
拓展 9：隔墙有⽿ —— Redis 安
全通信

想象这样⼀个应⽤场景，公司有两个机房。因为⼀个紧急需求，需要
跨机房读取 Redis 数据。应⽤部署在 A 机房，存储部署在 B 机房。
如果使⽤普通 tcp 直接访问，因为跨机房所以传输数据会暴露在公
⽹，这⾮常不安全，客户端服务器交互的数据存在被窃听的⻛险。

Redis 本身并不⽀持 SSL 安全链接，不过有了 SSL 代理软件，我们
可以让通信数据透明地得到加密，就好像 Redis 穿上了⼀层隐身外
套⼀样。spiped 就是这样的⼀款 SSL 代理软件，它是 Redis 官⽅推
荐的代理软件。

spiped 原理

让我们放⼤细节，仔细观察 spiped 实现原理。spiped 会在客户端
和服务器各启动⼀个 spiped 进程。

左边的 spiped 进程 A 负责接受来⾃ Redis Client 发送过来的请求
数据，加密后传送到右边的 spiped 进程 B。spiped B 将接收到的
数据解密后传递到 Redis Server。然后 Redis Server 再⾛⼀个反向
的流程将响应回复给 Redis Client。

每⼀个 spiped 进程都会有⼀个监听端⼝ (server socket) ⽤来接收
数据，同时还会作为⼀个客户端 (socket client) 将数据转发到⽬标
地址。

spiped 进程需要成对出现，相互之间需要使⽤相同的共享密钥来加
密消息。

spiped 使⽤⼊⻔

安装 spiped，我⽤的是 Mac。

> brew install spiped

如果是 Linux，可以使⽤ apt-get 或者 yum 安装：

> apt-get install spiped
> yum install spiped

1. 使⽤ Docker 启动 redis-server，注意要绑定本机的回环
127.0.0.1；

> docker run -d -p127.0.0.1:6379:6379 --name
redis-server-6379 redis
12781661ec47faa8a8a967234365192f4da58070b791262af
b8d9f64fce61835
> docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS
PORTS NAMES
12781661ec47 redis "docker-
entrypoint.s…" Less than a second ago Up 1
second 127.0.0.1:6379->6379/tcp redis-
server-6379

2. ⽣成随机的密钥⽂件；

随机的 32 个字节
> dd if=/dev/urandom bs=32 count=1 of=spiped.key
1+0 records in
1+0 records out
32 bytes transferred in 0.000079 secs (405492
bytes/sec)
> ls -l
rw-r--r-- 1 qianwp staff 32 7 24 18:13
spiped.key

3. 使⽤密钥⽂件启动服务器 spiped 进程，172.16.128.81是
我本机的公⽹ IP 地址；

-d 表示 decrypt(对输⼊数据进⾏解密)，-s 为源监听地
址，-t 为转发⽬标地址
> spiped -d -s '[172.16.128.81]:6479' -t
'[127.0.0.1]:6379' -k spiped.key
> ps -ef|grep spiped
501 30673 1 0 7:29 下午 ?? 0:00.04
spiped -d -s [172.16.128.81]:6479 -t
[127.0.0.1]:6379 -k spiped.key

这个 spiped 进程监听公⽹ IP 的 6479 端⼝接收公⽹上的数据，将
数据解密后转发到本机回环地址的 6379 端⼝，也就是 redis-
server 监听的端⼝。

4. 使⽤密钥⽂件启动客户端 spiped 进程，172.16.128.81是
我本机的公⽹ IP 地址；

-e 表示 encrypt，对输⼊数据进⾏加密
> spiped -e -s '[127.0.0.1]:6579' -t
'[172.16.128.81]:6479' -k spiped.key
> ps -ef|grep spiped
501 30673 1 0 7:29 下午 ?? 0:00.04
spiped -d -s [172.16.128.81]:6479 -t
[127.0.0.1]:6379 -k spiped.key
501 30696 1 0 7:30 下午 ?? 0:00.03
spiped -e -s [127.0.0.1]:6579 -t
[172.16.128.81]:6479 -k spiped.key

客户端 spiped 进程监听了本地回环地址的 6579 端⼝，将该端⼝上
收到的数据加密转发到服务器 spiped 进程。

5. 启动客户端链接，因为 Docker ⾥⾯的客户端不好访问宿主机
的回环地址，所以 Redis 的客户端我们使⽤ Python 代码来启
动；

>> import redis
>> c=redis.StrictRedis(host="localhost",
port=6579)
>> c.ping()
>> c.info('cpu')
{'used_cpu_sys': 4.83,
 'used_cpu_sys_children': 0.0,
 'used_cpu_user': 0.93,
 'used_cpu_user_children': 0.0}

可以看出客户端和服务器已经通了，如果我们尝试直接链接服务器
spiped 进程 (加密的端⼝ 6379)，看看会发⽣什么。

>>> import redis
>>> c=redis.StrictRedis(host="172.16.128.81",
port=6479)

>>> c.ping()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/client.py", line 777, in ping
 return self.execute_command('PING')
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/client.py", line 674, in
execute_command
 return self.parse_response(connection,
command_name, **options)
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/client.py", line 680, in
parse_response
 response = connection.read_response()
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/connection.py", line 624, in
read_response
 response = self._parser.read_response()
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/connection.py", line 284, in
read_response
 response = self._buffer.readline()
 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/connection.py", line 216, in
readline
 self._read_from_socket()

 File "/Users/qianwp/source/animate/juejin-
redis/.py/lib/python2.7/site-
packages/redis/connection.py", line 191, in
_read_from_socket
 (e.args,))
redis.exceptions.ConnectionError: Error while
reading from socket: ('Connection closed by
server.',)

从输出中可以看出来请求是发送过去了，但是却出现了读超时，要么
是服务器在默认的超时时间内没有返回数据，要么是服务器没有返回
客户端想要的数据。

spiped 可以同时⽀持多个客户端链接的数据转发⼯作，它还可以通
过参数来限定允许的最⼤客户端连接数。但是对于服务器 spiped，
它不能同时⽀持多个服务器之间的转发。意味着在集群环境下，需要
为每⼀个 server 节点启动⼀个 spiped 进程来代收消息，在运维实
践上这可能会⽐较繁琐。

作业

请读者将 Redis 替换成 MySQL 来体验⼀下 spiped 的神奇魔⼒。

