AR85 5° RIEME — &E T
ERIIR) AERLEM

Redis BY zset @—1TEEEM, —HFHEEEZE— hash &K=
fi# value 1 score UMK R, F—HHEHBEIRMIZER score 4t
FHIThRE, TREEREISIETE score HUTEEIRIAEN value FIFAITH
BE, XMBESZII—141 TEKERIIR] .

fr hash

zset /
| T

\\‘# skiplist

zset WAERSLILZE—1 hash FEIN—TEEERFIZE (skiplist), hash
EMERFHEMNELZIFESTE T, BREMNT Java EEHHY
HashMap 4514, ATRAIRIABEKIIR, ELEREZR, EEERL
HIER,

BN 51

FEmMEZHRKRIEXNTEE, BPRETHEE, Redis BEARHEER
64 B, B 2A64 D ERMIZAKEM, F—1 kv IRIJNAIEH
T EAIKIEHFRIZsTnodeZEH, kv header B2 XM, RA
J value FEE null E——F5XAY, score 2
Double.MIN_VALUE, FRZEM. kv Z[B{EREFSBERAMK T
WERERAEM, el BF #3589, MNhEIR, RE kv B&0]
BEA—H, BEHWSH kv @), BE—E8 kv SERIEHHER,
B—1TExRMNEHHEZEM kv header £ %,

struct zslnode {
string value;
double score;
zslnode*[] forwards; // ZEEEZE
zslnode* backward; // [ELitE4%t
}

struct zsl {
zslnode* header; // BkiRFIZFELIgE
int maxLevel; // BEERFIFRZRINES/E
map<string, zslnode*> ht; // hash ZEHJ9FR7E SEEX

}
Eidiz

IRIBMRRIRTIRABE - EE? BARBRRIEREZEE N EIENAY
UETR (EB&E—1E TF NITE, EMESE —1 L
1 RETRERB—), EUNBEEELERE, EREREE
O(n), ARNFERTEH. IHIZEE —0EXK, BRE-_2EXN
EWREEREFAAE, RIRIIRETZSREENZE, XTEMNEE
ERERZEE Og(n),

v
=
Y
|

—# kv
‘—

Y
Y
Y

i *
I
l

- |-
- . -

A
A
A

NERR, BNEEMRITRER kv, FEM header NESE
FaEHEEE— TR (&RE—T M MxER), REMET
TRFEE—EFEHHIE-TTR (&RE—TE T 8T
%), A—ERISREHITEHMLE THENTR (REEN&
fE—" 3 T BNTE),

BT EZIN—RITRIMZA BRI , ERMN&SE—
BIRRENE—ERHRE—T H JIWxETRIIE,

BTXTERER, BIMAMBEAZTHTRT , PEXTHHEAL
BUARRAEE., ANHBEANTRIEESZVE, SETEEK
PE—T, HERIIR(ERZENEIE.

BELEEX

NFE—TFEANTR, #EZRA—TBINEELSEE— 5
IBEE, BV EHAEER B2 50% B9 Levell, 25% Y Level2,
12.5% 89 Level3, —EEIRINE2A-63, RAXES—EHNEFE
RE 50%,

/* Returns a random level for the new skiplist
node we are going to create.
* The return value of this function is between 1
and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike
distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
int level = 1;
while ((random()&0OxFFFF) < (ZSKIPLIST_P *
OxFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level :
ZSKIPLIST_MAXLEVEL;

¥

AT Redis tnERBHHNEAETEERIE 25%, M2 BFE
ZSKIPLIST_P 8918, FRAE ABIBEERFIRENMNmIEL, BESHEXNER
], EETELEFERHINTRHESHEZ—5,

IERENEH—RAS, FriEH Eﬁﬂj{l?e}AIﬁ)f—':Fﬁﬁ?i"FiE}ﬁ%HF

FRE., RRIIRFICE— FHAINESEEmaxLevel, EHETM
X maxLevel FHgIER! I“_iLﬁb,}LATE"Eﬁszo
HMAIE

7/

THEHEATENRE, EREMERK, TIERNTER
BifTRY

=N

/* Insert a new node in the skiplist. Assumes the
element does not already

* exist (up to the caller to enforce that). The
skiplist takes ownership

* of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double
score, sds ele) {

// FREBRER

zskiplistNode *update[ZSKIPLIST_MAXLEVEL],
*X;

// FEEINTREE

unsigned int rank[ZSKIPLIST_MAXLEVEL];

int 1, level;

serverAssert(!isnan(score));
X = zsl->header;
// BFLRERIHERTR, B8R THBREE
for (1 = zsl->level-1; 1 >= 0; 1--) {
/* store rank that is crossed to reach
the insert position */
rank[1] = 1 == (zsl->level-1) 7 0 :
rank[1+1];
// MRscoretfEF, EFELERvalue
while (x->level[1i].forward &&
(x->level[1].forward->score <
score ||
(x->level[1].forward->score
== score &&

sdscmp(x->level[1].forward-
>ele,ele) < 0)))
{
rank[1] += x->level[1].span;
X = x->level[1].forward;
by
update[1] = x;
¥
// IENHENBAITTE

