
源码 5：凌波微步 —— 探索「跳
跃列表」内部结构

Redis 的 zset 是⼀个复合结构，⼀⽅⾯它需要⼀个 hash 结构来存
储 value 和 score 的对应关系，另⼀⽅⾯需要提供按照 score 来排
序的功能，还需要能够指定 score 的范围来获取 value 列表的功
能，这就需要另外⼀个结构「跳跃列表」。

zset 的内部实现是⼀个 hash 字典加⼀个跳跃列表 (skiplist)。hash
结构在讲字典结构时已经详细分析过了，它很类似于 Java 语⾔中的
HashMap 结构。本节我们来讲跳跃列表，它⽐较复杂，读者要有⼼
理准备。

基本结构

上图就是跳跃列表的示意图，图中只画了四层，Redis 的跳跃表共有
64 层，容纳 2^64 个元素应该不成问题。每⼀个 kv 块对应的结构
如下⾯的代码中的zslnode结构，kv header 也是这个结构，只不
过 value 字段是 null 值——⽆效的，score 是
Double.MIN_VALUE，⽤来垫底的。kv 之间使⽤指针串起来形成了
双向链表结构，它们是 有序 排列的，从⼩到⼤。不同的 kv 层⾼可
能不⼀样，层数越⾼的 kv 越少。同⼀层的 kv 会使⽤指针串起来。
每⼀个层元素的遍历都是从 kv header 出发。

struct zslnode {
 string value;
 double score;
 zslnode*[] forwards; // 多层连接指针
 zslnode* backward; // 回溯指针
}

struct zsl {
 zslnode* header; // 跳跃列表头指针
 int maxLevel; // 跳跃列表当前的最⾼层
 map<string, zslnode*> ht; // hash 结构的所有键值对
}

查找过程

设想如果跳跃列表只有⼀层会怎样？插⼊删除操作需要定位到相应的
位置节点 (定位到最后⼀个⽐「我」⼩的元素，也就是第⼀个⽐
「我」⼤的元素的前⼀个)，定位的效率肯定⽐较差，复杂度将会是
O(n)，因为需要挨个遍历。也许你会想到⼆分查找，但是⼆分查找的
结构只能是有序数组。跳跃列表有了多层结构之后，这个定位的算法
复杂度将会降到 O(lg(n))。

如图所示，我们要定位到那个紫⾊的 kv，需要从 header 的最⾼层
开始遍历找到第⼀个节点 (最后⼀个⽐「我」⼩的元素)，然后从这个
节点开始降⼀层再遍历找到第⼆个节点 (最后⼀个⽐「我」⼩的元
素)，然后⼀直降到最底层进⾏遍历就找到了期望的节点 (最底层的最
后⼀个⽐我「⼩」的元素)。

我们将中间经过的⼀系列节点称之为「搜索路径」，它是从最⾼层⼀
直到最底层的每⼀层最后⼀个⽐「我」⼩的元素节点列表。

有了这个搜索路径，我们就可以插⼊这个新节点了。不过这个插⼊过
程也不是特别简单。因为新插⼊的节点到底有多少层，得有个算法来
分配⼀下，跳跃列表使⽤的是随机算法。

随机层数

对于每⼀个新插⼊的节点，都需要调⽤⼀个随机算法给它分配⼀个合
理的层数。直观上期望的⽬标是 50% 的 Level1，25% 的 Level2，
12.5% 的 Level3，⼀直到最顶层2^-63，因为这⾥每⼀层的晋升概
率是 50%。

/* Returns a random level for the new skiplist
node we are going to create.
 * The return value of this function is between 1
and ZSKIPLIST_MAXLEVEL
 * (both inclusive), with a powerlaw-alike
distribution where higher
 * levels are less likely to be returned. */
int zslRandomLevel(void) {
 int level = 1;
 while ((random()&0xFFFF) < (ZSKIPLIST_P *
0xFFFF))
 level += 1;
 return (level<ZSKIPLIST_MAXLEVEL) ? level :
ZSKIPLIST_MAXLEVEL;
}

