
源码 8：精益求精 —— LFU vs
LRU
在第 27 ⼩节，我们讲到了 Redis 的 LRU 模式，它可以有效的控制
Redis 占⽤内存⼤⼩，将冷数据从内存中淘汰出去。Antirez 在
Redis 4.0 ⾥引⼊了⼀个新的淘汰策略 —— LFU 模式，作者认为它
⽐ LRU 更加优秀。

LFU 的全称是Least Frequently Used，表示按最近的访问频率
进⾏淘汰，它⽐ LRU 更加精准地表示了⼀个 key 被访问的热度。

如果⼀个 key ⻓时间不被访问，只是刚刚偶然被⽤户访问了⼀下，
那么在使⽤ LRU 算法下它是不容易被淘汰的，因为 LRU 算法认为当
前这个 key 是很热的。⽽ LFU 是需要追踪最近⼀段时间的访问频
率，如果某个 key 只是偶然被访问⼀次是不⾜以变得很热的，它需
要在近期⼀段时间内被访问很多次才有机会被认为很热。

Redis 对象的热度

Redis 的所有对象结构头中都有⼀个 24bit 的字段，这个字段⽤来
记录对象的「热度」。

// redis 的对象头
typedef struct redisObject {
 unsigned type:4; // 对象类型如 zset/set/hash 等
等
 unsigned encoding:4; // 对象编码如
ziplist/intset/skiplist 等等
 unsigned lru:24; // 对象的「热度」
 int refcount; // 引⽤计数
 void *ptr; // 对象的 body
} robj;

LRU 模式

在 LRU 模式下，lru 字段存储的是 Redis 时钟
server.lruclock，Redis 时钟是⼀个 24bit 的整数，默认是
Unix 时间戳对 2^24 取模的结果，⼤约 97 天清零⼀次。当某个
key 被访问⼀次，它的对象头的 lru 字段值就会被更新
为server.lruclock。

默认 Redis 时钟值每毫秒更新⼀次，在定时任务serverCron⾥主
动设置。Redis 的很多定时任务都是在serverCron⾥⾯完成的，⽐
如⼤型 hash 表的渐进式迁移、过期 key 的主动淘汰、触发
bgsave、bgaofrewrite 等等。

如果server.lruclock没有折返 (对 2^24 取模)，它就是⼀直递
增的，这意味着对象的 LRU 字段不会超过server.lruclock的
值。如果超过了，说明server.lruclock折返了。通过这个逻辑就
可以精准计算出对象多⻓时间没有被访问——对象的空闲时间。

// 计算对象的空闲时间，也就是没有被访问的时间，返回结果是毫
秒
unsigned long long estimateObjectIdleTime(robj
*o) {
 unsigned long long lruclock = LRU_CLOCK(); //
获取 redis 时钟，也就是 server.lruclock 的值
 if (lruclock >= o->lru) {
 // 正常递增
 return (lruclock - o->lru) *
LRU_CLOCK_RESOLUTION; // LRU_CLOCK_RESOLUTION 默认
是 1000
 } else {
 // 折返了
 return (lruclock + (LRU_CLOCK_MAX - o-
>lru)) * // LRU_CLOCK_MAX 是 2^24-1
 LRU_CLOCK_RESOLUTION;
 }
}

有了对象的空闲时间，就可以相互之间进⾏⽐较谁新谁旧，随机
LRU 算法靠的就是⽐较对象的空闲时间来决定谁该被淘汰了。

LFU 模式

在 LFU 模式下，lru 字段 24 个 bit ⽤来存储两个值，分别
是ldt(last decrement time)和logc(logistic
counter)。

logc 是 8 个 bit，⽤来存储访问频次，因为 8 个 bit 能表示的最⼤
整数值为 255，存储频次肯定远远不够，所以这 8 个 bit 存储的是
频次的对数值，并且这个值还会随时间衰减。如果它的值⽐较⼩，那
么就很容易被回收。为了确保新创建的对象不被回收，新对象的这 8
个 bit 会初始化为⼀个⼤于零的值，默认是LFU_INIT_VAL=5。

ldt 是 16 个位，⽤来存储上⼀次 logc 的更新时间，因为只有 16
位，所以精度不可能很⾼。它取的是分钟时间戳对 2^16 进⾏取
模，⼤约每隔 45 天就会折返。同 LRU 模式⼀样，我们也可以使⽤
这个逻辑计算出对象的空闲时间，只不过精度是分钟级别的。图中的
server.unixtime 是当前 redis 记录的系统时间戳，和
server.lruclock ⼀样，它也是每毫秒更新⼀次。

// nowInMinutes
// server.unixtime 为 redis 缓存的系统时间戳
unsigned long LFUGetTimeInMinutes(void) {
 return (server.unixtime/60) & 65535;
}

// idle_in_minutes
unsigned long LFUTimeElapsed(unsigned long ldt) {
 unsigned long now = LFUGetTimeInMinutes();
 if (now >= ldt) return now-ldt; // 正常⽐较
 return 65535-ldt+now; // 折返⽐较
}

ldt 的值和 LRU 模式的 lru 字段不⼀样的是 ldt 不是在对象被访问时
更新的。它在 Redis 的淘汰逻辑进⾏时进⾏更新，淘汰逻辑只会在
内存达到 maxmemory 的设置时才会触发，在每⼀个指令的执⾏之
前都会触发。每次淘汰都是采⽤随机策略，随机挑选若⼲个 key，更

