
应⽤ 3：节⾐缩⻝ —— 位图
在我们平时开发过程中，会有⼀些 bool 型数据需要存取，⽐如⽤户
⼀年的签到记录，签了是 1，没签是 0，要记录 365 天。如果使⽤
普通的 key/value，每个⽤户要记录 365 个，当⽤户上亿的时候，
需要的存储空间是惊⼈的。

为了解决这个问题，Redis 提供了位图数据结构，这样每天的签到记
录只占据⼀个位，365 天就是 365 个位，46 个字节 (⼀个稍⻓⼀点
的字符串) 就可以完全容纳下，这就⼤⼤节约了存储空间。

位图不是特殊的数据结构，它的内容其实就是普通的字符串，也就是
byte 数组。我们可以使⽤普通的 get/set 直接获取和设置整个位图
的内容，也可以使⽤位图操作 getbit/setbit 等将 byte 数组看成
「位数组」来处理。

当我们要统计⽉活的时候，因为需要去重，需要使⽤ set 来记录所
有活跃⽤户的 id，这⾮常浪费内存。这时就可以考虑使⽤位图来标
记⽤户的活跃状态。每个⽤户会都在这个位图的⼀个确定位置上，0
表示不活跃，1 表示活跃。然后到⽉底遍历⼀次位图就可以得到⽉度
活跃⽤户数。不过这个⽅法也是有条件的，那就是 userid 是整数连
续的，并且活跃占⽐较⾼，否则可能得不偿失。

本节略显枯燥，如果读者看的有点蒙，这是正常现象，读者可以跳过
阅读下⼀节。以⽼钱的经验，在⾯试中有 Redis 位图使⽤经验的同
学很少，如果你对 Redis 的位图有所了解，它将会是你的⾯试加分
项。

基本使⽤

Redis 的位数组是⾃动扩展，如果设置了某个偏移位置超出了现有的
内容范围，就会⾃动将位数组进⾏零扩充。

接下来我们使⽤位操作将字符串设置为 hello (不是直接使⽤ set 指
令)，⾸先我们需要得到 hello 的 ASCII 码，⽤ Python 命令⾏可以
很⽅便地得到每个字符的 ASCII 码的⼆进制值。

>>> bin(ord('h'))
'0b1101000' # ⾼位 -> 低位
>>> bin(ord('e'))
'0b1100101'
>>> bin(ord('l'))
'0b1101100'
>>> bin(ord('l'))
'0b1101100'
>>> bin(ord('o'))
'0b1101111'

接下来我们使⽤ redis-cli 设置第⼀个字符，也就是位数组的前 8
位，我们只需要设置值为 1 的位，如上图所示，h 字符只有 1/2/4
位需要设置，e 字符只有 9/10/13/15 位需要设置。值得注意的是
位数组的顺序和字符的位顺序是相反的。

127.0.0.1:6379> setbit s 1 1
(integer) 0
127.0.0.1:6379> setbit s 2 1
(integer) 0
127.0.0.1:6379> setbit s 4 1
(integer) 0
127.0.0.1:6379> setbit s 9 1
(integer) 0
127.0.0.1:6379> setbit s 10 1
(integer) 0
127.0.0.1:6379> setbit s 13 1
(integer) 0
127.0.0.1:6379> setbit s 15 1
(integer) 0
127.0.0.1:6379> get s
"he"

上⾯这个例⼦可以理解为「零存整取」，同样我们还也可以「零存零
取」，「整存零取」。「零存」就是使⽤ setbit 对位值进⾏逐个设
置，「整存」就是使⽤字符串⼀次性填充所有位数组，覆盖掉旧值。

零存零取

127.0.0.1:6379> setbit w 1 1
(integer) 0
127.0.0.1:6379> setbit w 2 1
(integer) 0
127.0.0.1:6379> setbit w 4 1
(integer) 0
127.0.0.1:6379> getbit w 1 # 获取某个具体位置的值
0/1
(integer) 1
127.0.0.1:6379> getbit w 2
(integer) 1
127.0.0.1:6379> getbit w 4
(integer) 1
127.0.0.1:6379> getbit w 5
(integer) 0

整存零取

127.0.0.1:6379> set w h # 整存
(integer) 0
127.0.0.1:6379> getbit w 1
(integer) 1
127.0.0.1:6379> getbit w 2
(integer) 1
127.0.0.1:6379> getbit w 4
(integer) 1
127.0.0.1:6379> getbit w 5
(integer) 0

如果对应位的字节是不可打印字符，redis-cli 会显示该字符的 16
进制形式。

127.0.0.1:6379> setbit x 0 1
(integer) 0
127.0.0.1:6379> setbit x 1 1
(integer) 0
127.0.0.1:6379> get x
"\xc0"

统计和查找

Redis 提供了位图统计指令 bitcount 和位图查找指令 bitpos，
bitcount ⽤来统计指定位置范围内 1 的个数，bitpos ⽤来查找指定
范围内出现的第⼀个 0 或 1。

⽐如我们可以通过 bitcount 统计⽤户⼀共签到了多少天，通过
bitpos 指令查找⽤户从哪⼀天开始第⼀次签到。如果指定了范围参
数[start, end]，就可以统计在某个时间范围内⽤户签到了多少
天，⽤户⾃某天以后的哪天开始签到。