不过 Redis 标准源码中的晋升概率只有 25%，也就是代码中的
ZSKIPLIST_P 的值。所以官⽅的跳跃列表更加的扁平化，层⾼相对较
低，在单个层上需要遍历的节点数量会稍多⼀点。

也正是因为层数⼀般不⾼，所以遍历的时候从顶层开始往下遍历会⾮
常浪费。跳跃列表会记录⼀下当前的最⾼层数maxLevel，遍历时从
这个 maxLevel 开始遍历性能就会提⾼很多。

插⼊过程

下⾯是插⼊过程的源码，它稍微有点⻓，不过整体的过程还是⽐较清
晰的。

/* Insert a new node in the skiplist. Assumes the
element does not already
 * exist (up to the caller to enforce that). The
skiplist takes ownership

 * of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double
score, sds ele) {
 // 存储搜索路径
 zskiplistNode *update[ZSKIPLIST_MAXLEVEL],
*x;
 // 存储经过的节点跨度
 unsigned int rank[ZSKIPLIST_MAXLEVEL];
 int i, level;

 serverAssert(!isnan(score));
 x = zsl->header;
 // 逐步降级寻找⽬标节点，得到「搜索路径」
 for (i = zsl->level-1; i >= 0; i--) {
 /* store rank that is crossed to reach
the insert position */
 rank[i] = i == (zsl->level-1) ? 0 :
rank[i+1];
 // 如果score相等，还需要⽐较value
 while (x->level[i].forward &&
 (x->level[i].forward->score <
score ||
 (x->level[i].forward->score
== score &&
 sdscmp(x->level[i].forward-
>ele,ele) < 0)))
 {
 rank[i] += x->level[i].span;
 x = x->level[i].forward;
 }
 update[i] = x;
 }
 // 正式进⼊插⼊过程

 /* we assume the element is not already
inside, since we allow duplicated
 * scores, reinserting the same element
should never happen since the
 * caller of zslInsert() should test in the
hash table if the element is
 * already inside or not. */
 // 随机⼀个层数
 level = zslRandomLevel();
 // 填充跨度
 if (level > zsl->level) {
 for (i = zsl->level; i < level; i++) {
 rank[i] = 0;
 update[i] = zsl->header;
 update[i]->level[i].span = zsl-
>length;
 }
 // 更新跳跃列表的层⾼
 zsl->level = level;
 }
 // 创建新节点
 x = zslCreateNode(level,score,ele);
 // 重排⼀下前向指针
 for (i = 0; i < level; i++) {
 x->level[i].forward = update[i]-
>level[i].forward;
 update[i]->level[i].forward = x;

 /* update span covered by update[i] as x
is inserted here */
 x->level[i].span = update[i]-
>level[i].span - (rank[0] - rank[i]);
 update[i]->level[i].span = (rank[0] -

rank[i]) + 1;
 }

 /* increment span for untouched levels */
 for (i = level; i < zsl->level; i++) {
 update[i]->level[i].span++;
 }
 // 重排⼀下后向指针
 x->backward = (update[0] == zsl->header) ?
NULL : update[0];
 if (x->level[0].forward)
 x->level[0].forward->backward = x;
 else
 zsl->tail = x;
 zsl->length++;
 return x;
}

⾸先我们在搜索合适插⼊点的过程中将「搜索路径」摸出来了，然后
就可以开始创建新节点了，创建的时候需要给这个节点随机分配⼀个
层数，再将搜索路径上的节点和这个新节点通过前向后向指针串起
来。如果分配的新节点的⾼度⾼于当前跳跃列表的最⼤⾼度，就需要
更新⼀下跳跃列表的最⼤⾼度。

