B 3: KBEE —— BRE Tk
MmyT1 RSP

Redis I T THARNEFEEBMER, zset fl hash BRNRETENE
R/ DRHE, RAEESIE (ziplist) #TEE. EHEVERE—RE
FHAEZTE, TRERZEEREFE, RETARIURZIR,

> zadd programmings 1.0 go 2.0 python 3.0 java
(integer) 3

> debug object programmings

Value at:0x7fec2de@0020 refcount:1
encoding:ziplist serializedlength:36 lru:6022374
lru_seconds_idle:6

> hmset books go fast python slow java fast

0K

> debug object books

Value at:0x7fec2de@@@cd refcount:1
encoding:ziplist serializedlength:48 1ru:6022478
lru_seconds_idle:1

XE, JFEME debug object HHAY encoding FEXER =
ziplist, XFLRIAERRAELET IR G HITIER.



struct ziplist<T> {
int32 zlbytes; // ZEN[E4E5FR SEFTE
int32 zltail_offset; // ®E—"1TtZEBEEY%EYFEE
I ENREE, ATREEMNEI&EE—TTR
int16 zllength; // 7tw&=14%
T[] entries; // TZEABIIEK, ETIETEEFMH
int8 zlend; // INEEAEIIFRNEGR, EHIEN OxFF

zlbytes
A

zlbytes zltail_offset zllength entry entry entry entry zlend

Y

zltail_offset

EAEFNRF T ZIENEEFH, FRILAASE ztail_offset X F
R, BRRREMIRE—TE, AEEEER.

entry IRIBESFNNTREZEARE, BWEER—TFRISHA,

struct entry {
int<var> prevlen; // BI— entry HIFTKE
int<var> encoding; // tZ=ZERVRE
optional byte[] content; // TZAZE

¥

TH) prevlien FEERTEI— entry NFETKE, HEMHmEIIRES
EBHAHRY, FEETXTFEERREEEUE T TENUE, EX—
MR, HFEFHEKE/NTF 254(0xFE) B, EFH—IFEPER
T WIRIAEISFBH 254(0xFE) ABWER 5 T FTRER, 2—T
FE OXFEQ254), MRUNENRAFENERKE, (RUESRKE
A5 M FENURERNFERERE, BTEXRET., BT ME—
T, 3FFERKELEREKNIME, HEX S5 M FHIREETAR
B(5/(254+5))<2%HI== 18],




byte[leng‘th] Iength Iength < 254(0XFE]

byte[length] OxFE length length == 254(0xFE)}
: _M : A
e Y

entry k-1 entry k

encoding=ZFERFiE T T EASTHRBREEE, ziplist @FXT
FERSATEREM content IR,

Redis I T TTAEMETIE, X encoding FE#TT T HHEE MK
T, Redis BEXMTFERABIBRAKIRAIRZFERNETERN. TH
BA1REFE Redis EUAIRIEencodingiIRIRAIRX 5 ASHY:

1.

COONOW A

QOxxxxxx R AKEN 63 WIEFHFE, FEM 6 DMIEFEHEF
TERIME, MRNFTMEFHFENAS,

. DIXXXXXX XXXXXXXX PEEKEMNFHNSE, FE 14 DMUkEXR

TFABNRE, MRNFTREFHFHENART,

. 10000000 aaaaaaaa bbbbbbbb cccccccc dddddddd

IRENER, FEEFEREI 4 MEDRRIKE, F—1TFED
A= 10, FKR 6 B ERH, #i—ENE. GHIEEFMS
NS, TEIXFENAFRBEESXEBINSERN, EHRIIFKEE
R RREME/NEIER,

11000000 X intle, FIRMNFTRTEN,

11010000 R int32, FIRFANFTRIEL,

11100000 X int64, FIR/\TFTRREH,

11110000 R int24, FR=1"FTRTEHN,

11111110 RR int8, FIR—TFNRIREE,

11111111 R ziplist BI455R, tWHiZE zlend BY{E OxFF,
1111Ixxxx TR/ NEE, xxxx EEREER (0001~1101),
M E1~13, EH0000. 1110, 1111FW AT . EEE!
B9 value BEIE xxxx /8 1, Ui EEHO~12F 2 REN
value,



ERE content FERELEMAHRE NN optional £&!, RRXTD
FE= RN, MTFENNEHMS, EHRSEZREKE
encoding FERIEER T .

IEInTE

ER ziplist #ELEEZME, KBETTRTE FEE—T Redis BIFR
B, BEREBA—THNTEMEEZRREA realloc I BAE.
BURFAESEREEF LA ziplist ATEA/, realloc FIEES
SHPEEHNAGFEZE, FHBEZBINAE—RMEE N RFaothE, 1
A EEER ANt EHTY B, XNMASZEHITIHASTHAFE
m,

f1E ziplist SIRAGAK, EFPRAGTENNZRAERAN
WEE, R ziplist TEATMHARTYS, FHROTEBREY

E

AP

/* When an entry is inserted, we need to set the
prevlien field of the next

* entry to equal the length of the inserted
entry. It can occur that this

* length cannot be encoded in 1 byte and the
next entry needs to be grow

* a bit larger to hold the 5-byte encoded
prevlen. This can be done for free,

* because this only happens when an entry 1is
already being inserted (which

* causes a realloc and memmove). However,
encoding the prevlen may require

* that this entry 1is grown as well. This effect




may cascade throughout

* the ziplist when there are consecutive entries
with a size close to

* ZIP_BIG_PREVLEN, so we need to check that the
prevlen can be encoded 1in

* every consecutive entry.

