
拓展 6：平波缓进 —— 懒惰删除
⼀直以来我们认为 Redis 是单线程的，单线程为 Redis 带来了代码
的简洁性和丰富多样的数据结构。不过Redis内部实际上并不是只有
⼀个主线程，它还有⼏个异步线程专⻔⽤来处理⼀些耗时的操作。

Redis 为什么要懒惰删除(lazy free)？

删除指令 del 会直接释放对象的内存，⼤部分情况下，这个指令⾮
常快，没有明显延迟。不过如果删除的 key 是⼀个⾮常⼤的对象，
⽐如⼀个包含了千万元素的 hash，那么删除操作就会导致单线程卡
顿。

Redis 为了解决这个卡顿问题，在 4.0 版本引⼊了 unlink 指令，
它能对删除操作进⾏懒处理，丢给后台线程来异步回收内存。

> unlink key
OK

如果有多线程的开发经验，你肯定会担⼼这⾥的线程安全问题，会不
会出现多个线程同时并发修改数据结构的情况存在。

关于这点，我打个⽐⽅。可以将整个 Redis 内存⾥⾯所有有效的数
据想象成⼀棵⼤树。当 unlink 指令发出时，它只是把⼤树中的⼀
个树枝别断了，然后扔到旁边的⽕堆⾥焚烧 (异步线程池)。树枝离开
⼤树的⼀瞬间，它就再也⽆法被主线程中的其它指令访问到了，因为
主线程只会沿着这颗⼤树来访问。

flush



Redis 提供了 flushdb 和 flushall 指令，⽤来清空数据库，这
也是极其缓慢的操作。Redis 4.0 同样给这两个指令也带来了异步
化，在指令后⾯增加 async 参数就可以将整棵⼤树连根拔起，扔给
后台线程慢慢焚烧。

> flushall async
OK

异步队列

主线程将对象的引⽤从「⼤树」中摘除后，会将这个 key 的内存回
收操作包装成⼀个任务，塞进异步任务队列，后台线程会从这个异步
队列中取任务。任务队列被主线程和异步线程同时操作，所以必须是
⼀个线程安全的队列。

不是所有的 unlink 操作都会延后处理，如果对应 key 所占⽤的内
存很⼩，延后处理就没有必要了，这时候 Redis 会将对应的 key 内
存⽴即回收，跟 del 指令⼀样。

AOF Sync也很慢

Redis需要每秒⼀次(可配置)同步AOF⽇志到磁盘，确保消息尽量不
丢失，需要调⽤sync函数，这个操作会⽐较耗时，会导致主线程的
效率下降，所以Redis也将这个操作移到异步线程来完成。执⾏AOF
Sync操作的线程是⼀个独⽴的异步线程，和前⾯的懒惰删除线程不
是⼀个线程，同样它也有⼀个属于⾃⼰的任务队列，队列⾥只⽤来存
放AOF Sync任务。



更多异步删除点

Redis 回收内存除了 del 指令和 flush 之外，还会存在于在 key
的过期、LRU 淘汰、rename 指令以及从库全量同步时接受完 rdb
⽂件后会⽴即进⾏的 flush 操作。

Redis4.0 为这些删除点也带来了异步删除机制，打开这些点需要额
外的配置选项。

1. slave-lazy-flush 从库接受完 rdb ⽂件后的 flush 操作
2. lazyfree-lazy-eviction 内存达到 maxmemory 时进⾏
淘汰

3. lazyfree-lazy-expire key 过期删除
4. lazyfree-lazy-server-del rename 指令删除 destKey

扩展阅读

Redis 懒惰处理的细节
(https://yq.aliyun.com/articles/205504)

https://yq.aliyun.com/articles/205504

