
拓展 7：妙⼿仁⼼ —— 优雅地使
⽤ Jedis
本节⾯向 Java ⽤户，主题是如何优雅地使⽤ Jedis 编写应⽤程序，
既可以让代码看起来赏⼼悦⽬，⼜可以避免使⽤者犯错。

Jedis 是 Java ⽤户最常⽤的 Redis 开源客户端。它⾮常⼩巧，实现
原理也很简单，最重要的是很稳定，⽽且使⽤的⽅法参数名称和官⽅
的⽂档⾮常 match，如果有什么⽅法不会⽤，直接参考官⽅的指令
⽂档阅读⼀下就会了，省去了⾮必要的重复学习成本。不像有些客户
端把⽅法名称都换了，虽然表⾯上给读者带来了便捷，但是需要挨个
重新学习这些 API，提⾼了学习成本。

Java 程序⼀般都是多线程的应⽤程序，意味着我们很少直接使⽤
Jedis，⽽是要⽤到 Jedis 的连接池 —— JedisPool。同时因为 Jedis
对象不是线程安全的，当我们要使⽤ Jedis 对象时，需要从连接池中
拿出⼀个 Jedis 对象独占，使⽤完毕后再将这个对象还给连接池。

⽤代码表示如下：

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;

public class JedisTest {

 public static void main(String[] args) {
 JedisPool pool = new JedisPool();
 Jedis jedis = pool.getResource(); // 拿出
Jedis 链接对象
 doSomething(jedis);
 jedis.close(); // 归还链接
 }

 private static void doSomething(Jedis jedis) {
 // code it here
 }

}

上⾯的代码有个问题，如果 doSomething ⽅法抛出了异常的话，
从连接池中拿出来的 Jedis 对象将⽆法归还给连接池。如果这样的异
常发⽣了好⼏次，连接池中的所有链接都被持久占⽤了，新的请求过
来时就会阻塞等待空闲的链接，这样的阻塞⼀般会直接导致应⽤程序
卡死。

为了避免这种情况的发⽣，程序员需要在使⽤ JedisPool ⾥⾯的
Jedis 链接时，应该使⽤ try-with-resource 语句来保护 Jedis
对象。

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;

public class JedisTest {

 public static void main(String[] args) {
 JedisPool pool = new JedisPool();
 try (Jedis jedis = pool.getResource()) { // ⽤
完⾃动 close
 doSomething(jedis);
 }
 }

 private static void doSomething(Jedis jedis) {
 // code it here
 }

}

这样 Jedis 对象肯定会归还给连接池 (死循环除外)，避免应⽤程序卡
死的惨剧发⽣。

但是当⼀个团队够⼤的时候，并不是所有的程序员都会⾮常有经验，
他们可能因为各种原因忘记了使⽤ try-with-resource 语句，惨
剧就会突然冒出来让运维⼈员措⼿不及。我们需要在代码上加上⼀层
硬约束，通过这层约束，当程序员想要访问 Jedis 对象时，不会再出
现使⽤了 Jedis 对象⽽不归还。

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;

interface CallWithJedis {
 public void call(Jedis jedis);

}

class RedisPool {

 private JedisPool pool;

 public RedisPool() {
 this.pool = new JedisPool();
 }

 public void execute(CallWithJedis caller) {
 try (Jedis jedis = pool.getResource()) {
 caller.call(jedis);
 }
 }

}

public class JedisTest {

 public static void main(String[] args) {
 RedisPool redis = new RedisPool();
 redis.execute(new CallWithJedis() {

 @Override
 public void call(Jedis jedis) {
 // do something with jedis
 }

 });
 }

}

我们通过⼀个特殊的⾃定义的 RedisPool 对象将 JedisPool 对象隐
藏起来，避免程序员直接使⽤它的 getResource ⽅法⽽忘记了归
还。程序员使⽤ RedisPool 对象时需要提供⼀个回调类来才能使⽤
Jedis 对象。

但是每次访问 Redis 都需要写⼀个回调类，真是特别繁琐，代码也
显得⾮常臃肿。幸好 Java8 带来了 Lambda 表达式，我们可以使⽤
Lambda 表达式简化上⾯的代码。

public class JedisTest {

 public static void main(String[] args) {
 Redis redis = new Redis();
 redis.execute(jedis -> {
 // do something with jedis
 });
 }

}

这样看起来就简洁优雅多了。但是还有个问题，Java 不允许在闭包
⾥修改闭包外⾯的变量。⽐如下⾯的代码，我们想从 Redis ⾥⾯拿
到某个 zset 对象的⻓度，编译器会直接报错。

public class JedisTest {

 public static void main(String[] args) {
 Redis redis = new Redis();
 long count = 0;
 redis.execute(jedis -> {
 count = jedis.zcard("codehole"); // 此处应该
报错
 });
 System.out.println(count);
 }

}

编译器暴露出来的错误时：Local variable count defined
in an enclosing scope must be final or effectively
final，告诉我们 count 变量必须设置成 final 类型才可以让闭包
来访问。

如果这时我们将 count 设置成 final 类型，结果编辑器⼜报错
了：The final local variable count cannot be
assigned. It must be blank and not using a
compound assignment，告诉我们 final 类型的变量在闭包⾥⾯
不能被修改。

那该怎么办呢？

这⾥需要定义⼀个 Holder 类型，将需要修改的变量包装起来。

class Holder<T> {
 private T value;

 public Holder() {
 }

 public Holder(T value) {
 this.value = value;
 }

 public void value(T value) {
 this.value = value;
 }

 public T value() {
 return value;
 }
}

public class JedisTest {

 public static void main(String[] args) {
 Redis redis = new Redis();
 Holder<Long> countHolder = new Holder<>();
 redis.execute(jedis -> {
 long count = jedis.zcard("codehole");
 countHolder.value(count);
 });
 System.out.println(countHolder.value());
 }

}

有了上⾯定义的 Holder 包装类，就可以绕过闭包对变量修改的限
制。只不过代码上要多⼀层略显繁琐的变量包装过程。这些都是对程
序员的硬约束，他们必须这么做才可以得到⾃⼰想要的数据。

重试

我们知道 Jedis 默认没有提供重试机制，意味着如果⽹络出现了抖
动，就会⼤范围报错，或者⼀个后台应⽤因为链接过于空闲被服务端
强制关闭了链接，当重新发起新请求时就第⼀个指令会出错。⽽
Redis 的 Python 客户端 redis-py 提供了这种重试机制，redis-py
在遇到链接错误时会尝试进⾏重连，然后再重发指令。

那如果我们希望在 Jedis 上⾯增加重试机制，该如何做呢？有了上⾯
的 RedisPool 对象，重试就⾮常容易进⾏了。

class Redis {

 private JedisPool pool;

 public Redis() {
 this.pool = new JedisPool();
 }

 public void execute(CallWithJedis caller) {
 Jedis jedis = pool.getResource();
 try {
 caller.call(jedis);
 } catch (JedisConnectionException e) {
 caller.call(jedis); // 重试⼀次
 } finally {
 jedis.close();
 }
 }

}

上⾯的代码我们只重试了⼀次，如有需要也可以重试多次，但是也不
能⽆限重试，就好⽐⼈逝不可复⽣，要节哀顺变。

作业

囿于精⼒，以上代码并没有做到⾮常细致，⽐如 Redis 的链接参数
都没有提及，连接池的⼤⼩以及超时参数等也没有配置，这些细节⼯
作就留给读者们作为本节的作业，⾃⼰动⼿完成⼀个完善的封装吧。

