
我们天天都在使⽤ Redis 内置的命令⾏⼯具 redis-cli，久⽽久之以
为它就是⼀个简单的交互式 Redis 数据结构⼿⼯操作程序，但是它
背后强⼤的功能绝⼤多数同学可能闻所未闻。本节我们⼀起来挖掘这
些鲜为⼈知的有趣⽤法。

执⾏单条命令

平时在访问 Redis 服务器，⼀般都会使⽤ redis-cli 进⼊交互模式，
然后⼀问⼀答来读写服务器，这种情况下我们使⽤的是它的「交互模
式」。还有另外⼀种「直接模式」，通过将命令参数直接传递给
redis-cli 来执⾏指令并获取输出结果。

$ redis-cli incrby foo 5
(integer) 5
$ redis-cli incrby foo 5
(integer) 10

如果输出的内容较⼤，还可以将输出重定向到外部⽂件

$ redis-cli info > info.txt
$ wc -l info.txt
 120 info.txt

上⾯的命令指向的服务器是默认服务器地址，如果想指向特定的服务
器可以这样

// -n 2 表示使⽤第2个库，相当于 select 2
$ redis-cli -h localhost -p 6379 -n 2 ping
PONG

批量执⾏命令

在平时线上的开发过程中，有时候我们免不了要⼿⼯造数据，然后导
⼊ Redis。通常我们会编写脚本程序来做这件事。不过还有另外⼀种
⽐较便捷的⽅式，那就是直接使⽤ redis-cli 来批量执⾏⼀系列指
令。

$ cat cmds.txt
set foo1 bar1
set foo2 bar2
set foo3 bar3
......
$ cat cmds.txt | redis-cli
OK
OK
OK
...

上⾯的指令使⽤了 Unix 管道将 cat 指令的标准输出连接到 redis-
cli 的标准输⼊。其实还可以直接使⽤输⼊重定向来批量执⾏指令。

$ redis-cli < cmds.txt
OK
OK
OK
...

set 多⾏字符串

如果⼀个字符串有多⾏，你希望将它传⼊ set 指令，redis-cli 要如
何做？可以使⽤ -x 选项，该选项会使⽤标准输⼊的内容作为最后⼀
个参数。

$ cat str.txt
Ernest Hemingway once wrote,
"The world is a fine place and worth fighting
for."
I agree with the second part.
$ redis-cli -x set foo < str.txt
OK
$ redis-cli get foo
"Ernest Hemingway once wrote,\n\"The world is a
fine place and worth fighting for.\"\nI agree
with the second part.\n"

重复执⾏指令

redis-cli 还⽀持重复执⾏指令多次，每条指令执⾏之间设置⼀个间
隔时间，如此便可以观察某条指令的输出内容随时间变化。

// 间隔1s，执⾏5次，观察qps的变化
$ redis-cli -r 5 -i 1 info | grep ops
instantaneous_ops_per_sec:43469
instantaneous_ops_per_sec:47460
instantaneous_ops_per_sec:47699
instantaneous_ops_per_sec:46434
instantaneous_ops_per_sec:47216

如果将次数设置为 -1 那就是重复⽆数次永远执⾏下去。如果不提供
-i 参数，那就没有间隔，连续重复执⾏。在交互模式下也可以重复
执⾏指令，形式上⽐较怪异，在指令前⾯增加次数

127.0.0.1:6379> 5 ping
PONG
PONG
PONG
PONG
PONG
下⾯的指令很可怕，你的屏幕要愤怒了
127.0.0.1:6379> 10000 info
.......

