
源码 2：循序渐进 —— 探索「字
典」内部

dict 是 Redis 服务器中出现最为频繁的复合型数据结构，除了 hash
结构的数据会⽤到字典外，整个 Redis 数据库的所有 key 和 value
也组成了⼀个全局字典，还有带过期时间的 key 集合也是⼀个字
典。zset 集合中存储 value 和 score 值的映射关系也是通过 dict
结构实现的。

struct RedisDb {
 dict* dict; // all keys key=>value
 dict* expires; // all expired keys
key=>long(timestamp)
 ...
}

struct zset {
 dict *dict; // all values value=>score
 zskiplist *zsl;
}

dict 内部结构

dict 结构内部包含两个 hashtable，通常情况下只有⼀个
hashtable 是有值的。但是在 dict 扩容缩容时，需要分配新的
hashtable，然后进⾏渐进式搬迁，这时候两个 hashtable 存储的分
别是旧的 hashtable 和新的 hashtable。待搬迁结束后，旧的
hashtable 被删除，新的 hashtable 取⽽代之。

struct dict {
 ...
 dictht ht[2];
}

所以，字典数据结构的精华就落在了 hashtable 结构上了。
hashtable 的结构和 Java 的 HashMap ⼏乎是⼀样的，都是通过分
桶的⽅式解决 hash 冲突。第⼀维是数组，第⼆维是链表。数组中存
储的是第⼆维链表的第⼀个元素的指针。

struct dictEntry {
 void* key;
 void* val;
 dictEntry* next; // 链接下⼀个 entry
}
struct dictht {
 dictEntry** table; // ⼆维
 long size; // 第⼀维数组的⻓度
 long used; // hash 表中的元素个数
 ...
}

渐进式rehash

⼤字典的扩容是⽐较耗时间的，需要重新申请新的数组，然后将旧字
典所有链表中的元素重新挂接到新的数组下⾯，这是⼀个O(n)级别的
操作，作为单线程的Redis表示很难承受这样耗时的过程。步⼦迈⼤
了会扯着蛋，所以Redis使⽤渐进式rehash⼩步搬迁。虽然慢⼀点，
但是肯定可以搬完。

dictEntry *dictAddRaw(dict *d, void *key,
dictEntry **existing)
{
 long index;
 dictEntry *entry;
 dictht *ht;

 // 这⾥进⾏⼩步搬迁
 if (dictIsRehashing(d)) _dictRehashStep(d);

 /* Get the index of the new element, or -1 if
 * the element already exists. */

 if ((index = _dictKeyIndex(d, key,
dictHashKey(d,key), existing)) == -1)
 return NULL;

 /* Allocate the memory and store the new
entry.
 * Insert the element in top, with the
assumption that in a database
 * system it is more likely that recently
added entries are accessed
 * more frequently. */
 // 如果字典处于搬迁过程中，要将新的元素挂接到新的数组
下⾯
 ht = dictIsRehashing(d) ? &d->ht[1] : &d-
>ht[0];
 entry = zmalloc(sizeof(*entry));
 entry->next = ht->table[index];
 ht->table[index] = entry;
 ht->used++;

 /* Set the hash entry fields. */
 dictSetKey(d, entry, key);
 return entry;
}

搬迁操作埋伏在当前字典的后续指令中(来⾃客户端的hset/hdel指令
等)，但是有可能客户端闲下来了，没有了后续指令来触发这个搬
迁，那么Redis就置之不理了么？当然不会，优雅的Redis怎么可能
设计的这样潦草。Redis还会在定时任务中对字典进⾏主动搬迁。

// 服务器定时任务
void databaseCron() {
 ...
 if (server.activerehashing) {
 for (j = 0; j < dbs_per_call; j++) {
 int work_done =
incrementallyRehash(rehash_db);
 if (work_done) {
 /* If the function did some work,
stop here, we'll do
 * more at the next cron loop. */
 break;
 } else {
 /* If this db didn't need rehash,
we'll try the next one. */
 rehash_db++;
 rehash_db %= server.dbnum;
 }
 }
 }
}