*

* Note that this effect can also happen 1in
reverse, where the bytes required

* to encode the prevlen field can shrink. This
effect 1s deliberately 1ignored,

* because 1t can cause a "flapping" effect where
a chain prevlen fields 1is

* first grown and then shrunk again after
consecutive inserts. Rather, the

* field 1s allowed to stay larger than
necessary, because a large prevlen

* field implies the ziplist 1s holding large

entries anyway.
5k

* The pointer "p" points to the first entry that
does NOT need to be
* updated, 1.e. consecutive fields MAY need an
update. */
unsigned char *__ziplistCascadeUpdate(unsigned
char *zl, unsigned char *p) {
size_t curlen =
intrev32ifbe(ZIPLIST_BYTES(z1)), rawlen,
rawlensize;
size_t offset, noffset, extra;
unsigned char *np;
zlentry cur, next;




while (p[@] != ZIP_END) {
zipEntry(p, &cur);
rawlen = cur.headersize + cur.len;
rawlensize =
zipStorePrevEntryLength(NULL,rawlen);

/* Abort i1f there is no next entry. */
1f (p[rawlen] == ZIP_END) break;
zipEntry(p+rawlen, &next);

/* Abort when "prevlen" has not changed.
*/
// prevlien NKEREE, FHIHREXEM

1f (next.prevrawlen == rawlen) break;

1f (next.prevrawlensize < rawlensize) {

/* The "prevlen" field of "next"

needs more bytes to hold
* the raw length of "cur". */

// RERY

offset = p-zl;

extra = rawlensize-
next.prevrawlensize;

/] HRAE

zl = ziplistResize(zl,curlen+extra);

p = zl+offset;

/* Current pointer and offset for
next element. */

np = p+rawlen;

noffset = np-zl;

/* Update tail offset when next




element is not the tail element. */

// B3 zltail_offset 3E%t

1f
((zl+intrev321ifbe(ZIPLIST_TAIL_OFFSET(z1l))) !=

np) {
ZIPLIST_TAIL_OFFSET(zl) =

intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(z1l)
)+extra);

¥

/* Move the tail to the back. */
// BEIRNTE
memmove(np+rawlensize,
np+next.prevrawlensize,
curlen-noffset-
next.prevrawlensize-1);
zipStorePrevEntryLength(np,rawlen);

/* Advance the cursor */
p += rawlen;
curlen += extra;
} else {
1f (next.prevrawlensize > rawlensize)
{
/* This would result 1in
shrinking, which we want to avoid.
* So, set "rawlen" in the
available bytes. */
// RERRAE, NIXEBEJUAARAKREET,
A5 MFVEEFANEE 1 TFEPHNRER
// BABRRRE, BERRIXEHEZELE XA
87T, FRLURZERIRZRIE




zipStorePrevEntrylLengthLarge(p+rawlen,rawlen);
} else {
[/ RINEZ, BT KEEMTSET

zipStorePrevEntrylLength(p+rawlen,rawlen);

¥

/* Stop here, as the raw length of
"next" has not changed. */
break;

¥
¥

return zl;

¥

AIEREIET entry BB —1 prevlen FERZFEBI—T entry Y
KE, IRABZ/NF 254 FT, prevlien B 1 F1F6E, SNH
B5FY., XBHEEBEUREND entry 253 TEMURIEM 253 T
Y 254 F1, BBAERT— entry 89 prevlien ZFEMEE
1, M1 7FED[YERS TFED, RXD entry HKEARFHZ
253 73, BBAEME entry B prevlien FERRSHRETH,

AR ziplist EEE entry [8F#FME T 253 FTHRAS, A
E—" entry BB SHEEFTE entry REXEHT, X
Me— TR ITE RRIRE,

BIERFENET T RIS SRR, ZEAINEZ TR
N?

IntSet /NEHNKRE



3 set EFEFPNTRABREZLFHTR IR/, Redis =fEH
intset RXEMESTER. intset BEENENALEN, RNZE
16 fiI. 32 {u# 64 fIELH,

struct intset<T> {

int32 encoding; // FREZZZE=ZE 16 1. 32 {iOf
= 64 fiI

int32 length; // TtZ&=14%

int<T> contents; // ZEZIH, fIBLE 16 i1, 32 I
M 64 i
¥

4bytes 4bytes

|
encoding length value value value ! value

ZHRM A EREEEE N4 intset BY encoding FE&F length F

ER{EF 32 (B, EREREARFMNEBIN, KETRNIZ
R, MHA encoding RA 16 fiI. 32 {iifl 64 fI=HKE, FA—
T FUEFEMEEER, X TXR, EE(TTNHE—FHITIE,

> sadd codehole 1 2 3

(integer) 3

> debug object codehole

Value at:0x7fec2dcZbded refcount:1
encoding:intset serializedlength:15 1lru:6065795
lru_seconds_idle:4

> sadd codehole go java python
(integer) 3

> debug object codehole

Value at:0x7fec2dcZbded refcount:1
encoding:hashtable serializedlength:2?2
Lru:6065810 lru_seconds_idle:5




EENER debug object BY%IHFER encoding BB, FTARINS
set BEINOHAE TIEBHERN, FEFNILEIM intset TR T
hash 4514,

[==] %
J[ANY

1. B4 set EEEHNERINDWIFHMEARNER ziplist SRTFE?
2. }4Trpush codehole 1 2 3&m</E, BESHIIRKNEH
16 #HFIF



