
应⽤ 2：缓兵之计 —— 延时队列
我们平时习惯于使⽤ Rabbitmq 和 Kafka 作为消息队列中间件，来
给应⽤程序之间增加异步消息传递功能。这两个中间件都是专业的消
息队列中间件，特性之多超出了⼤多数⼈的理解能⼒。

使⽤过 Rabbitmq 的同学知道它使⽤起来有多复杂，发消息之前要
创建 Exchange，再创建 Queue，还要将 Queue 和 Exchange 通
过某种规则绑定起来，发消息的时候要指定 routing-key，还要控
制头部信息。消费者在消费消息之前也要进⾏上⾯⼀系列的繁琐过
程。但是绝⼤多数情况下，虽然我们的消息队列只有⼀组消费者，但
还是需要经历上⾯这些繁琐的过程。

有了 Redis，它就可以让我们解脱出来，对于那些只有⼀组消费者的
消息队列，使⽤ Redis 就可以⾮常轻松的搞定。Redis 的消息队列
不是专业的消息队列，它没有⾮常多的⾼级特性，没有 ack 保证，
如果对消息的可靠性有着极致的追求，那么它就不适合使⽤。

异步消息队列

Redis 的 list(列表) 数据结构常⽤来作为异步消息队列使⽤，使
⽤rpush/lpush操作⼊队列，使⽤lpop 和 rpop来出队列。

> rpush notify-queue apple banana pear
(integer) 3
> llen notify-queue
(integer) 3
> lpop notify-queue
"apple"
> llen notify-queue
(integer) 2
> lpop notify-queue
"banana"
> llen notify-queue
(integer) 1
> lpop notify-queue
"pear"
> llen notify-queue
(integer) 0
> lpop notify-queue
(nil)

上⾯是 rpush 和 lpop 结合使⽤的例⼦。还可以使⽤ lpush 和
rpop 结合使⽤，效果是⼀样的。这⾥不再赘述。

队列空了怎么办？

客户端是通过队列的 pop 操作来获取消息，然后进⾏处理。处理完
了再接着获取消息，再进⾏处理。如此循环往复，这便是作为队列消
费者的客户端的⽣命周期。

可是如果队列空了，客户端就会陷⼊ pop 的死循环，不停地 pop，
没有数据，接着再 pop，⼜没有数据。这就是浪费⽣命的空轮询。
空轮询不但拉⾼了客户端的 CPU，redis 的 QPS 也会被拉⾼，如果
这样空轮询的客户端有⼏⼗来个，Redis 的慢查询可能会显著增多。

通常我们使⽤ sleep 来解决这个问题，让线程睡⼀会，睡个 1s 钟就
可以了。不但客户端的 CPU 能降下来，Redis 的 QPS 也降下来了。

time.sleep(1) # python 睡 1s
Thread.sleep(1000) # java 睡 1s

队列延迟

⽤上⾯睡眠的办法可以解决问题。但是有个⼩问题，那就是睡眠会导
致消息的延迟增⼤。如果只有 1 个消费者，那么这个延迟就是 1s。
如果有多个消费者，这个延迟会有所下降，因为每个消费者的睡觉时
间是岔开来的。

有没有什么办法能显著降低延迟呢？你当然可以很快想到：那就把睡
觉的时间缩短点。这种⽅式当然可以，不过有没有更好的解决⽅案
呢？当然也有，那就是 blpop/brpop。

这两个指令的前缀字符b代表的是blocking，也就是阻塞读。

阻塞读在队列没有数据的时候，会⽴即进⼊休眠状态，⼀旦数据到
来，则⽴刻醒过来。消息的延迟⼏乎为零。⽤blpop/brpop替代前
⾯的lpop/rpop，就完美解决了上⾯的问题。

空闲连接⾃动断开

你以为上⾯的⽅案真的很完美么？先别急着开⼼，其实他还有个问题
需要解决。

什么问题？—— 空闲连接的问题。

如果线程⼀直阻塞在哪⾥，Redis 的客户端连接就成了闲置连接，闲
置过久，服务器⼀般会主动断开连接，减少闲置资源占⽤。这个时
候blpop/brpop会抛出异常来。

所以编写客户端消费者的时候要⼩⼼，注意捕获异常，还要重试。

锁冲突处理

上节课我们讲了分布式锁的问题，但是没有提到客户端在处理请求时
加锁没加成功怎么办。⼀般有 3 种策略来处理加锁失败：

1. 直接抛出异常，通知⽤户稍后重试；
2. sleep ⼀会再重试；
3. 将请求转移⾄延时队列，过⼀会再试；

直接抛出特定类型的异常

这种⽅式⽐较适合由⽤户直接发起的请求，⽤户看到错误对话框后，
会先阅读对话框的内容，再点击重试，这样就可以起到⼈⼯延时的效
果。如果考虑到⽤户体验，可以由前端的代码替代⽤户⾃⼰来进⾏延
时重试控制。它本质上是对当前请求的放弃，由⽤户决定是否重新发
起新的请求。

sleep

sleep 会阻塞当前的消息处理线程，会导致队列的后续消息处理出现
延迟。如果碰撞的⽐较频繁或者队列⾥消息⽐较多，sleep 可能并不
合适。如果因为个别死锁的 key 导致加锁不成功，线程会彻底堵
死，导致后续消息永远得不到及时处理。

