MR 2: ZE2Z21T —— ZERIFAT

BAT1FERS)IRTFER Rabbitmg #1 Kafka fEuiE BRAFIS[EE, 3k
SN AR 2 BIEINS S EREEINEE., XM T HIEEGE 2 9E
BN e, 4S5t Z2BHE T RKZSHANIERERES,

{£FT Rabbitmq NEF EEFEREREZER, KABEZAE
Bl# Exchange, BRI Queue, FEJ% Queue ] Exchange &
HEMIMNIELNR, &HBHMEEISE routing-key, BTER
FILEMER, ERBEEFEE 2t EHIT LH—RIINEDHT
2. BREARZEIERT, BABNBPBEEMNIRE—HETHEE, B
TREZEZD FEXEZELRTIE,

BT Redis, EMAIILBANER LR, NTHRERBE—HEREN
HEBAZI, {£M Redis FiA] UIFEEMNRIIRE. Redis BIHERAT!
AT WRVEERS, ERBIEESNSRIFE, ®E ack RiL,
MRIEBNATEEBEERBANER, BLAEMAEESER,

S5 H SRS

Redis B9 list(31R) FIREWE BRENFE D EHEBNIIER, F
Frpush/1lpushizfEABATY, {E1pop F rpopkHPAFI,

rpo
Ipop o POP

(v) ==  OEILLELEEEK

lpush ~ \\\\ h

rpus




> rpush notify-queue apple banana pear
(integer) 3

> llen notify-queue
(integer) 3

> lpop notify-queue
"apple"

> 1llen notify-queue
(integer) 2

> lpop notify-queue
"banana”

> llen notify-queue
(integer) 1

> lpop notify-queue
"pear”

> 1len notify-queue
(integer) 0

> lpop notify-queue
(nil)

LFHE=Z rpush #l Ipop E&FEANGIF, BRILAMER Ipush
rpop EE{ER, MRE—HEN, XETRFER,

BASIZE 7 B A7?

EFime @I AN pop BRIFFREVER, ARHITLE, L3
THIEEREVER, BHTOE, EAREE, XEZEANIE
HENE P imAE s E A,

AIRURINZT, EFIRMZFEN pop BISEHEHF, M pop,
RBEIE, 12EH pop, XixBEE. XMERBEGNTIN,

TRIEANMBHAIS T EF IR CPU, redis B9 QPS thatfiis, WR
XFEHIMNEFLHB/LTKT, Redis WIEEHFIGEREEILZ,



BEHANNER sleep KR, 1LEREE—, BT 1s 75
ALY, ™MEEF IR CPU BERE T3k, Redis B9 QPS tHEFTFET,

time.sleep(1l) # python B&E 1s
Thread.sleep(1000) # java BE 1s

. list o -~

IV\‘"0123455?€"/

wora .
e

PASIZEIR

A L ERERA VAP AR B, BE2E/NEH, BMSERESS
FOHRRERIER, WRAE 1 MERESE, HBAXTERRE 1s.
MREBESZMHRE, XTWEREM ME, BASTHREERIIERR
8] 2 72 FF3R Y,

B38BT AMNEREEEREIEIRIE? (RYATUEIRIEZ: IPHICEE
RHIRT 4R M, XM ANHAR N, NEEREBEFNERAR
le? SH#AtE, FHi=Z blpop/brpop,

X T ESHIRIRFRbARNZEblocking, MHlEMEZEEE,

FEZEEENTIR B BB R, SIZEIHARERIRES, —BEUEE
%, NWIZZIEE Ik, HENER/LFERNZE, AHblpop/brpopE A El
HElpop/rpop, MSeEfERT EEAYER,

= A EZ BT




AN LERAEENRTEL? K32EFF0, HEtEF e
BERIR.

tab? —— ZTRERERE,

MRATE—EFEEAME, Redis WEFIHEEMA T HEEE, ®
BEX, RESF—MSEsthAEE, BOREZRSA, XTI
{&blpop/brpop&ilt &= ¥k,

FIAR S &P imH RENNRE/ G, TEHRERE, TE&Zi.

iR E

ERRBATH T o HNHIRERE, (ERREIREIEFIRELIEEKE
MBGKAAINE AT, —RRE 3 MRESRACIE MK :

1. BEENERE, BAMAFPHEEENR;
2. sleep —&EBEI;
3. BIBEKREBEBEILNFNG, T—=FH;

HEEMEFERENSEE

XM AN ERESHAF ERRENER, BREEIERNIEESE,
ZRFENENEENAR, BREER, XA GRS A TERRIRL
R, MRZEEIAFAELE, AJMXHBIRNCBERHEF BCSRETE
B, EXRRLEXNIINEKNKEF, HRAFRESEEMAR
EFRTHIIEK

sleep

sleep RFEESRIIEELESIE, SSENIIREEIE B IE LI
SR, ARMIZFALEBINENEBAIIETERLERZ, sleep AIBEFH A
BiE, MREATAIFEDR key SEINBIAKIN, LIESWKE
58, SEVEEDE BKITS AR MATAbE,



