
源码 6：破旧⽴新 —— 探索「紧
凑列表」内部

Redis 5.0 ⼜引⼊了⼀个新的数据结构 listpack，它是对 ziplist 结
构的改进，在存储空间上会更加节省，⽽且结构上也⽐ ziplist 要精
简。它的整体形式和 ziplist 还是⽐较接近的，如果你认真阅读了
ziplist 的内部结构分析，那么 listpack 也是⽐较容易理解的。

struct listpack<T> {
 int32 total_bytes; // 占⽤的总字节数
 int16 size; // 元素个数
 T[] entries; // 紧凑排列的元素列表
 int8 end; // 同 zlend ⼀样，恒为 0xFF
}

⾸先这个 listpack 跟 ziplist 的结构⼏乎⼀摸⼀样，只是少了⼀
个zltail_offset字段。ziplist 通过这个字段来定位出最后⼀个
元素的位置，⽤于逆序遍历。不过 listpack 可以通过其它⽅式来定
位出最后⼀个元素的位置，所以zltail_offset字段就省掉了。

struct lpentry {
 int<var> encoding;
 optional byte[] content;
 int<var> length;
}

元素的结构和 ziplist 的元素结构也很类似，都是包含三个字段。不
同的是⻓度字段放在了元素的尾部，⽽且存储的不是上⼀个元素的⻓
度，是当前元素的⻓度。正是因为⻓度放在了尾部，所以可以省去了
zltail_offset字段来标记最后⼀个元素的位置，这个位置可以通
过total_bytes字段和最后⼀个元素的⻓度字段计算出来。

⻓度字段使⽤ varint 进⾏编码，不同于 skiplist 元素⻓度的编码为
1 个字节或者 5 个字节，listpack 元素⻓度的编码可以是 1、2、
3、4、5 个字节。同 UTF8 编码⼀样，它通过字节的最⾼为是否为
1 来决定编码的⻓度。

同样，Redis 为了让 listpack 元素⽀持很多类型，它对 encoding
字段也进⾏了较为复杂的设计。

1. 0xxxxxxx 表示⾮负⼩整数，可以表示0~127。
2. 10xxxxxx 表示⼩字符串，⻓度范围是0~63，content字段
为字符串的内容。

3. 110xxxxx yyyyyyyy 表示有符号整数，范围
是-2048~2047。

4. 1110xxxx yyyyyyyy 表示中等⻓度的字符串，⻓度范围
是0~4095，content字段为字符串的内容。

5. 11110000 aaaaaaaa bbbbbbbb cccccccc dddddddd
表示⼤字符串，四个字节表示⻓度，content字段为字符串内
容。

6. 11110001 aaaaaaaa bbbbbbbb 表示 2 字节有符号整数。
7. 11110010 aaaaaaaa bbbbbbbb cccccccc 表示 3 字节
有符号整数。

8. 11110011 aaaaaaaa bbbbbbbb cccccccc dddddddd
表示 4 字节有符号整数。

9. 11110011 aaaaaaaa ... hhhhhhhh 表示 8 字节有符号
整数。

10. 11111111 表示 listpack 的结束符号，也就是0xFF。

级联更新

listpack 的设计彻底消灭了 ziplist 存在的级联更新⾏为，元素与元
素之间完全独⽴，不会因为⼀个元素的⻓度变⻓就导致后续的元素内
容会受到影响。

取代 ziplist

listpack 的设计的⽬的是⽤来取代 ziplist，不过当下还没有做好替
换 ziplist 的准备，因为有很多兼容性的问题需要考虑，ziplist 在
Redis 数据结构中使⽤太⼴泛了，替换起来复杂度会⾮常之⾼。它⽬
前只使⽤在了新增加的 Stream 数据结构中。

思考

为什么 listpack ⽐ ziplist 更加优秀？