遗憾的是， start 和 end 参数是字节索引，也就是说指定的位范围
必须是 8 的倍数，⽽不能任意指定。这很奇怪，我表示不是很能理
解 Antirez 为什么要这样设计。因为这个设计，我们⽆法直接计算
某个⽉内⽤户签到了多少天，⽽必须要将这个⽉所覆盖的字节内容全
部取出来 (getrange 可以取出字符串的⼦串) 然后在内存⾥进⾏统
计，这个⾮常繁琐。

接下来我们简单试⽤⼀下 bitcount 指令和 bitpos 指令:

127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitcount w
(integer) 21
127.0.0.1:6379> bitcount w 0 0 # 第⼀个字符中 1 的
位数
(integer) 3
127.0.0.1:6379> bitcount w 0 1 # 前两个字符中 1 的
位数
(integer) 7
127.0.0.1:6379> bitpos w 0 # 第⼀个 0 位
(integer) 0
127.0.0.1:6379> bitpos w 1 # 第⼀个 1 位
(integer) 1
127.0.0.1:6379> bitpos w 1 1 1 # 从第⼆个字符算起，
第⼀个 1 位
(integer) 9
127.0.0.1:6379> bitpos w 1 2 2 # 从第三个字符算起，
第⼀个 1 位
(integer) 17

魔术指令 bitfield

前⽂我们设置 (setbit) 和获取 (getbit) 指定位的值都是单个位的，
如果要⼀次操作多个位，就必须使⽤管道来处理。

不过 Redis 的 3.2 版本以后新增了⼀个功能强⼤的指令，有了这条
指令，不⽤管道也可以⼀次进⾏多个位的操作。

bitfield 有三个⼦指令，分别是 get/set/incrby，它们都可以对指
定位⽚段进⾏读写，但是最多只能处理 64 个连续的位，如果超过
64 位，就得使⽤多个⼦指令，bitfield 可以⼀次执⾏多个⼦指令。

接下来我们对照着上⾯的图看个简单的例⼦:

127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w get u4 0 # 从第⼀个位开
始取 4 个位，结果是⽆符号数 (u)
(integer) 6
127.0.0.1:6379> bitfield w get u3 2 # 从第三个位开
始取 3 个位，结果是⽆符号数 (u)
(integer) 5
127.0.0.1:6379> bitfield w get i4 0 # 从第⼀个位开
始取 4 个位，结果是有符号数 (i)
1) (integer) 6
127.0.0.1:6379> bitfield w get i3 2 # 从第三个位开
始取 3 个位，结果是有符号数 (i)
1) (integer) -3

所谓有符号数是指获取的位数组中第⼀个位是符号位，剩下的才是
值。如果第⼀位是 1，那就是负数。⽆符号数表示⾮负数，没有符号
位，获取的位数组全部都是值。有符号数最多可以获取 64 位，⽆符

号数只能获取 63 位 (因为 Redis 协议中的 integer 是有符号数，最
⼤ 64 位，不能传递 64 位⽆符号值)。如果超出位数限制，Redis 就
会告诉你参数错误。

接下来我们⼀次执⾏多个⼦指令:

127.0.0.1:6379> bitfield w get u4 0 get u3 2 get
i4 0 get i3 2
1) (integer) 6
2) (integer) 5
3) (integer) 6
4) (integer) -3

wow，很魔法有没有！

然后我们使⽤ set ⼦指令将第⼆个字符 e 改成 a，a 的 ASCII 码是
97，返回旧值。

127.0.0.1:6379> bitfield w set u8 8 97 # 从第 9
个位开始，将接下来的 8 个位⽤⽆符号数 97 替换
1) (integer) 101
127.0.0.1:6379> get w
"hallo"

再看第三个⼦指令 incrby，它⽤来对指定范围的位进⾏⾃增操作。
既然提到⾃增，就有可能出现溢出。如果增加了正数，会出现上溢，
如果增加的是负数，就会出现下溢出。Redis 默认的处理是折返。如
果出现了溢出，就将溢出的符号位丢掉。如果是 8 位⽆符号数
255，加 1 后就会溢出，会全部变零。如果是 8 位有符号数 127，
加 1 后就会溢出变成 -128。

接下来我们实践⼀下这个⼦指令 incrby :

127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w incrby u4 2 1 # 从第三
个位开始，对接下来的 4 位⽆符号数 +1
1) (integer) 11
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w incrby u4 2 1 # 溢出折
返了
1) (integer) 0

bitfield 指令提供了溢出策略⼦指令 overflow，⽤户可以选择溢出
⾏为，默认是折返 (wrap)，还可以选择失败 (fail) 报错不执⾏，以
及饱和截断 (sat)，超过了范围就停留在最⼤最⼩值。overflow 指令
只影响接下来的第⼀条指令，这条指令执⾏完后溢出策略会变成默认
值折返 (wrap)。

接下来我们分别试试这两个策略的⾏为

饱和截断 SAT

127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1
1) (integer) 11
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1
1) (integer) 12
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1
1) (integer) 13
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1
1) (integer) 14
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1
1) (integer) 15
127.0.0.1:6379> bitfield w overflow sat incrby u4
2 1 # 保持最⼤值
1) (integer) 15

失败不执⾏ FAIL

127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1
1) (integer) 11
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w overflow fail incrby
u4 2 1 # 不执⾏
1) (nil)

思考 & 作业

1. ⽂中我们使⽤位操作设置了 he 两个字符，请读者将完整的
hello 单词中 5 个字符都使⽤位操作设置⼀下。

2. bitfield 可以同时混合执⾏多个 set/get/incrby ⼦指令，请读
者尝试完成。

