣。

不过这种不安全也仅仅是在主从发⽣ failover 的情况下才会产⽣，
⽽且持续时间极短，业务系统多数情况下可以容忍。

Redlock 算法

为了解决这个问题，Antirez 发明了 Redlock 算法，它的流程⽐较
复杂，不过已经有了很多开源的 library 做了良好的封装，⽤户可以
拿来即⽤，⽐如 redlock-py。

import redlock

addrs = [{
 "host": "localhost",
 "port": 6379,
 "db": 0
}, {
 "host": "localhost",
 "port": 6479,
 "db": 0
}, {
 "host": "localhost",
 "port": 6579,
 "db": 0
}]
dlm = redlock.Redlock(addrs)
success = dlm.lock("user-lck-laoqian", 5000)
if success:
 print 'lock success'
 dlm.unlock('user-lck-laoqian')
else:
 print 'lock failed'

为了使⽤ Redlock，需要提供多个 Redis 实例，这些实例之前相互
独⽴没有主从关系。同很多分布式算法⼀样，redlock 也使⽤「⼤多
数机制」。

加锁时，它会向过半节点发送 set(key, value, nx=True,
ex=xxx) 指令，只要过半节点 set 成功，那就认为加锁成功。释放
锁时，需要向所有节点发送 del 指令。不过 Redlock 算法还需要考
虑出错重试、时钟漂移等很多细节问题，同时因为 Redlock 需要向
多个节点进⾏读写，意味着相⽐单实例 Redis 性能会下降⼀些。

Redlock 使⽤场景

如果你很在乎⾼可⽤性，希望挂了⼀台 redis 完全不受影响，那就应
该考虑 redlock。不过代价也是有的，需要更多的 redis 实例，性能
也下降了，代码上还需要引⼊额外的 library，运维上也需要特殊对
待，这些都是需要考虑的成本，使⽤前请再三斟酌。

扩展阅读

1. 你以为 Redlock 算法真的很完美？
(http://martin.kleppmann.com/2016/02/08/how-to-do-
distributed-locking.html)

2. Redlock-py 的作者其⼈趣事

http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

看头像⾮常酷，这位⽼哥的 Github 地址是
https://github.com/optimuspaul
(https://github.com/optimuspaul)

https://github.com/optimuspaul

