
源码 7：⾦枝⽟叶 —— 探索「基
数树」内部

Rax 是 Redis 内部⽐较特殊的⼀个数据结构，它是⼀个有序字典树
(基数树 Radix Tree)，按照 key 的字典序排列，⽀持快速地定位、
插⼊和删除操作。Redis 五⼤基础数据结构⾥⾯，能作为字典使⽤的
有 hash 和 zset。hash 不具备排序功能，zset 则是按照 score 进
⾏排序的。rax 跟 zset 的不同在于它是按照 key 进⾏排序的。
Redis 作者认为 rax 的结构⾮常易于理解，但是实现却有相当的复
杂度，需要考虑很多的边界条件，需要处理节点的分裂、合并，⼀不
⼩⼼就会出错。

应⽤

你可以将⼀本英语字典看成⼀棵 radix tree，它所有的单词都是按照
字典序进⾏排列，每个词汇都会附带⼀个解释，这个解释就是 key
对应的 value。有了这棵树，你就可以快速地检索单词，还可以查询
以某个前缀开头的单词有哪些。

你也可以将公安局的⼈员档案信息看成⼀棵 radix tree，它的 key
是每个⼈的身份证号，value 是这个⼈的履历。因为身份证号的编码
的前缀是按照地区进⾏⼀级⼀级划分的，这点和单词⾮常类似。有了
这棵树，你就可以快速地定位出⼈员档案，还可以快速查询出某个⼩
⽚区都有哪些⼈。

Radix tree 还可以应⽤于时间序列应⽤，key 为时间戳，value 为
发⽣在具体时间的事件内容。因为时间戳的编码也是按照【年⽉⽇时
分秒毫秒微秒纳秒】进⾏⼀级⼀级划分的，所以它也可以使⽤字典序
来排序。有了这棵数，我们就可以快速定位出某个具体时间发⽣了什
么事，也可以查询出⼀段时间内都有哪些事发⽣。

我们经常使⽤的 Web 服务器的 Router 它也是⼀棵 radix tree。这
棵树上挂满了 URL 规则，每个 URL 规则上都会附上⼀个请求处理
器。当⼀个请求到来时，我们拿这个请求的 URL 沿着树进⾏遍历，

找到相应的请求处理器来处理。因为 URL 中可能存在正则
pattern，⽽且同⼀层的节点对顺序没有要求，所以它不算是⼀棵严
格的 radix tree。

golang 的 HttpRouter 库
The router relies on a tree structure which makes
heavy use of *common prefixes*
it is basically a *compact* [*prefix tree*]
(https://en.wikipedia.org/wiki/Trie)
(or just [*Radix tree*]
(https://en.wikipedia.org/wiki/Radix_tree)).
Nodes with a common prefix also share a common
parent.
Here is a short example what the routing tree for
the `GET` request method could look like:

Priority Path Handle
9 \ *<1>
3 ├s nil
2 |├earch\ *<2>
1 |└upport\ *<3>
2 ├blog\ *<4>
1 | └:post nil
1 | └\ *<5>
2 ├about-us\ *<6>
1 | └team\ *<7>
1 └contact\ *<8>

Rax 被⽤在 Redis Stream 结构⾥⾯⽤于存储消息队列，在 Stream
⾥⾯消息 ID 的前缀是时间戳 + 序号，这样的消息可以理解为时间
序列消息。使⽤ Rax 结构进⾏存储就可以快速地根据消息 ID 定位
到具体的消息，然后继续遍历指定消息之后的所有消息。

Rax 被⽤在 Redis Cluster 中⽤来记录槽位和key的对应关系，这个
对应关系的变量名成叫着slots_to_keys。这个raxNode的key是
由槽位编号hashslot和key组合⽽成的。我们知道cluster的槽位数量
是16384，它需要2个字节来表示，所以rax节点⾥存的key就是2个
字节的hashslot和对象key拼接起来的字符串。

因为rax的key是按照key前缀顺序挂接的，意味着同样的hashslot的
对象key将会挂在同⼀个raxNode下⾯。这样我们就可以快速遍历具
体某个槽位下⾯的所有对象key。

结构

rax 中有⾮常多的节点，根节点、叶节点和中间节点，有些中间节点
带有 value，有些中间节点纯粹是结构性需要没有对应的 value。

struct raxNode {
 int<1> isKey; // 是否没有 key，没有 key 的是根节
点
 int<1> isNull; // 是否没有对应的 value，⽆意义的中
间节点
 int<1> isCompressed; // 是否压缩存储，这个压缩的概
念⽐较特别
 int<29> size; // ⼦节点的数量或者是压缩字符串的⻓度
(isCompressed)
 byte[] data; // 路由键、⼦节点指针、value 都在这⾥
}

rax 是⼀棵⽐较特殊的 radix tree，它在结构上不是标准的 radix
tree。如果⼀个中间节点有多个⼦节点，那么路由键就只是⼀个字
符。如果只有⼀个⼦节点，那么路由键就是⼀个字符串。后者就是所
谓的「压缩」形式，多个字符压在⼀起的字符串。⽐如前⾯的那棵字
典树在 Rax 算法中将呈现出如下结构：

图中的深蓝⾊节点就是「压缩」节点。

接下来我们再细看raxNode.data⾥⾯存储的到底是什么东⻄，它
是⼀个⽐较复杂的结构，按照压缩与否分为两种结构

压缩结构 ⼦节点如果只有⼀个，那就是压缩结构，data 字段如下伪
代码所示：

struct data {
 optional struct { // 取决于 header 的 size 字段
是否为零
 byte[] childKey; // 路由键
 raxNode* childNode; // ⼦节点指针
 } child;
 optional string value; // 取决于 header 的
isNull 字段
}

如果是叶⼦节点，child 字段就不存在。如果是⽆意义的中间节点
(isNull)，那么 value 字段就不存在。

⾮压缩节点 如果⼦节点有多个，那就不是压缩结构，存在多个路由
键，⼀个键是⼀个字符。

struct data {
 byte[] childKeys; // 路由键字符列表
 raxNode*[] childNodes; // 多个⼦节点指针
 optional string value; // 取决于 header 的
isNull 字段
}

也许你会想到如果⼦节点只有⼀个，并且路由键字符串的⻓度为 1
呢，那到底算压缩还是⾮压缩？仔细思考⼀下，在这种情况下，压缩
和⾮压缩在数据结构表现形式上是⼀样的，不管 isCompressed 是
0 还好是 1，结构都是⼀样的。

增删节点

Rax 的增删节点逻辑⾮常复杂，代码⾥充斥了太多ifelse逻辑，⽼
师我看的是晕头转向，所以这⾥也就不分析它的源码了，以后要是彻
底看懂了，再来继续跟同学们分享吧。如果哪位同学想挑战⼀下，可
以试试看！

思考

还有哪些场合可以使⽤ radix tree？

