
源码 3：挨肩迭背 —— 探索「压
缩列表」内部

Redis 为了节约内存空间使⽤，zset 和 hash 容器对象在元素个数
较少的时候，采⽤压缩列表 (ziplist) 进⾏存储。压缩列表是⼀块连
续的内存空间，元素之间紧挨着存储，没有任何冗余空隙。

> zadd programmings 1.0 go 2.0 python 3.0 java
(integer) 3
> debug object programmings
Value at:0x7fec2de00020 refcount:1
encoding:ziplist serializedlength:36 lru:6022374
lru_seconds_idle:6
> hmset books go fast python slow java fast
OK
> debug object books
Value at:0x7fec2de000c0 refcount:1
encoding:ziplist serializedlength:48 lru:6022478
lru_seconds_idle:1

这⾥，注意观察 debug object 输出的 encoding 字段都是
ziplist，这就表示内部采⽤压缩列表结构进⾏存储。

struct ziplist<T> {
 int32 zlbytes; // 整个压缩列表占⽤字节数
 int32 zltail_offset; // 最后⼀个元素距离压缩列表起
始位置的偏移量，⽤于快速定位到最后⼀个节点
 int16 zllength; // 元素个数
 T[] entries; // 元素内容列表，挨个挨个紧凑存储
 int8 zlend; // 标志压缩列表的结束，值恒为 0xFF
}

压缩列表为了⽀持双向遍历，所以才会有 ztail_offset 这个字
段，⽤来快速定位到最后⼀个元素，然后倒着遍历。

entry 块随着容纳的元素类型不同，也会有不⼀样的结构。

struct entry {
 int<var> prevlen; // 前⼀个 entry 的字节⻓度
 int<var> encoding; // 元素类型编码
 optional byte[] content; // 元素内容
}

它的 prevlen 字段表示前⼀个 entry 的字节⻓度，当压缩列表倒着
遍历时，需要通过这个字段来快速定位到下⼀个元素的位置。它是⼀
个变⻓的整数，当字符串⻓度⼩于 254(0xFE) 时，使⽤⼀个字节表
示；如果达到或超出 254(0xFE) 那就使⽤ 5 个字节来表示。第⼀个
字节是 0xFE(254)，剩余四个字节表示字符串⻓度。你可能会觉得
⽤ 5 个字节来表示字符串⻓度，是不是太浪费了。我们可以算⼀
下，当字符串⻓度⽐较⻓的时候，其实 5 个字节也只占⽤了不
到(5/(254+5))<2%的空间。

encoding字段存储了元素内容的编码类型信息，ziplist 通过这个
字段来决定后⾯的 content 内容的形式。

Redis 为了节约存储空间，对 encoding 字段进⾏了相当复杂的设
计。Redis 通过这个字段的前缀位来识别具体存储的数据形式。下⾯
我们来看看 Redis 是如何根据encoding的前缀位来区分内容的：

1. 00xxxxxx 最⼤⻓度位 63 的短字符串，后⾯的 6 个位存储字
符串的位数，剩余的字节就是字符串的内容。

2. 01xxxxxx xxxxxxxx 中等⻓度的字符串，后⾯ 14 个位来表
示字符串的⻓度，剩余的字节就是字符串的内容。

3. 10000000 aaaaaaaa bbbbbbbb cccccccc dddddddd
特⼤字符串，需要使⽤额外 4 个字节来表示⻓度。第⼀个字节
前缀是10，剩余 6 位没有使⽤，统⼀置为零。后⾯跟着字符串
内容。不过这样的⼤字符串是没有机会使⽤的，压缩列表通常
只是⽤来存储⼩数据的。

4. 11000000 表示 int16，后跟两个字节表示整数。
5. 11010000 表示 int32，后跟四个字节表示整数。
6. 11100000 表示 int64，后跟⼋个字节表示整数。
7. 11110000 表示 int24，后跟三个字节表示整数。
8. 11111110 表示 int8，后跟⼀个字节表示整数。
9. 11111111 表示 ziplist 的结束，也就是 zlend 的值 0xFF。

10. 1111xxxx 表示极⼩整数，xxxx 的范围只能是 (0001~1101),
也就是1~13，因为0000、1110、1111都被占⽤了。读取到
的 value 需要将 xxxx 减 1，也就是整数0~12就是最终的
value。

注意到 content 字段在结构体中定义为 optional 类型，表示这个
字段是可选的，对于很⼩的整数⽽⾔，它的内容已经内联到
encoding 字段的尾部了。

增加元素

因为 ziplist 都是紧凑存储，没有冗余空间 (对⽐⼀下 Redis 的字符
串结构)。意味着插⼊⼀个新的元素就需要调⽤ realloc 扩展内存。
取决于内存分配器算法和当前的 ziplist 内存⼤⼩，realloc 可能会
重新分配新的内存空间，并将之前的内容⼀次性拷⻉到新的地址，也
可能在原有的地址上进⾏扩展，这时就不需要进⾏旧内容的内存拷
⻉。