导出 csv

redis-cli 不能⼀次导出整个库的内容为 csv，但是可以导出单条指
令的输出为 csv 格式。

$ redis-cli rpush lfoo a b c d e f g
(integer) 7
$ redis-cli --csv lrange lfoo 0 -1
"a","b","c","d","e","f","g"
$ redis-cli hmset hfoo a 1 b 2 c 3 d 4
OK
$ redis-cli --csv hgetall hfoo
"a","1","b","2","c","3","d","4"

当然这种导出功能⽐较弱，仅仅是⼀堆字符串⽤逗号分割开来。不过
你可以结合命令的批量执⾏来看看多个指令的导出效果。

$ redis-cli --csv -r 5 hgetall hfoo
"a","1","b","2","c","3","d","4"
"a","1","b","2","c","3","d","4"
"a","1","b","2","c","3","d","4"
"a","1","b","2","c","3","d","4"
"a","1","b","2","c","3","d","4"

看到这⾥读者应该明⽩ --csv 参数的效果就是对输出做了⼀次转
换，⽤逗号分割，仅此⽽已。

执⾏ lua 脚本

在 lua 脚本⼩节，我们使⽤ eval 指令来执⾏脚本字符串，每次都是
将脚本内容压缩成单⾏字符串再调⽤ eval 指令，这⾮常繁琐，⽽且
可读性很差。redis-cli 考虑到了这点，它可以直接执⾏脚本⽂件。

127.0.0.1:6379> eval "return redis.pcall('mset',
KEYS[1], ARGV[1], KEYS[2], ARGV[2])" 2 foo1 foo2
bar1 bar2
OK
127.0.0.1:6379> eval "return redis.pcall('mget',
KEYS[1], KEYS[2])" 2 foo1 foo2
1) "bar1"
2) "bar2"

下⾯我们以脚本的形式来执⾏上⾯的指令，参数形式有所不同，KEY
和 ARGV 之间需要使⽤逗号分割，并且不需要提供 KEY 的数量参数

$ cat mset.txt
return redis.pcall('mset', KEYS[1], ARGV[1],
KEYS[2], ARGV[2])
$ cat mget.txt
return redis.pcall('mget', KEYS[1], KEYS[2])
$ redis-cli --eval mset.txt foo1 foo2 , bar1 bar2
OK
$ redis-cli --eval mget.txt foo1 foo2
1) "bar1"
2) "bar2"

如果你的 lua 脚本太⻓，--eval 将⼤有⽤处。

监控服务器状态

我们可以使⽤ --stat 参数来实时监控服务器的状态，间隔 1s 实时
输出⼀次。

$ redis-cli --stat
------- data ------ --------------------- load --
------------------ - child -
keys mem clients blocked requests
connections
2 6.66M 100 0 11591628 (+0)
335
2 6.66M 100 0 11653169
(+61541) 335
2 6.66M 100 0 11706550
(+53381) 335
2 6.54M 100 0 11758831
(+52281) 335
2 6.66M 100 0 11803132
(+44301) 335
2 6.66M 100 0 11854183
(+51051) 335

如果你觉得间隔太⻓或是太短，可以使⽤ -i 参数调整输出间隔。

扫描⼤ KEY

这个功能太实⽤了，我已经在线上试过⽆数次了。每次遇到 Redis
偶然卡顿问题，第⼀个想到的就是实例中是否存在⼤ KEY，⼤ KEY
的内存扩容以及释放都会导致主线程卡顿。如果知道⾥⾯有没有⼤
KEY，可以⾃⼰写程序扫描，不过这太繁琐了。redis-cli 提供了 --
bigkeys 参数可以很快扫出内存⾥的⼤ KEY，使⽤ -i 参数控制扫描
间隔，避免扫描指令导致服务器的 ops 陡增报警。

$./redis-cli --bigkeys -i 0.01
Scanning the entire keyspace to find biggest
keys as well as
average sizes per key type. You can use -i 0.1
to sleep 0.1 sec
per 100 SCAN commands (not usually needed).