新这个 key 的「热度」，淘汰掉「热度」最低的。因为 Redis 采⽤
的是随机算法，如果 key ⽐较多的话，那么 ldt 更新的可能会⽐较
慢。不过既然它是分钟级别的精度，也没有必要更新的过于频繁。

ldt 更新的同时也会⼀同衰减 logc 的值，衰减也有特定的算法。它
将现有的 logc 值减去对象的空闲时间 (分钟数) 除以⼀个衰减系数，
默认这个衰减系数lfu_decay_time是 1。如果这个值⼤于 1，那
么就会衰减的⽐较慢。如果它等于零，那就表示不衰减，它是可以通
过配置参数lfu-decay-time进⾏配置。

// 衰减 logc
unsigned long LFUDecrAndReturn(robj *o) {
 unsigned long ldt = o->lru >> 8; // 前 16bit
 unsigned long counter = o->lru & 255; // 后
8bit 为 logc
 // num_periods 为即将衰减的数量
 unsigned long num_periods =
server.lfu_decay_time ? LFUTimeElapsed(ldt) /
server.lfu_decay_time : 0;
 if (num_periods)
 counter = (num_periods > counter) ? 0 :
counter - num_periods;
 return counter;
}

logc 的更新和 LRU 模式的 lru 字段⼀样，都会在 key 每次被访问
的时候更新，只不过它的更新不是简单的+1，⽽是采⽤概率法进⾏
递增，因为 logc 存储的是访问计数的对数值，不能直接+1。

/* Logarithmically increment a counter. The
greater is the current counter value
 * the less likely is that it gets really
implemented. Saturate it at 255. */
// 对数递增计数值
uint8_t LFULogIncr(uint8_t counter) {
 if (counter == 255) return 255; // 到最⼤值了，
不能在增加了
 double baseval = counter - LFU_INIT_VAL; // 减
去新对象初始化的基数值 (LFU_INIT_VAL 默认是 5)
 // baseval 如果⼩于零，说明这个对象快不⾏了，不过本
次 incr 将会延⻓它的寿命
 if (baseval < 0) baseval = 0;
 // 当前计数越⼤，想要 +1 就越困难
 // lfu_log_factor 为困难系数，默认是 10
 // 当 baseval 特别⼤时，最⼤是 (255-5)，p 值会⾮常
⼩，很难会⾛到 counter++ 这⼀步
 // p 就是 counter 通往 [+1] 权⼒的⻔缝，baseval
越⼤，这个⻔缝越窄，通过就越艰难
 double p =
1.0/(baseval*server.lfu_log_factor+1);
 // 开始随机看看能不能从⻔缝挤进去
 double r = (double)rand()/RAND_MAX; // 0 < r
< 1
 if (r < p) counter++;
 return counter;
}

为什么 Redis 要缓存系统时间戳？

我们平时使⽤系统时间戳时，常常是不假思索地使
⽤System.currentTimeInMillis或者time.time()来获取系
统的毫秒时间戳。Redis 不能这样，因为每⼀次获取系统时间戳都是
⼀次系统调⽤，系统调⽤相对来说是⽐较费时间的，作为单线程的
Redis 表示承受不起，所以它需要对时间进⾏缓存，获取时间都直接
从缓存中直接拿。

redis 为什么在获取 lruclock 时使⽤原⼦操
作？

我们知道 Redis 是单线程的，那为什么 lruclock 要使⽤原⼦操作
atomicGet 来获取呢？

unsigned int LRU_CLOCK(void) {
 unsigned int lruclock;
 if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {
 // 这⾥原⼦操作，通常会⾛这⾥，我们只需要注意这⾥
 atomicGet(server.lruclock,lruclock);
 } else {
 // 直接通过系统调⽤获取时间戳，hz 配置的太低 (⼀
般不会这么⼲)，lruclock 更新不及时，需要实时获取系统时间
戳
 lruclock = getLRUClock();
 }
 return lruclock;
}

因为 Redis 实际上并不是单线程，它背后还有⼏个异步线程也在默
默⼯作。这⼏个线程也要访问 Redis 时钟，所以 lruclock 字段是需
要⽀持多线程读写的。使⽤ atomic 读写能保证多线程 lruclock 数
据的⼀致性。

如何打开 LFU 模式？

Redis 4.0 给淘汰策略配置参数maxmemory-policy增加了 2 个选
项，分别是 volatile-lfu 和 allkeys-lfu，分别是对带过期时间的
key 进⾏ lfu 淘汰以及对所有的 key 执⾏ lfu 淘汰算法。打开了这
个选项之后，就可以使⽤ object freq指令获取对象的 lfu 计数值
了。

> config set maxmemory-policy allkeys-lfu
OK
> set codehole yeahyeahyeah
OK
// 获取计数值，初始化为 LFU_INIT_VAL=5
> object freq codehole
(integer) 5
// 访问⼀次
> get codehole
"yeahyeahyeah"
// 计数值增加了
> object freq codehole
(integer) 6

思考题

1. 你能尝试使⽤ py 或者 Java 写⼀个简单的 LFU 算法么？
2. 如果⼀开始使⽤ LRU 模式，突然改变配置变成了 LFU 模式，
想象⼀下 Redis 对象头的 lru 字段值，会对现有的对象产⽣什
么影响？

