
源码 10：跋⼭涉⽔ —— 深⼊字
典遍历

Redis 字典的遍历过程逻辑⽐较复杂，互联⽹上对这⼀块的分析讲解
⾮常少。我也花了不少时间对源码的细节进⾏了整理，将我个⼈对字
典遍历逻辑的理解呈现给各位读者。也许读者们对字典的遍历过程有
⽐我更好的理解，还请不吝指教。

⼀边遍历⼀边修改

我们知道 Redis 对象树的主⼲是⼀个字典，如果对象很多，这个主
⼲字典也会很⼤。当我们使⽤ keys 命令搜寻指定模式的 key 时，
它会遍历整个主⼲字典。值得注意的是，在遍历的过程中，如果满⾜
模式匹配条件的 key 被找到了，还需要判断 key 指向的对象是否已
经过期。如果过期了就需要从主⼲字典中将该 key 删除。

void keysCommand(client *c) {
 dictIterator *di; // 迭代器
 dictEntry *de; // 迭代器当前的entry
 sds pattern = c->argv[1]->ptr; // keys的匹配模
式参数
 int plen = sdslen(pattern);
 int allkeys; // 是否要获取所有key，⽤于keys *这样
的指令
 unsigned long numkeys = 0;
 void *replylen =
addDeferredMultiBulkLength(c);

 // why safe?
 di = dictGetSafeIterator(c->db->dict);
 allkeys = (pattern[0] == '*' && pattern[1] ==
'\0');
 while((de = dictNext(di)) != NULL) {
 sds key = dictGetKey(de);
 robj *keyobj;

 if (allkeys ||
stringmatchlen(pattern,plen,key,sdslen(key),0)) {
 keyobj =
createStringObject(key,sdslen(key));
 // 判断是否过期，过期了要删除元素
 if (expireIfNeeded(c->db,keyobj) ==
0) {

 addReplyBulk(c,keyobj);
 numkeys++;
 }
 decrRefCount(keyobj);
 }
 }
 dictReleaseIterator(di);

setDeferredMultiBulkLength(c,replylen,numkeys);
}

那么，你是否想到了其中的困难之处，在遍历字典的时候还需要修改
字典，会不会出现指针安全问题？

重复遍历

字典在扩容的时候要进⾏渐进式迁移，会存在新旧两个 hashtable。
遍历需要对这两个 hashtable 依次进⾏，先遍历完旧的
hashtable，再继续遍历新的 hashtable。如果在遍历的过程中进⾏
了 rehashStep，将已经遍历过的旧的 hashtable 的元素迁移到了新
的 hashtable 中，那么遍历会不会出现元素的重复？这也是遍历需
要考虑的疑难之处，下⾯我们来看看 Redis 是如何解决这个问题
的。

迭代器的结构

Redis 为字典的遍历提供了 2 种迭代器，⼀种是安全迭代器，另⼀
种是不安全迭代器。

typedef struct dictIterator {
 dict *d; // ⽬标字典对象
 long index; // 当前遍历的槽位置，初始化为-1
 int table; // ht[0] or ht[1]
 int safe; // 这个属性⾮常关键，它表示迭代器是否安全
 dictEntry *entry; // 迭代器当前指向的对象
 dictEntry *nextEntry; // 迭代器下⼀个指向的对象
 long long fingerprint; // 迭代器指纹，放置迭代过
程中字典被修改
} dictIterator;

// 获取⾮安全迭代器，只读迭代器，允许rehashStep
dictIterator *dictGetIterator(dict *d)
{
 dictIterator *iter = zmalloc(sizeof(*iter));

 iter->d = d;
 iter->table = 0;
 iter->index = -1;
 iter->safe = 0;
 iter->entry = NULL;
 iter->nextEntry = NULL;
 return iter;
}

// 获取安全迭代器，允许触发过期处理，禁⽌rehashStep
dictIterator *dictGetSafeIterator(dict *d) {
 dictIterator *i = dictGetIterator(d);

 i->safe = 1;
 return i;
}

迭代器的「安全」指的是在遍历过程中可以对字典进⾏查找和修改，
不⽤感到担⼼，因为查找和修改会触发过期判断，会删除内部元素。
「安全」的另⼀层意思是迭代过程中不会出现元素重复，为了保证不
重复，就会禁⽌ rehashStep。

⽽「不安全」的迭代器是指遍历过程中字典是只读的，你不可以修
改，你只能调⽤ dictNext 对字典进⾏持续遍历，不得调⽤任何可能
触发过期判断的函数。不过好处是不影响 rehash，代价就是遍历的
元素可能会出现重复。

安全迭代器在刚开始遍历时，会给字典打上⼀个标记，有了这个标
记，rehashStep 就不会执⾏，遍历时元素就不会出现重复。

typedef struct dict {
 dictType *type;
 void *privdata;
 dictht ht[2];
 long rehashidx;
 // 这个就是标记，它表示当前加在字典上的安全迭代器的数
量
 unsigned long iterators;
} dict;

// 如果存在安全的迭代器，就禁⽌rehash
static void _dictRehashStep(dict *d) {
 if (d->iterators == 0) dictRehash(d,1);
}

迭代过程

安全的迭代器在遍历过程中允许删除元素，意味着字典第⼀维数组下
⾯挂接的链表中的元素可能会被摘⾛，元素的 next 指针就会发⽣变
动，这是否会影响迭代过程呢？下⾯我们仔细研究⼀下迭代函数的代

