
拓展 5：优胜劣汰 —— LRU
当 Redis 内存超出物理内存限制时，内存的数据会开始和磁盘产⽣
频繁的交换 (swap)。交换会让 Redis 的性能急剧下降，对于访问量
⽐较频繁的 Redis 来说，这样⻳速的存取效率基本上等于不可⽤。

在⽣产环境中我们是不允许 Redis 出现交换⾏为的，为了限制最⼤
使⽤内存，Redis 提供了配置参数 maxmemory 来限制内存超出期望
⼤⼩。

当实际内存超出 maxmemory 时，Redis 提供了⼏种可选策略
(maxmemory-policy) 来让⽤户⾃⼰决定该如何腾出新的空间以继
续提供读写服务。

noeviction
不会继续服务写请求 (DEL 请求可以继续服务)，读请求可以继续进
⾏。这样可以保证不会丢失数据，但是会让线上的业务不能持续进
⾏。这是默认的淘汰策略。

volatile-lru
尝试淘汰设置了过期时间的 key，最少使⽤的 key 优先被淘汰。没
有设置过期时间的 key 不会被淘汰，这样可以保证需要持久化的数
据不会突然丢失。

volatile-ttl
跟上⾯⼀样，除了淘汰的策略不是 LRU，⽽是 key 的剩余寿命 ttl
的值，ttl 越⼩越优先被淘汰。

volatile-random
跟上⾯⼀样，不过淘汰的 key 是过期 key 集合中随机的 key。

allkeys-lru
区别于 volatile-lru，这个策略要淘汰的 key 对象是全体的 key 集
合，⽽不只是过期的 key 集合。这意味着没有设置过期时间的 key
也会被淘汰。

allkeys-random
跟上⾯⼀样，不过淘汰的策略是随机的 key。

volatile-xxx 策略只会针对带过期时间的 key 进⾏淘汰，allkeys-
xxx 策略会对所有的 key 进⾏淘汰。如果你只是拿 Redis 做缓存，
那应该使⽤ allkeys-xxx，客户端写缓存时不必携带过期时间。如果
你还想同时使⽤ Redis 的持久化功能，那就使⽤ volatile-xxx 策
略，这样可以保留没有设置过期时间的 key，它们是永久的 key 不
会被 LRU 算法淘汰。

LRU 算法

实现 LRU 算法除了需要 key/value 字典外，还需要附加⼀个链表，
链表中的元素按照⼀定的顺序进⾏排列。当空间满的时候，会踢掉链
表尾部的元素。当字典的某个元素被访问时，它在链表中的位置会被
移动到表头。所以链表的元素排列顺序就是元素最近被访问的时间顺
序。

位于链表尾部的元素就是不被重⽤的元素，所以会被踢掉。位于表头
的元素就是最近刚刚被⼈⽤过的元素，所以暂时不会被踢。

下⾯我们使⽤ Python 的 OrderedDict(双向链表 + 字典) 来实现⼀
个简单的 LRU 算法。

from collections import OrderedDict

class LRUDict(OrderedDict):

 def __init__(self, capacity):

 self.capacity = capacity
 self.items = OrderedDict()

 def __setitem__(self, key, value):
 old_value = self.items.get(key)
 if old_value is not None:
 self.items.pop(key)
 self.items[key] = value
 elif len(self.items) < self.capacity:
 self.items[key] = value
 else:
 self.items.popitem(last=True)
 self.items[key] = value

 def __getitem__(self, key):
 value = self.items.get(key)
 if value is not None:
 self.items.pop(key)
 self.items[key] = value
 return value

 def __repr__(self):
 return repr(self.items)

d = LRUDict(10)

for i in range(15):
 d[i] = i
print d

近似 LRU 算法

Redis 使⽤的是⼀种近似 LRU 算法，它跟 LRU 算法还不太⼀样。之
所以不使⽤ LRU 算法，是因为需要消耗⼤量的额外的内存，需要对
现有的数据结构进⾏较⼤的改造。近似 LRU 算法则很简单，在现有
数据结构的基础上使⽤随机采样法来淘汰元素，能达到和 LRU 算法
⾮常近似的效果。Redis 为实现近似 LRU 算法，它给每个 key 增加
了⼀个额外的⼩字段，这个字段的⻓度是 24 个 bit，也就是最后⼀
次被访问的时间戳。

上⼀节提到处理 key 过期⽅式分为集中处理和懒惰处理，LRU 淘汰
不⼀样，它的处理⽅式只有懒惰处理。当 Redis 执⾏写操作时，发
现内存超出 maxmemory，就会执⾏⼀次 LRU 淘汰算法。这个算法
也很简单，就是随机采样出 5(可以配置) 个 key，然后淘汰掉最旧的
key，如果淘汰后内存还是超出 maxmemory，那就继续随机采样淘
汰，直到内存低于 maxmemory 为⽌。

如何采样就是看 maxmemory-policy 的配置，如果是 allkeys 就
是从所有的 key 字典中随机，如果是 volatile 就从带过期时间的
key 字典中随机。每次采样多少个 key 看的是
maxmemory_samples 的配置，默认为 5。

下⾯是随机 LRU 算法和严格 LRU 算法的效果对⽐图：

图中绿⾊部分是新加⼊的 key，深灰⾊部分是⽼旧的 key，浅灰⾊部
分是通过 LRU 算法淘汰掉的 key。从图中可以看出采样数量越⼤，
近似 LRU 算法的效果越接近严格 LRU 算法。同时 Redis3.0 在算法
中增加了淘汰池，进⼀步提升了近似 LRU 算法的效果。

淘汰池是⼀个数组，它的⼤⼩是 maxmemory_samples，在每⼀次
淘汰循环中，新随机出来的 key 列表会和淘汰池中的 key 列表进⾏
融合，淘汰掉最旧的⼀个 key 之后，保留剩余较旧的 key 列表放⼊
淘汰池中留待下⼀个循环。

扩展阅读

《Redis 作为 LRU Cache 的实现》
(https://yq.aliyun.com/articles/63034)
《Redis LRU 实现策略》
(https://blog.csdn.net/mysqldba23/article/details/68482894)

思考 & 作业

1. 如果你是 Java ⽤户，试⼀试⽤ LinkedHashMap 实现⼀个
LRU 字典。

2. 如果你是 Golang ⽤户，阅读⼀下 golang-lru
(https://github.com/hashicorp/golang-lru) 的源码。

https://yq.aliyun.com/articles/63034
https://blog.csdn.net/mysqldba23/article/details/68482894
https://github.com/hashicorp/golang-lru