查找过程

插⼊和删除操作都依赖于查找，先必须把元素找到，才可以进⾏数据
结构的修改操作。hashtable 的元素是在第⼆维的链表上，所以⾸先
我们得想办法定位出元素在哪个链表上。

func get(key) {
 let index = hash_func(key) % size;
 let entry = table[index];
 while(entry != NULL) {
 if entry.key == target {
 return entry.value;
 }
 entry = entry.next;
 }
}

值得注意的是代码中的hash_func，它会将 key 映射为⼀个整数，
不同的 key 会被映射成分布⽐较均匀散乱的整数。只有 hash 值均
匀了，整个 hashtable 才是平衡的，所有的⼆维链表的⻓度就不会
差距很远，查找算法的性能也就⽐较稳定。

hash 函数

hashtable 的性能好不好完全取决于 hash 函数的质量。hash 函数
如果可以将 key 打散的⽐较均匀，那么这个 hash 函数就是个好函
数。Redis 的字典默认的 hash 函数是 siphash。siphash 算法即使
在输⼊ key 很⼩的情况下，也可以产⽣随机性特别好的输出，⽽且
它的性能也⾮常突出。对于 Redis 这样的单线程来说，字典数据结
构如此普遍，字典操作也会⾮常频繁，hash 函数⾃然也是越快越
好。

hash 攻击

如果 hash 函数存在偏向性，⿊客就可能利⽤这种偏向性对服务器进
⾏攻击。存在偏向性的 hash 函数在特定模式下的输⼊会导致 hash
第⼆维链表⻓度极为不均匀，甚⾄所有的元素都集中到个别链表中，

直接导致查找效率急剧下降，从O(1)退化到O(n)。有限的服务器计
算能⼒将会被 hashtable 的查找效率彻底拖垮。这就是所谓 hash
攻击。

扩容条件

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
 /* Incremental rehashing already in progress.
Return. */
 if (dictIsRehashing(d)) return DICT_OK;

 /* If the hash table is empty expand it to
the initial size. */
 if (d->ht[0].size == 0) return dictExpand(d,
DICT_HT_INITIAL_SIZE);

 /* If we reached the 1:1 ratio, and we are
allowed to resize the hash
 * table (global setting) or we should avoid
it but the ratio between
 * elements/buckets is over the "safe"
threshold, we resize doubling
 * the number of buckets. */
 if (d->ht[0].used >= d->ht[0].size &&
 (dict_can_resize ||
 d->ht[0].used/d->ht[0].size >
dict_force_resize_ratio))
 {
 return dictExpand(d, d->ht[0].used*2);
 }
 return DICT_OK;
}

正常情况下，当 hash 表中元素的个数等于第⼀维数组的⻓度时，就
会开始扩容，扩容的新数组是原数组⼤⼩的 2 倍。不过如果 Redis
正在做 bgsave，为了减少内存⻚的过多分离 (Copy On Write)，
Redis 尽量不去扩容 (dict_can_resize)，但是如果 hash 表已经

⾮常满了，元素的个数已经达到了第⼀维数组⻓度的 5 倍
(dict_force_resize_ratio)，说明 hash 表已经过于拥挤了，
这个时候就会强制扩容。

缩容条件

int htNeedsResize(dict *dict) {
 long long size, used;

 size = dictSlots(dict);
 used = dictSize(dict);
 return (size > DICT_HT_INITIAL_SIZE &&
 (used*100/size <
HASHTABLE_MIN_FILL));
}

当 hash 表因为元素的逐渐删除变得越来越稀疏时，Redis 会对
hash 表进⾏缩容来减少 hash 表的第⼀维数组空间占⽤。缩容的条
件是元素个数低于数组⻓度的 10%。缩容不会考虑 Redis 是否正在
做 bgsave。

set 的结构

Redis ⾥⾯ set 的结构底层实现也是字典，只不过所有的 value 都
是 NULL，其它的特性和字典⼀模⼀样。

思考

1. 为什么缩容不⽤考虑 bgsave？
2. Java 语⾔和 Python 语⾔内置的 set 容器是如何实现的？

