
源码 1：丝分缕析 —— 探索「字
符串」内部结构

Redis 中的字符串是可以修改的字符串，在内存中它是以字节数组的
形式存在的。我们知道 C 语⾔⾥⾯的字符串标准形式是以 NULL 作
为结束符，但是在 Redis ⾥⾯字符串不是这么表示的。因为要获取
NULL 结尾的字符串的⻓度使⽤的是 strlen 标准库函数，这个函数
的算法复杂度是 O(n)，它需要对字节数组进⾏遍历扫描，作为单线
程的 Redis 表示承受不起。

Redis 的字符串叫着「SDS」，也就是Simple Dynamic
String。它的结构是⼀个带⻓度信息的字节数组。

struct SDS<T> {
 T capacity; // 数组容量
 T len; // 数组⻓度
 byte flags; // 特殊标识位，不理睬它
 byte[] content; // 数组内容
}

如代码所示，content ⾥⾯存储了真正的字符串内容，那
capacity 和 len 表示什么意思呢？它有点类似于 Java 语⾔的
ArrayList 结构，需要⽐实际的内容⻓度多分配⼀些冗余空

间。capacity 表示所分配数组的⻓度，len 表示字符串的实际⻓
度。前⾯我们提到字符串是可以修改的字符串，它要⽀持 append
操作。如果数组没有冗余空间，那么追加操作必然涉及到分配新数
组，然后将旧内容复制过来，再 append 新内容。如果字符串的⻓
度⾮常⻓，这样的内存分配和复制开销就会⾮常⼤。

/* Append the specified binary-safe string
pointed by 't' of 'len' bytes to the
 * end of the specified sds string 's'.
 *
 * After the call, the passed sds string is no
longer valid and all the
 * references must be substituted with the new
pointer returned by the call. */
sds sdscatlen(sds s, const void *t, size_t len) {
 size_t curlen = sdslen(s); // 原字符串⻓度

 // 按需调整空间，如果 capacity 不够容纳追加的内容，
就会重新分配字节数组并复制原字符串的内容到新数组中
 s = sdsMakeRoomFor(s,len);
 if (s == NULL) return NULL; // 内存不⾜
 memcpy(s+curlen, t, len); // 追加⽬标字符串的内
容到字节数组中
 sdssetlen(s, curlen+len); // 设置追加后的⻓度值
 s[curlen+len] = '\0'; // 让字符串以\0 结尾，便于
调试打印，还可以直接使⽤ glibc 的字符串函数进⾏操作
 return s;
}

上⾯的 SDS 结构使⽤了范型 T，为什么不直接⽤ int 呢，这是因为
当字符串⽐较短时，len 和 capacity 可以使⽤ byte 和 short
来表示，Redis 为了对内存做极致的优化，不同⻓度的字符串使⽤不
同的结构体来表示。

Redis 规定字符串的⻓度不得超过 512M 字节。创建字符串时 len
和 capacity ⼀样⻓，不会多分配冗余空间，这是因为绝⼤多数场
景下我们不会使⽤ append 操作来修改字符串。

embstr vs raw

Redis 的字符串有两种存储⽅式，在⻓度特别短时，使⽤ emb 形式
存储 (embeded)，当⻓度超过 44 时，使⽤ raw 形式存储。

这两种类型有什么区别呢？为什么分界线是 44 呢？

> set codehole
abcdefghijklmnopqrstuvwxyz012345678912345678
OK
> debug object codehole
Value at:0x7fec2de00370 refcount:1
encoding:embstr serializedlength:45 lru:5958906
lru_seconds_idle:1
> set codehole
abcdefghijklmnopqrstuvwxyz0123456789123456789
OK
> debug object codehole
Value at:0x7fec2dd0b750 refcount:1 encoding:raw
serializedlength:46 lru:5958911
lru_seconds_idle:1

注意上⾯ debug object 输出中有个 encoding 字段，⼀个字符
的差别，存储形式就发⽣了变化。这是为什么呢？

为了解释这种现象，我们⾸先来了解⼀下 Redis 对象头结构体，所
有的 Redis 对象都有下⾯的这个结构头:

struct RedisObject {
 int4 type; // 4bits
 int4 encoding; // 4bits
 int24 lru; // 24bits
 int32 refcount; // 4bytes
 void *ptr; // 8bytes，64-bit system
} robj;

不同的对象具有不同的类型 type(4bit)，同⼀个类型的 type 会有
不同的存储形式 encoding(4bit)，为了记录对象的 LRU 信息，
使⽤了 24 个 bit 来记录 LRU 信息。每个对象都有个引⽤计数，当
引⽤计数为零时，对象就会被销毁，内存被回收。ptr 指针将指向
对象内容 (body) 的具体存储位置。这样⼀个 RedisObject 对象头
需要占据 16 字节的存储空间。

接着我们再看 SDS 结构体的⼤⼩，在字符串⽐较⼩时，SDS 对象头
的⼤⼩是capacity+3，⾄少是 3。意味着分配⼀个字符串的最⼩空
间占⽤为 19 字节 (16+3)。

struct SDS {
 int8 capacity; // 1byte
 int8 len; // 1byte
 int8 flags; // 1byte
 byte[] content; // 内联数组，⻓度为 capacity
}

如图所示，embstr 存储形式是这样⼀种存储形式，它将
RedisObject 对象头和 SDS 对象连续存在⼀起，使⽤ malloc ⽅法
⼀次分配。⽽ raw 存储形式不⼀样，它需要两次 malloc，两个对
象头在内存地址上⼀般是不连续的。

⽽内存分配器 jemalloc/tcmalloc 等分配内存⼤⼩的单位都是 2、
4、8、16、32、64 等等，为了能容纳⼀个完整的 embstr 对
象，jemalloc 最少会分配 32 字节的空间，如果字符串再稍微⻓⼀
点，那就是 64 字节的空间。如果总体超出了 64 字节，Redis 认为
它是⼀个⼤字符串，不再使⽤ emdstr 形式存储，⽽该⽤ raw 形
式。

当内存分配器分配了 64 空间时，那这个字符串的⻓度最⼤可以是多
少呢？这个⻓度就是 44。那为什么是 44 呢？

前⾯我们提到 SDS 结构体中的 content 中的字符串是以字节\0结
尾的字符串，之所以多出这样⼀个字节，是为了便于直接使⽤
glibc 的字符串处理函数，以及为了便于字符串的调试打印输出。

看上⾯这张图可以算出，留给 content 的⻓度最多只有 45(64-
19) 字节了。字符串⼜是以\0结尾，所以 embstr 最⼤能容纳的字
符串⻓度就是 44。

扩容策略

字符串在⻓度⼩于 1M 之前，扩容空间采⽤加倍策略，也就是保留
100% 的冗余空间。当⻓度超过 1M 之后，为了避免加倍后的冗余空
间过⼤⽽导致浪费，每次扩容只会多分配 1M ⼤⼩的冗余空间。

思考

什么场合下会⽤到字符串的 append ⽅法？

