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struct RedisDb {
dict* dict; // all keys key=>value
dict* expires; // all expired keys
key=>1long(timestamp)

}

struct zset {
dict *dict; // all values value=>score
zskiplist *zsl;
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struct dict {

dictht ht[Z2];
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struct dictEntry {

volid* key;

void* val;

dictEntry* next; // #iEF—"1 entry
ks
struct dictht {

dictEntry** table; // —%

long size; // Z—#HEHANKE

long used; // hash E{HTEE

}
i rehash

ANFHNY SEEBFEN B, EEEMRIGMINA, AERKIBF
HAERRPITREFTRIAMNBATE, X2—70M)RA8
BR1E, ERNBREIENRedisRNERASXEENERE, T FIEKX
TEWEE, FARedisfERAE#HINrehash/ NEHE, BARE—S,
BEETE A UMRE.

dictEntry *dictAddRaw(dict *d, void *key,

dictEntry **existing)

{
long index;
dictEntry *entry;
dictht *ht;

/ XE#HITNTHT
1f (dictIsRehashing(d)) _dictRehashStep(d);

/* Get the index of the new element, or -1 if
* the element already exists. */




1f ((index = _dictKeyIndex(d, key,
dictHashKey(d,key), existing)) == -1)
return NULL;

/* Allocate the memory and store the new
entry.
* Tnsert the element in top, with the
assumption that in a database
* system it is more likely that recently
added entries are accessed
* more frequently. */
// WMRFHLATHTIER, EREHRITRERRIFTNEA
NE
ht = dictIsRehashing(d) ? &d->ht[1] : &d-
>ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;

/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
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// RBEEMES
void databaseCron() {

1f (server.activerehashing) {
for (J = 0; J < dbs_per_call; j++) {
int work_done =
incrementallyRehash(rehash_db);
1f (work_done) {
/* If the function did some work,
stop here, we'll do
* more at the next cron loop. */
break;
} else {
/* If this db didn't need rehash,
we'll try the next one. */
rehash_db++;
rehash_db %= server.dbnum;
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func get(Ckey) {
let index = hash_func(key) % size;
let entry = table[index];
while(Centry != NULL) {
1f entry.key == target {
return entry.value;

h

entry = entry.next;

¥
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/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
/* Incremental rehashing already in progress.
Return. */
1f (dictIsRehashing(d)) return DICT_OK;

/* If the hash table 1s empty expand 1t to
the 1initial size. */

1f (d->ht[0].s1ze == 0) return dictExpand(d,
DICT_HT_INITIAL_SIZE);

/* If we reached the 1:1 ratio, and we are
allowed to resize the hash
* table (global setting) or we should avoid
1t but the ratio between
* elements/buckets 1is over the "safe
threshold, we resize doubling
* the number of buckets. */
if (d->ht[0].used >= d->ht[0].s1ze &&
(dict_can_resize ||
d->ht[0] .used/d->ht[0].s1ze >
dict_force_resize_ratio))

{

return dictExpand(d, d->ht[0].used*2);

ks
return DICT_OK;
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int htNeedsResize(dict *dict) {
long long size, used;

size = dictSlots(dict);
used = dictSize(dict);
return (size > DICT_HT_INITIAL_SIZE &&
(used*100/s1ize <
HASHTABLE_MIN_FILL));
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