RS 2 BRAEH —— BRE I=F
B, AP

dict Z Redis RSP LI RNINERNE SREELSM, FRT hash
ENBIESRAEITHEIN, B Redis BIBEAIME key F value
AT —TE2RFH, EBEFIHNEN key FEHRE—TF
B, zset EEFTEAE value F score BRI X AL BT dict
ZEH SN,

struct RedisDb {
dict* dict; // all keys key=>value
dict* expires; // all expired keys
key=>1long(timestamp)

}

struct zset {
dict *dict; // all values value=>score
zskiplist *zsl;

¥

dict NERZEHY

ht[0] ht[1] ht[0] ht(1]

/ L

| / s
| w g e
hashtable hashtable hashtable

dict AN E ST hashtable, BEBERTFRE—
hashtable EHEH., B2 dict ¥ BHESN, EEHEIFHMN
hashtable, AEHTHERME, MR hashtable Z(EHI D
R2|H8 hashtable F1FHY hashtable, FHTERE, A
hashtable #If%, FHY hashtable BXmft .2,

struct dict {

dictht ht[Z2];

\ J
)

key | val / \ key | val
next . — next

) (

/ \
key | val o A key | val
next L~ next
4 key | val
next

FA, FHEBUREMIBENEE T hashtable £ L7,
hashtable B9459%0 Java B9 HashMap JI 2 —#/, #E @I H
WA UERIR hash PR, F—HENAE, FHEEHR., HAPE
BB SR _ RN E— I RIE.

struct dictEntry {

volid* key;

void* val;

dictEntry* next; // #iEF—"1 entry
ks
struct dictht {

dictEntry** table; // —%

long size; // Z—#HEHANKE

long used; // hash E{HTEE

}
i rehash

ANFHNY SEEBFEN B, EEEMRIGMINA, AERKIBF
HAERRPITREFTRIAMNBATE, X2—70M)RA8
BR1E, ERNBREIENRedisRNERASXEENERE, T FIEKX
TEWEE, FARedisfERAE#HINrehash/ NEHE, BARE—S,
BEETE A UMRE.

dictEntry *dictAddRaw(dict *d, void *key,

dictEntry **existing)

{
long index;
dictEntry *entry;
dictht *ht;

/ XE#HITNTHT
1f (dictIsRehashing(d)) _dictRehashStep(d);

/* Get the index of the new element, or -1 if
* the element already exists. */

1f ((index = _dictKeyIndex(d, key,
dictHashKey(d,key), existing)) == -1)
return NULL;

/* Allocate the memory and store the new
entry.
* Tnsert the element in top, with the
assumption that in a database
* system it is more likely that recently
added entries are accessed
* more frequently. */
// WMRFHLATHTIER, EREHRITRERRIFTNEA
NE
ht = dictIsRehashing(d) ? &d->ht[1] : &d-
>ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;

/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;

¥

MR IFIERE SR FHEHNEEIESTPCREE R miThset/hdelig<
F), BREAEEFImATRT, R8T RERE<SRKEAX TR
T, B2ARedisFIEZANETA? SARAE, HEIRedis'EAFIAE
IRITHXHRE, RedisBREAENES PN FHEHAITEDIMIT,

// RBEEMES
void databaseCron() {

1f (server.activerehashing) {
for (J = 0; J < dbs_per_call; j++) {
int work_done =
incrementallyRehash(rehash_db);
1f (work_done) {
/* If the function did some work,
stop here, we'll do
* more at the next cron loop. */
break;
} else {
/* If this db didn't need rehash,
we'll try the next one. */
rehash_db++;
rehash_db %= server.dbnum;

¥
Biidiz

ﬁAﬂM@ﬁﬁ%Wﬁ?ﬁﬁ,%%ﬁ%m?ﬁﬂ 7 A AT ER
ZMRVECURIE, hashtable FTTREERE _HHiER L, FIlERL
ﬁﬁ%u AENM I TTRAEM TR L

func get(Ckey) {
let index = hash_func(key) % size;
let entry = table[index];
while(Centry != NULL) {
1f entry.key == target {
return entry.value;

h

entry = entry.next;

¥

ESIENERBFMhash_func, BRI key BME AH—PEEE,
NER key SHEAREI A o LRI D BELROEE S, RE hash {E1Y
57, BT hashtable 77 2 F &Ry, FiBRI _#HBERIORKEMAS
ZiERz, EREANEEEMIERRE.

hash PA%Y

hashtable BYMEEIF ANIFTEBURT hash EREHIBRI=., hash REK
WRATBEG key FTEAVLEEISIS], BBAXT hash RENFZ T IFR
. Redis FIFHEIAR] hash KEZ siphash, siphash EABEMNE
AN key B/RIIERT, A AFAEREVEISERIFmE, mA
RS IEERE , T Redis IXHEMNERLLTEFRR, FHEIES
MALtbE R, FHIRFHSIEEIMNZE, hash REB A D EHIRE
9%,

hash

g1R hash REFERRIE, FEMAENRHXMROIET RS 25
1T, FHEREERN hash REERERI THBMAZ S hash
FEHEPRRRERANANYY, BEFRANTREBERETHIERT,

BEESHERNESEITE, MO(1)EBAII0(N). BRIRSST
BHEFIEAHR hashtable B KRG, XHEFMHE hash
G

ST Sy

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
/* Incremental rehashing already in progress.
Return. */
1f (dictIsRehashing(d)) return DICT_OK;

/* If the hash table 1s empty expand 1t to
the 1initial size. */

1f (d->ht[0].s1ze == 0) return dictExpand(d,
DICT_HT_INITIAL_SIZE);

/* If we reached the 1:1 ratio, and we are
allowed to resize the hash
* table (global setting) or we should avoid
1t but the ratio between
* elements/buckets 1is over the "safe
threshold, we resize doubling
* the number of buckets. */
if (d->ht[0].used >= d->ht[0].s1ze &&
(dict_can_resize ||
d->ht[0] .used/d->ht[0].s1ze >
dict_force_resize_ratio))

{

return dictExpand(d, d->ht[0].used*2);

ks
return DICT_OK;

¥

IEBERT, 3 hash RPTENTAEFTE—EHANKERN, W
SHRT S, ¥V SOMBARRHRERNN 2 &, TR Redis
IETEfI bgsave, AT HIVAEFEINEZ29E (Copy On Write),
Redis REAREY B (dict_can_resize), {EE2MURE hash REL

EEFHT, TENTHERLRR TE—HIAKENS &
(dict_force_resize_ratio), %A hash REL T FIHIT T,
XM HEMSEET B,

mAEFN

int htNeedsResize(dict *dict) {
long long size, used;

size = dictSlots(dict);
used = dictSize(dict);
return (size > DICT_HT_INITIAL_SIZE &&
(used*100/s1ize <
HASHTABLE_MIN_FILL));

¥

H hash REANTZZFHRIFTEHREHTRY, Redis &3
hash RIATHESFED hash REE—HIAT B HE., BEIFK
HETENRTFHRAKEN 10%, BATSZEE Redis BEHIEHE
f bgsave,

set BYZ51Y

Redis EE set WEMEELIMBEFH, RATMRAER value &
& NULL, EEfSHflFH—E—F,

EEjE?
AR

1. AT ABEBSARHZERE bgsave?
2. Java IS Python IESRERM set Bz W{oISLIAY?

