AR85 5° RIEME — &E T
ERIIR) AERLEM

Redis BY zset @—1TEEEM, —HFHEEEZE— hash &K=
fi# value 1 score UMK R, F—HHEHBEIRMIZER score 4t
FHIThRE, TREEREISIETE score HUTEEIRIAEN value FIFAITH
BE, XMBESZII—141 TEKERIIR] .

fr hash

zset /
| T

\\‘# skiplist

zset WAERSLILZE—1 hash FEIN—TEEERFIZE (skiplist), hash
EMERFHEMNELZIFESTE T, BREMNT Java EEHHY
HashMap 4514, ATRAIRIABEKIIR, ELEREZR, EEERL
HIER,

BN 51




FEmMEZHRKRIEXNTEE, BPRETHEE, Redis BEARHEER
64 B, B 2A64 D ERMIZAKEM, F—1 kv IRIJNAIEH
T EAIKIEHFRIZsTnodeZEH, kv header B2 XM, RA
J value FEE null E——F5XAY, score 2
Double.MIN_VALUE, FRZEM. kv Z[B{EREFSBERAMK T
WERERAEM, el BF #3589, MNhEIR, RE kv B&0]
BEA—H, BEHWSH kv @), BE—E8 kv SERIEHHER,
B—1TExRMNEHHEZEM kv header £ %,

struct zslnode {
string value;
double score;
zslnode*[] forwards; // ZEEEZE
zslnode* backward; // [ELitE4%t
}

struct zsl {
zslnode* header; // BkiRFIZFELIgE
int maxLevel; // BEERFIFRZRINES/E
map<string, zslnode*> ht; // hash ZEHJ9FR7E SEEX

}
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/* Returns a random level for the new skiplist
node we are going to create.
* The return value of this function is between 1
and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike
distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
int level = 1;
while ((random()&0OxFFFF) < (ZSKIPLIST_P *
OxFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level :
ZSKIPLIST_MAXLEVEL;
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/* Insert a new node in the skiplist. Assumes the
element does not already

* exist (up to the caller to enforce that). The
skiplist takes ownership




* of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double
score, sds ele) {

// FREBRER

zskiplistNode *update[ZSKIPLIST_MAXLEVEL],
*X;

// FEEINTREE

unsigned int rank[ZSKIPLIST_MAXLEVEL];

int 1, level;

serverAssert(!isnan(score));
X = zsl->header;
// BFLRERIHERTR, B8R THBREE
for (1 = zsl->level-1; 1 >= 0; 1--) {
/* store rank that is crossed to reach
the insert position */
rank[1] = 1 == (zsl->level-1) 7 0 :
rank[1+1];
// MRscoretfEF, EFELERvalue
while (x->level[1i].forward &&
(x->level[1].forward->score <
score ||
(x->level[1].forward->score
== score &&

sdscmp(x->level[1].forward-
>ele,ele) < 0)))
{
rank[1] += x->level[1].span;
X = x->level[1].forward;
by
update[1] = x;
¥
// IENHENBAITTE




/* we assume the element is not already
inside, since we allow duplicated
* scores, reinserting the same element
should never happen since the
* caller of zslInsert() should test in the
hash table if the element 1is
* already inside or not. */
// HEN—1 =%
level = zslRandomLevel();
// BERBE
1f (level > zsl->level) {
for (1 = zsl->level; 1 < level; 1++) {
rank[1] =
update[i] = zsl->header;
update[i1]->level[1].span = zsl-
>length;
hy
// BEFAkERTIZRNES
zsl->level = level;
¥
// BT R
x = zslCreateNode(level,score,ele);
// EHF— T RIS
for (1 = 0; 1 < level; 1++) {
x->level[1].forward = update[1]-
>level[1].forward;
update[i1]->level[1].forward =

/* update span covered by update[1] as x
1s 1inserted here */

x->level[1].span = update[1i]-
>level[i1].span - (rank[@] - rank[1i]);

update[i1]->level[1].span = (rank[0] -




rank[1]) + 1;
¥

/* increment span for untouched levels */

for (1 = level; 1 < zsl->level; i++) {
update[i1]->level[1].span++;

Iy

// BHF—TEMEE

x->backward = (update[@] == zsl->header) ?

NULL : update[0];

1f (x->level[@].forward)
x->level[@].forward->backward = x;

else
zsl->tail = x;

zsl->length++;

return Xx;
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/* Remove and re-insert when score changes. */
1f (score != curscore) {

zskiplistNode *node;

serverAssert(zslDelete(zs-
>zsl,curscore,ele,&node));

znode = zslInsert(zs->zsl,score,node-
>ele);

/* We reused the node->ele SDS string,
free the node now

* since zsllInsert created a new one. */

node->ele = NULL;

zslFreeNode(node);

/* Note that we did not removed the
original element from

* the hash table representing the sorted
set, so we just

* update the score. */

dictGetVal(de) = &znode->score; /* Update
score ptr. */

*flags |= ZADD_UPDATED;

ks

return 1;
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struct zslforward {
zslnode* 1item;
long span; // BEfE
ks

struct zsl {
String value;
double score;
zslforward*[] forwards; // ZEEEEH
zslnode* backward; // [ELitE4%t
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