删除过程

删除过程和插⼊过程类似，都需先把这个「搜索路径」找出来。然后
对于每个层的相关节点都重排⼀下前向后向指针就可以了。同时还要
注意更新⼀下最⾼层数maxLevel。

更新过程

当我们调⽤ zadd ⽅法时，如果对应的 value 不存在，那就是插⼊
过程。如果这个 value 已经存在了，只是调整⼀下 score 的值，那
就需要⾛⼀个更新的流程。假设这个新的 score 值不会带来排序位
置上的改变，那么就不需要调整位置，直接修改元素的 score 值就
可以了。但是如果排序位置改变了，那就要调整位置。那该如何调整
位置呢？

/* Remove and re-insert when score changes. */
 if (score != curscore) {
 zskiplistNode *node;
 serverAssert(zslDelete(zs-
>zsl,curscore,ele,&node));
 znode = zslInsert(zs->zsl,score,node-
>ele);
 /* We reused the node->ele SDS string,
free the node now
 * since zslInsert created a new one. */
 node->ele = NULL;
 zslFreeNode(node);
 /* Note that we did not removed the
original element from
 * the hash table representing the sorted
set, so we just
 * update the score. */
 dictGetVal(de) = &znode->score; /* Update
score ptr. */
 *flags |= ZADD_UPDATED;
 }
 return 1;

⼀个简单的策略就是先删除这个元素，再插⼊这个元素，需要经过两
次路径搜索。Redis 就是这么⼲的。
不过 Redis 遇到 score 值改变了就直接删除再插⼊，不会去判断位

置是否需要调整，从这点看，Redis 的 zadd 的代码似乎还有优化空
间。关于这⼀点，读者们可以继续讨论。

如果 score 值都⼀样呢？

在⼀个极端的情况下，zset 中所有的 score 值都是⼀样的，zset 的
查找性能会退化为 O(n) 么？Redis 作者⾃然考虑到了这⼀点，所以
zset 的排序元素不只看 score 值，如果 score 值相同还需要再⽐较
value 值 (字符串⽐较)。

元素排名是怎么算出来的？

前⾯我们啰嗦了⼀堆，但是有⼀个重要的属性没有提到，那就是
zset 可以获取元素的排名 rank。那这个 rank 是如何算出来的？如
果仅仅使⽤上⾯的结构，rank 是不能算出来的。Redis 在 skiplist
的 forward 指针上进⾏了优化，给每⼀个 forward 指针都增加了
span 属性，span 是「跨度」的意思，表示从前⼀个节点沿着当前
层的 forward 指针跳到当前这个节点中间会跳过多少个节点。Redis
在插⼊删除操作时会⼩⼼翼翼地更新 span 值的⼤⼩。

struct zslforward {
 zslnode* item;
 long span; // 跨度
}

struct zsl {
 String value;
 double score;
 zslforward*[] forwards; // 多层连接指针
 zslnode* backward; // 回溯指针
}

这样当我们要计算⼀个元素的排名时，只需要将「搜索路径」上的经
过的所有节点的跨度 span 值进⾏叠加就可以算出元素的最终 rank
值。

思考

⽂中我们提到当 score 值的变化微⼩，不会带来位置上的调整时，
是不是可以直接修改 score 后就返回？

请读者们对这个问题进⾏讨论。如果确实如此，可以考虑向 Redis
作者 Antirez 提 issue 了。

后记

⽼钱于 2018 年 7 ⽉ 28 ⽇向 Redis 的 Github Repo 提交了这个
⼩优化的建议 《maybe an optimizable point for zadd
operation》
(https://github.com/antirez/redis/issues/5179)，5 天后，
Redis 作者 Antirez 接受了这个建议，对 skiplist 的代码做了⼩修
改并 merge 到了 master。

Antirez 向⽼钱表达了感谢，作为⼩学⽣的我表示很激动，他告诉我
这个⼩优化在某些应⽤场景下可以为 zset 带来 10% 以上性能的提
升。

https://github.com/antirez/redis/issues/5179