码逻辑。

dictEntry *dictNext(dictIterator *iter)
{
 while (1) {
 if (iter->entry == NULL) {
 // 遍历⼀个新槽位下⾯的链表，数组的index往
前移动了
 dictht *ht = &iter->d->ht[iter-
>table];
 if (iter->index == -1 && iter->table
== 0) {
 // 第⼀次遍历，刚刚进⼊遍历过程
 // 也就是ht[0]数组的第⼀个元素下⾯的链
表
 if (iter->safe) {
 // 给字典打安全标记，禁⽌字典进⾏
rehash
 iter->d->iterators++;
 } else {
 // 记录迭代器指纹，就好⽐字典的md5值
 // 如果遍历过程中字典有任何变动，指纹
就会改变
 iter->fingerprint =
dictFingerprint(iter->d);
 }
 }
 iter->index++; // index=0，正式进⼊第⼀
个槽位
 if (iter->index >= (long) ht->size) {
 // 最后⼀个槽位都遍历完了
 if (dictIsRehashing(iter->d) &&
iter->table == 0) {

 // 如果处于rehash中，那就继续遍历
第⼆个 hashtable
 iter->table++;
 iter->index = 0;
 ht = &iter->d->ht[1];
 } else {
 // 结束遍历
 break;
 }
 }
 // 将当前遍历的元素记录到迭代器中
 iter->entry = ht->table[iter->index];
 } else {
 // 直接将下⼀个元素记录为本次迭代的元素
 iter->entry = iter->nextEntry;
 }
 if (iter->entry) {
 // 将下⼀个元素也记录到迭代器中，这点⾮常关
键
 // 防⽌安全迭代过程中当前元素被过期删除后，
找不到下⼀个需要遍历的元素

 // 试想如果后⾯发⽣了rehash，当前遍历的链表
被打散了，会发⽣什么
 // 这⾥要使劲发挥⾃⼰的想象⼒来理解
 // 旧的链表将⼀分为⼆，打散后重新挂接到新数
组的两个槽位下
 // 结果就是会导致当前链表上的元素会重复遍历

 // 如果rehash的链表是index前⾯的链表，那么
这部分链表也会被重复遍历
 iter->nextEntry = iter->entry->next;
 return iter->entry;

 }
 }
 return NULL;
}

// 遍历完成后要释放迭代器，安全迭代器需要去掉字典的禁⽌
rehash的标记
// ⾮安全迭代器还需要检查指纹，如果有变动，服务器就会奔溃
(failfast)
void dictReleaseIterator(dictIterator *iter)
{
 if (!(iter->index == -1 && iter->table == 0))
{
 if (iter->safe)
 iter->d->iterators--; // 去掉禁⽌rehash
的标记
 else
 assert(iter->fingerprint ==
dictFingerprint(iter->d));
 }
 zfree(iter);
}

// 计算字典的指纹，就是将字典的关键字段进⾏按位糅合到⼀起
// 这样只要有任意的结构变动，指纹都会发⽣变化
// 如果只是某个元素的value被修改了，指纹不会发⽣变动
long long dictFingerprint(dict *d) {
 long long integers[6], hash = 0;
 int j;

 integers[0] = (long) d->ht[0].table;
 integers[1] = d->ht[0].size;
 integers[2] = d->ht[0].used;

 integers[3] = (long) d->ht[1].table;
 integers[4] = d->ht[1].size;
 integers[5] = d->ht[1].used;

 for (j = 0; j < 6; j++) {
 hash += integers[j];
 hash = (~hash) + (hash << 21);
 hash = hash ^ (hash >> 24);
 hash = (hash + (hash << 3)) + (hash <<
8);
 hash = hash ^ (hash >> 14);
 hash = (hash + (hash << 2)) + (hash <<
4);
 hash = hash ^ (hash >> 28);
 hash = hash + (hash << 31);
 }
 return hash;
}

值得注意的是在字典扩容时进⾏ rehash，将旧数组中的链表迁移到
新的数组中。某个具体槽位下的链表只可能会迁移到新数组的两个槽
位中。

hash mod 2^n = k
hash mod 2^(n+1) = k or k+2^n

迭代器的选择

除了 keys 指令使⽤了安全迭代器，因为结果不允许重复。那还有其
它的地⽅使⽤了安全迭代器么，什么情况下遍历适合使⽤⾮安全迭代
器呢？

简单⼀点说，那就是如果遍历过程中不允许出现重复，那就使⽤
SafeIterator，⽐如下⾯的两种情况

1. bgaofrewrite 需要遍历所有对象转换称操作指令进⾏持久
化，绝对不允许出现重复

2. bgsave 也需要遍历所有对象来持久化，同样不允许出现重复

如果遍历过程中需要处理元素过期，需要对字典进⾏修改，那也必须
使⽤ SafeIterator，因为⾮安全的迭代器是只读的。

其它情况下，也就是允许遍历过程中出现个别元素重复，不需要对字
典进⾏结构性修改的情况下⼀律使⽤⾮安全迭代器。

思考

请继续思考 rehash 对⾮安全遍历过程的影响，会重复哪些元素，
重复的元素会⾮常多么还是只是少量重复？