[00.00%] Biggest zset found so far
'hist:aht:main:async_finish:20180425:17' with
1440 members
[00.00%] Biggest zset found so far
'hist:qps:async:authorize:20170311:27' with 2465
members
[00.00%] Biggest hash found so far
'job:counters:6ya9ypu6ckcl' with 3 fields
[00.01%] Biggest string found so far
'rt:aht:main:device_online:68:{-4}' with 4 bytes
[00.01%] Biggest zset found so far
'machine:load:20180709' with 2879 members
[00.02%] Biggest string found so far
'6y6fze8kj7cy:{-7}' with 90 bytes

redis-cli 对于每⼀种对象类型都会记录⻓度最⼤的 KEY，对于每⼀
种对象类型，刷新⼀次最⾼记录就会⽴即输出⼀次。它能保证输出⻓
度为 Top1 的 KEY，但是 Top2、Top3等 KEY 是⽆法保证可以扫描
出来的。⼀般的处理⽅法是多扫描⼏次，或者是消灭了 Top1 的
KEY 之后再扫描确认还有没有次⼤的 KEY。

采样服务器指令

现在线上有⼀台 Redis 服务器的 OPS 太⾼，有很多业务模块都在使
⽤这个 Redis，如何才能判断出来是哪个业务导致了 OPS 异常的
⾼。这时可以对线上服务器的指令进⾏采样，观察采样的指令⼤致就
可以分析出 OPS 占⽐⾼的业务点。这时就要使⽤ monitor 指令，它
会将服务器瞬间执⾏的指令全部显示出来。不过使⽤的时候要注意即
使使⽤ ctrl+c 中断，否则你的显示器会噼⾥啪啦太多的指令瞬间让
你眼花缭乱。

$ redis-cli --host 192.168.x.x --port 6379
monitor
1539853410.458483 [0 10.100.90.62:34365] "GET"
"6yax3eb6etq8:{-7}"
1539853410.459212 [0 10.100.90.61:56659] "PFADD"
"growth:dau:20181018" "2klxkimass8w"
1539853410.462938 [0 10.100.90.62:20681] "GET"
"6yax3eb6etq8:{-7}"
1539853410.467231 [0 10.100.90.61:40277] "PFADD"
"growth:dau:20181018" "2kei0to86ps1"
1539853410.470319 [0 10.100.90.62:34365] "GET"
"6yax3eb6etq8:{-7}"
1539853410.473927 [0 10.100.90.61:58128] "GET"
"6yax3eb6etq8:{-7}"
1539853410.475712 [0 10.100.90.61:40277] "PFADD"
"growth:dau:20181018" "2km8sqhlefpc"
1539853410.477053 [0 10.100.90.62:61292] "GET"
"6yax3eb6etq8:{-7}"

诊断服务器时延

平时我们诊断两台机器的时延⼀般是使⽤ Unix 的 ping 指令。
Redis 也提供了时延诊断指令，不过它的原理不太⼀样，它是诊断当
前机器和 Redis 服务器之间的指令(PING指令)时延，它不仅仅是物

理⽹络的时延，还和当前的 Redis 主线程是否忙碌有关。如果你发
现 Unix 的 ping 指令时延很⼩，⽽ Redis 的时延很⼤，那说明
Redis 服务器在执⾏指令时有微弱卡顿。

$ redis-cli --host 192.168.x.x --port 6379 --
latency
min: 0, max: 5, avg: 0.08 (305 samples)

时延单位是 ms。redis-cli 还能显示时延的分布情况，⽽且是图形
化输出。

$ redis-cli --latency-dist

这个图形的含义作者没有描述，读者们可以尝试破解⼀下。

远程 rdb 备份

执⾏下⾯的命令就可以将远程的 Redis 实例备份到本地机器，远程
服务器会执⾏⼀次bgsave操作，然后将 rdb ⽂件传输到客户端。远
程 rdb 备份让我们有⼀种“秀才不出⻔，全知天下事”的感觉。

$./redis-cli --host 192.168.x.x --port 6379 --
rdb ./user.rdb
SYNC sent to master, writing 2501265095 bytes to
'./user.rdb'
Transfer finished with success.

模拟从库

如果你想观察主从服务器之间都同步了那些数据，可以使⽤ redis-
cli 模拟从库。

$./redis-cli --host 192.168.x.x --port 6379 --
slave
SYNC with master, discarding 51778306 bytes of
bulk transfer...
SYNC done. Logging commands from master.
...

从库连上主库的第⼀件事是全量同步，所以看到上⾯的指令卡顿这很
正常，待⾸次全量同步完成后，就会输出增量的 aof ⽇志。