延时队列

这种⽅式⽐较适合异步消息处理，将当前冲突的请求扔到另⼀个队列
延后处理以避开冲突。

延时队列的实现

延时队列可以通过 Redis 的 zset(有序列表) 来实现。我们将消息序
列化成⼀个字符串作为 zset 的value，这个消息的到期处理时间作
为score，然后⽤多个线程轮询 zset 获取到期的任务进⾏处理，多
个线程是为了保障可⽤性，万⼀挂了⼀个线程还有其它线程可以继续
处理。因为有多个线程，所以需要考虑并发争抢任务，确保任务不能
被多次执⾏。

def delay(msg):
 msg.id = str(uuid.uuid4()) # 保证 value 值唯⼀
 value = json.dumps(msg)
 retry_ts = time.time() + 5 # 5 秒后重试
 redis.zadd("delay-queue", retry_ts, value)

def loop():
 while True:
 # 最多取 1 条
 values = redis.zrangebyscore("delay-
queue", 0, time.time(), start=0, num=1)
 if not values:
 time.sleep(1) # 延时队列空的，休息 1s
 continue
 value = values[0] # 拿第⼀条，也只有⼀条
 success = redis.zrem("delay-queue",
value) # 从消息队列中移除该消息
 if success: # 因为有多进程并发的可能，最终只会
有⼀个进程可以抢到消息
 msg = json.loads(value)
 handle_msg(msg)

Redis 的 zrem ⽅法是多线程多进程争抢任务的关键，它的返回值决
定了当前实例有没有抢到任务，因为 loop ⽅法可能会被多个线程、
多个进程调⽤，同⼀个任务可能会被多个进程线程抢到，通过 zrem
来决定唯⼀的属主。

同时，我们要注意⼀定要对 handle_msg 进⾏异常捕获，避免因为
个别任务处理问题导致循环异常退出。以下是 Java 版本的延时队列
实现，因为要使⽤到 Json 序列化，所以还需要 fastjson 库的⽀
持。

import java.lang.reflect.Type;
import java.util.Set;
import java.util.UUID;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;

import redis.clients.jedis.Jedis;

public class RedisDelayingQueue<T> {

 static class TaskItem<T> {
 public String id;
 public T msg;
 }

 // fastjson 序列化对象中存在 generic 类型时，需要使⽤
TypeReference
 private Type TaskType = new
TypeReference<TaskItem<T>>() {
 }.getType();

 private Jedis jedis;
 private String queueKey;

 public RedisDelayingQueue(Jedis jedis, String
queueKey) {
 this.jedis = jedis;
 this.queueKey = queueKey;
 }

 public void delay(T msg) {
 TaskItem<T> task = new TaskItem<T>();

 task.id = UUID.randomUUID().toString(); // 分
配唯⼀的 uuid
 task.msg = msg;
 String s = JSON.toJSONString(task); //
fastjson 序列化
 jedis.zadd(queueKey,
System.currentTimeMillis() + 5000, s); // 塞⼊延时
队列 ,5s 后再试
 }

 public void loop() {
 while (!Thread.interrupted()) {
 // 只取⼀条
 Set<String> values =
jedis.zrangeByScore(queueKey, 0,
System.currentTimeMillis(), 0, 1);
 if (values.isEmpty()) {
 try {
 Thread.sleep(500); // 歇会继续
 } catch (InterruptedException e) {
 break;
 }
 continue;
 }
 String s = values.iterator().next();
 if (jedis.zrem(queueKey, s) > 0) { // 抢到了
 TaskItem<T> task = JSON.parseObject(s,
TaskType); // fastjson 反序列化
 this.handleMsg(task.msg);
 }
 }
 }

 public void handleMsg(T msg) {
 System.out.println(msg);
 }

 public static void main(String[] args) {
 Jedis jedis = new Jedis();
 RedisDelayingQueue<String> queue = new
RedisDelayingQueue<>(jedis, "q-demo");
 Thread producer = new Thread() {

 public void run() {
 for (int i = 0; i < 10; i++) {
 queue.delay("codehole" + i);
 }
 }

 };
 Thread consumer = new Thread() {

 public void run() {
 queue.loop();
 }

 };
 producer.start();
 consumer.start();
 try {
 producer.join();
 Thread.sleep(6000);
 consumer.interrupt();
 consumer.join();
 } catch (InterruptedException e) {
 }

 }
}

进⼀步优化

上⾯的算法中同⼀个任务可能会被多个进程取到之后再使⽤ zrem
进⾏争抢，那些没抢到的进程都是⽩取了⼀次任务，这是浪费。可以
考虑使⽤ lua scripting 来优化⼀下这个逻辑，将 zrangebyscore
和 zrem ⼀同挪到服务器端进⾏原⼦化操作，这样多个进程之间争
抢任务时就不会出现这种浪费了。

思考

1. Redis 作为消息队列为什么不能保证 100% 的可靠性？
2. 使⽤ Lua Scripting 来优化延时队列的逻辑。