FERTRAT

XMANEREEHFTHRLE, FIEPRINEKRIDEI Z—1BAT
EFERLIE DB TR ,

SERTRAFIRYSCER

SERTBAZIRT DAIEIT Redis BY zset(BFFIR) KL, BAPEHEERF
SICER— T FRIBIERN zset Mvalue, XHBRIRIHALIEAT B7E
Ascore, RERZMEIZRIE zset IRENVEIHAES HITAIE, =2
TEEEAN TRENRE, A—HET TS EEEEESE RS
W12, RAESTEIE, FMANEESREARFEES, BRESTEE
WZIRHAT .



def delay(msg):
msg.id = strCuuid.uuid4()) # {RIf value {EMIE—
value = json.dumps(msg)
retry_ts = time.time() + 5 # 5 ®EEI
redis.zadd("delay-queue"”, retry_ts, value)

def loop():
while True:
# &ZE 1 K
values = redis.zrangebyscore("delay-
queue", 0, time.time(), start=0, num=1)
1f not values:
time.sleep(1l) # ZERJRAFIZ=RY, RE 1s
continue
value = values[Q] # ZZHE—%, hRE—%
success = redis.zrem("delay-queue",
value) # MBEINFIPREIRZER
if success: # RANBEZHEHEKNARE, RERAE
B—THETULENER
msg = json.loads(value)
handle_msg(msg)

Redis B zrem HIERZLIZZSHEFIRESRIKE, ERUREER
E T HRIEfERE18RIESS, B loop HIAABESHES TSI,
STHEERE, B—TESFRESHSTHESERE], B zrem

FRER—NREE.

B, BMNEEFE—TFEX handle_msg #THEHIR, BHREAN
TRESLIE RS EEIAREEL, AT Java IRZARIZERTEAT
KL, EANEEAER Json FIUML, PRLBAETEE fastjson FERI

o



import java.lang.reflect.Type;
import java.util.Set;
import java.util.UUID;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;

import redis.clients.jedis.Jedis;
public class RedisDelayingQueue<T> {
static class TaskItem<T> {
public String id;

public T msg;
¥

// fastjson FIMHUNRFZFE generic KEN, FEFEH

TypeReference
private Type TaskType = new
TypeReference<TaskItem<T>>() {

}.getType();

private Jedis jedis;
private String queueKey;

public RedisDelayingQueue(Jedis jedis, String
queueKey) {
this.jedis = jedis;
this.queueKey = queueKey;

}

public void delay(T msg) {
TaskItem<T> task = new TaskItem<T>();




task.id = UUID.randomUUID().toString(Q); // %
folE—AY uuild

task.msg = msg;

String s = JSON.toJSONString(task); //
fastjson FFl

jedis.zadd(queueKey,
System.currentTimeMillis() + 5000, s); // ZENIELA]
FAGI ,5s EBI

}

public void loop() {
while (!Thread.interrupted()) {

// REN—%

Set<String> values =
jedis.zrangeByScore(queueKey, 0,
System.currentTimeMillis(), 0, 1);

1f (values.isEmpty()) {

try {
Thread.sleep(500); // &i&4dks:

} catch (InterruptedException e) {
break;

}

continue;
}
String s = values.iterator().next();
if (jedis.zrem(queueKey, s) > @) { // %7
TaskItem<T> task = JSON.parseObject(s,
TaskType); // fastjson &EFt
this.handleMsg(task.msg);
}
¥
}




public void handleMsg(T msg) {
System.out.println(msg);

}

public static void main(String[] args) {
Jedis jedis = new Jedis();
RedisDelayingQueue<String> queue = new
RedisDelayingQueue<>(jedis, "qg-demo");
Thread producer = new Thread() {

public void run() {
for (int 1 = 0; 1 < 10; 1++) {
queue.delay("codehole" + 1);
}
¥

s

Thread consumer = new Thread() {

public void run() {
queue.loop();

}
s

producer.start();

consumer.start();

try {
producer.join();
Thread.sleep(6000);
consumer.interrupt();
consumer.join();

} catch (InterruptedException e) {



¥
¥

#—H IR

FENEEFE—MESIESWZ N HZENEI 2 EHEFA zrem
HITFIE, BERICRHEMEEET —XES, X2EE., Al
ZE{#EHR lua scripting ELt— T X128, 1§ zrangebyscore
M zrem —[EHRIRSZF[/IRHATIRFHIRE, XFEZTHEZESF
BESHMASEIXMRET .

[==] %
J[ANY

1. Redis {E2EBNFIRTAREERIE 100% BIR] FEEME?
2. {£F Lua Scripting R ICIERTBATIAYIZEE ,