如果 ziplist 占据内存太⼤，重新分配内存和拷⻉内存就会有很⼤的
消耗。所以 ziplist 不适合存储⼤型字符串，存储的元素也不宜过
多。

级联更新

/* When an entry is inserted, we need to set the
prevlen field of the next
 * entry to equal the length of the inserted
entry. It can occur that this
 * length cannot be encoded in 1 byte and the
next entry needs to be grow
 * a bit larger to hold the 5-byte encoded
prevlen. This can be done for free,
 * because this only happens when an entry is
already being inserted (which
 * causes a realloc and memmove). However,
encoding the prevlen may require
 * that this entry is grown as well. This effect

may cascade throughout
 * the ziplist when there are consecutive entries
with a size close to
 * ZIP_BIG_PREVLEN, so we need to check that the
prevlen can be encoded in
 * every consecutive entry.
 *
 * Note that this effect can also happen in
reverse, where the bytes required
 * to encode the prevlen field can shrink. This
effect is deliberately ignored,
 * because it can cause a "flapping" effect where
a chain prevlen fields is
 * first grown and then shrunk again after
consecutive inserts. Rather, the
 * field is allowed to stay larger than
necessary, because a large prevlen
 * field implies the ziplist is holding large
entries anyway.
 *
 * The pointer "p" points to the first entry that
does NOT need to be
 * updated, i.e. consecutive fields MAY need an
update. */
unsigned char *__ziplistCascadeUpdate(unsigned
char *zl, unsigned char *p) {
 size_t curlen =
intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen,
rawlensize;
 size_t offset, noffset, extra;
 unsigned char *np;
 zlentry cur, next;

 while (p[0] != ZIP_END) {
 zipEntry(p, &cur);
 rawlen = cur.headersize + cur.len;
 rawlensize =
zipStorePrevEntryLength(NULL,rawlen);

 /* Abort if there is no next entry. */
 if (p[rawlen] == ZIP_END) break;
 zipEntry(p+rawlen, &next);

 /* Abort when "prevlen" has not changed.
*/
 // prevlen 的⻓度没有变，中断级联更新
 if (next.prevrawlen == rawlen) break;

 if (next.prevrawlensize < rawlensize) {
 /* The "prevlen" field of "next"
needs more bytes to hold
 * the raw length of "cur". */
 // 级联扩展
 offset = p-zl;
 extra = rawlensize-
next.prevrawlensize;
 // 扩⼤内存
 zl = ziplistResize(zl,curlen+extra);
 p = zl+offset;

 /* Current pointer and offset for
next element. */
 np = p+rawlen;
 noffset = np-zl;

 /* Update tail offset when next

element is not the tail element. */
 // 更新 zltail_offset 指针
 if
((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) !=
np) {
 ZIPLIST_TAIL_OFFSET(zl) =

intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)
)+extra);
 }

 /* Move the tail to the back. */
 // 移动内存
 memmove(np+rawlensize,
 np+next.prevrawlensize,
 curlen-noffset-
next.prevrawlensize-1);
 zipStorePrevEntryLength(np,rawlen);

 /* Advance the cursor */
 p += rawlen;
 curlen += extra;
 } else {
 if (next.prevrawlensize > rawlensize)
{
 /* This would result in
shrinking, which we want to avoid.
 * So, set "rawlen" in the
available bytes. */
 // 级联收缩，不过这⾥可以不⽤收缩了，因
为 5 个字节也是可以存储 1 个字节的内容的
 // 虽然有点浪费，但是级联更新实在是太可
怕了，所以浪费就浪费吧

zipStorePrevEntryLengthLarge(p+rawlen,rawlen);
 } else {
 // ⼤⼩没变，改个⻓度值就完事了

zipStorePrevEntryLength(p+rawlen,rawlen);
 }

 /* Stop here, as the raw length of
"next" has not changed. */
 break;
 }
 }
 return zl;
}

前⾯提到每个 entry 都会有⼀个 prevlen 字段存储前⼀个 entry 的
⻓度。如果内容⼩于 254 字节，prevlen ⽤ 1 字节存储，否则就
是 5 字节。这意味着如果某个 entry 经过了修改操作从 253 字节变
成了 254 字节，那么它的下⼀个 entry 的 prevlen 字段就要更
新，从 1 个字节扩展到 5 个字节；如果这个 entry 的⻓度本来也是
253 字节，那么后⾯ entry 的 prevlen 字段还得继续更新。

如果 ziplist ⾥⾯每个 entry 恰好都存储了 253 字节的内容，那么
第⼀个 entry 内容的修改就会导致后续所有 entry 的级联更新，这
就是⼀个⽐较耗费计算资源的操作。

删除中间的某个节点也可能会导致级联更新，读者可以思考⼀下为什
么？

IntSet ⼩整数集合

当 set 集合容纳的元素都是整数并且元素个数较⼩时，Redis 会使⽤
intset 来存储结合元素。intset 是紧凑的数组结构，同时⽀持
16 位、32 位和 64 位整数。

struct intset<T> {
 int32 encoding; // 决定整数位宽是 16 位、32 位还
是 64 位
 int32 length; // 元素个数
 int<T> contents; // 整数数组，可以是 16 位、32 位
和 64 位
}

⽼钱也不是很能理解为什么 intset 的 encoding 字段和 length 字
段使⽤ 32 位整数存储。毕竟它只是⽤来存储⼩整数的，⻓度不应该
很⻓，⽽且 encoding 只有 16 位、32 位和 64 位三个类型，⽤⼀
个字节存储就绰绰有余。关于这点，读者们可以进⼀步讨论。

> sadd codehole 1 2 3
(integer) 3
> debug object codehole
Value at:0x7fec2dc2bde0 refcount:1
encoding:intset serializedlength:15 lru:6065795
lru_seconds_idle:4
> sadd codehole go java python
(integer) 3
> debug object codehole
Value at:0x7fec2dc2bde0 refcount:1
encoding:hashtable serializedlength:22
lru:6065810 lru_seconds_idle:5

注意观察 debug object 的输出字段 encoding 的值，可以发现当
set ⾥⾯放进去了⾮整数值时，存储形式⽴即从 intset 转变成了
hash 结构。

思考

1. 为什么 set 集合在数量很⼩的时候不使⽤ ziplist 来存储？
2. 执⾏rpush codehole 1 2 3命令后，请写出列表内容的

16 进制形式。