/* we assume the element is not already
inside, since we allow duplicated
* scores, reinserting the same element
should never happen since the
* caller of zslInsert() should test in the
hash table if the element 1is
* already inside or not. */
// HEN—1 =%
level = zslRandomLevel();
// BERBE
1f (level > zsl->level) {
for (1 = zsl->level; 1 < level; 1++) {
rank[1] =
update[i] = zsl->header;
update[i1]->level[1].span = zsl-
>length;
hy
// BEFAkERTIZRNES
zsl->level = level;
¥
// BT R
x = zslCreateNode(level,score,ele);
// EHF— T RIS
for (1 = 0; 1 < level; 1++) {
x->level[1].forward = update[1]-
>level[1].forward;
update[i1]->level[1].forward =

/* update span covered by update[1] as x
1s 1inserted here */

x->level[1].span = update[1i]-
>level[i1].span - (rank[@] - rank[1i]);

update[i1]->level[1].span = (rank[0] -

rank[1]) + 1;
¥

/* increment span for untouched levels */

for (1 = level; 1 < zsl->level; i++) {
update[i1]->level[1].span++;

Iy

// BHF—TEMEE

x->backward = (update[@] == zsl->header) ?

NULL : update[0];

1f (x->level[@].forward)
x->level[@].forward->backward = x;

else
zsl->tail = x;

zsl->length++;

return Xx;

¥

BRBNNEEZGERARNIRETR BRRER BHEXT, AR
AT AR EIZFTRT, SIENMERELX T RN ok —
B, BERRER LT RMNX T /REIRIR /GRS B
Ho, MRDEMFTRNSESTIHRBKIIRNEASE, MEE
E— FEIRIIRNEARSE,

iR =
BRI RIE IR, MBAEIERD R IR, KB

SFETENEXTREEHE—TREREHMANT ., BINNTEE
AREf— TEeEHmaxLevel,

BT TE

Cd

SBAVER zadd FAER, WMRXINEY value R FE, BBREEA
T2, NRXT value EZEFET, REBIFEE—T score B91E, B
MEEE—TEHRE. BRIRXTH score ERAEHRHEEFAL
BN, BAMASTEREMNE, EIEEHNTRN score ERM
AT, ERURHIFMNENEZT, IAMEBRARMUE., ANUEEE
UENE?

/* Remove and re-insert when score changes. */
1f (score != curscore) {

zskiplistNode *node;

serverAssert(zslDelete(zs-
>zsl,curscore,ele,&node));

znode = zslInsert(zs->zsl,score,node-
>ele);

/* We reused the node->ele SDS string,
free the node now

* since zsllInsert created a new one. */

node->ele = NULL;

zslFreeNode(node);

/* Note that we did not removed the
original element from

* the hash table representing the sorted
set, so we just

* update the score. */

dictGetVal(de) = &znode->score; /* Update
score ptr. */

*flags |= ZADD_UPDATED;

ks

return 1;

— T RIENREBMZRMFEX TR, BEAXTTER, FEZIW
IREEIZIEER, Redis MEBXATH,
A Redis &%l score EXZE TMEZMRBIEBA, A=EAIRTL

EEEHTERE, MXRE, Redis i zadd WRABUFERERHET
B, RTFX—/R, EETAIABEITIE,

R score {EE—EIE?

E—TRIREVIER T, zset ARFTAERY score {HEFZ—1FRY, zset AY
B IEEESIEL R O(n) 42 Redis (EEBAZRE TiX—a, I
zset WHEFRTTE R RE score {H, R score HHERTEERLLR
value B (FRFELER),

TTRAREE AR HEKN?

AEEMNPIRT —i#, BE2E—1TEENENEERE, HE
zset A] ASREGTRAIHER rank, BBIX rank 2a0EIE HRES? 40
SIER LEEN, rank EFEEELEA, Redis 7 skiplist
9 forward 185 LT 7ML, /E— forward IEHERIEN T
span B, span & TEBEI NEE, ROMBI— 1T RGEZR]
EHY forward $E5EERISRIX T T RFRISHIZ /M TR, Redis
FEiEARBRIRIEN /IO EEREFT span {ERIK/N,

struct zslforward {
zslnode* 1item;
long span; // BEfE
ks

struct zsl {
String value;
double score;
zslforward*[] forwards; // ZEEEEH
zslnode* backward; // [ELitE4%t

XFESEMNBIUTE T ZERN, RFER BRREZ LR
WHIFTE T REVESE span E#TSIIMAIMELTRIRE rank
(=8

[==] %
J[ANY

X HE1REIE score ERNTMHH), TE®mHRUE LRIEZERN,
EAER AEEBIZ score FRIRE]?

BIEE(I XN e)@#EITINIS . WRMELULL, rIBAZE [E[E Redis
YE& Antirez & issue 7T,

[Gic

Z%F 2018 &£ 7 B 28 HIA Redis By Github Repo R T XM
ML EIEIX _(maybe an optimizable point for zadd
operation)
(https://github.com/antirez/redis/issues/5179), 5 KXfg,
Redis fE& Antirez 1&3 7 X TEIN, X skiplist B9CEEM T /JViE
2H merge 7 master,

Antirez EIZHFRA T RS, FANFENRRTRED, 5 1FK
XM AEREN BT R TRIAA zset 3k 10% DA E1EBERVER
Tt

https://github.com/antirez/redis/issues/5179

