
源码 11：⻅缝插针 —— 探索
HyperLogLog 内部
HyperLogLog算法是⼀种⾮常巧妙的近似统计海量去重元素数量的
算法。它内部维护了 16384 个桶（bucket）来记录各⾃桶的元素
数量。当⼀个元素到来时，它会散列到其中⼀个桶，以⼀定的概率影
响这个桶的计数值。因为是概率算法，所以单个桶的计数值并不准
确，但是将所有的桶计数值进⾏调合均值累加起来，结果就会⾮常接
近真实的计数值。

为了便于理解HyperLogLog算法，我们先简化它的计数逻辑。因为
是去重计数，如果是准确的去重，肯定需要⽤到 set 集合，使⽤集
合来记录所有的元素，然后使⽤ scard 指令来获取集合⼤⼩就可以
得到总的计数。因为元素特别多，单个集合会特别⼤，所以将集合打
散成 16384 个⼩集合。当元素到来时，通过 hash 算法将这个元素
分派到其中的⼀个⼩集合存储，同样的元素总是会散列到同样的⼩集
合。这样总的计数就是所有⼩集合⼤⼩的总和。使⽤这种⽅式精确计
数除了可以增加元素外，还可以减少元素。

⽤ Python 代码描述如下

coding:utf-8
import hashlib

class ExactlyCounter:

 def __init__(self):
 # 先分配16384个空集合
 self.buckets = []
 for i in range(16384):
 self.buckets.append(set([]))
 # 使⽤md5哈希算法
 self.hash = lambda x:
int(hashlib.md5(x).hexdigest(), 16)
 self.count = 0

 def add(self, element):
 h = self.hash(element)
 idx = h % len(self.buckets)
 bucket = self.buckets[idx]
 old_len = len(bucket)
 bucket.add(element)
 if len(bucket) > old_len:
 # 如果数量变化了，总数就+1
 self.count += 1

 def remove(self, element):
 h = self.hash(element)
 idx = h % len(self.buckets)
 bucket = self.buckets[idx]
 old_len = len(bucket)
 bucket.remove(element)
 if len(bucket) < old_len:
 # 如果数量变化了，总数-1

 self.count -= 1

if __name__ == '__main__':
 c = ExactlyCounter()
 for i in range(100000):
 c.add("element_%d" % i)
 print c.count
 for i in range(100000):
 c.remove("element_%d" % i)
 print c.count

集合打散并没有什么明显好处，因为总的内存占⽤并没有减少。
HyperLogLog肯定不是这个算法，它需要对这个⼩集合进⾏优化，
压缩它的存储空间，让它的内存变得⾮常微⼩。HyperLogLog算法
中每个桶所占⽤的空间实际上只有 6 个 bit，这 6 个 bit ⾃然是⽆法
容纳桶中所有元素的，它记录的是桶中元素数量的对数值。

为了说明这个对数值具体是个什么东⻄，我们先来考虑⼀个⼩问题。
⼀个随机的整数值，这个整数的尾部有⼀个 0 的概率是 50%，要么
是 0 要么是 1。同样，尾部有两个 0 的概率是 25%，有三个零的概
率是 12.5%，以此类推，有 k 个 0 的概率是 2^(-k)。如果我们随
机出了很多整数，整数的数量我们并不知道，但是我们记录了整数尾
部连续 0 的最⼤数量 K。我们就可以通过这个 K 来近似推断出整数
的数量，这个数量就是 2^K。

当然结果是⾮常不准确的，因为可能接下来你随机了⾮常多的整数，
但是末尾连续零的最⼤数量 K 没有变化，但是估计值还是 2^K。你
也许会想到要是这个 K 是个浮点数就好了，每次随机⼀个新元素，
它都可以稍微往上涨⼀点点，那么估计值应该会准确很多。

HyperLogLog通过分配 16384 个桶，然后对所有的桶的最⼤数量
K 进⾏调合平均来得到⼀个平均的末尾零最⼤数量 K# ，K# 是⼀个
浮点数，使⽤平均后的 2^K# 来估计元素的总量相对⽽⾔就会准确

很多。不过这只是简化算法，真实的算法还有很多修正因⼦，因为涉
及到的数学理论知识过于繁多，这⾥就不再精确描述。

下⾯我们看看Redis HyperLogLog 算法的具体实现。我们知道⼀个
HyperLogLog实际占⽤的空间⼤约是 13684 * 6bit / 8 = 12k 字
节。但是在计数⽐较⼩的时候，⼤多数桶的计数值都是零。如果
12k 字节⾥⾯太多的字节都是零，那么这个空间是可以适当节约⼀
下的。Redis 在计数值⽐较⼩的情况下采⽤了稀疏存储，稀疏存储的
空间占⽤远远⼩于 12k 字节。相对于稀疏存储的就是密集存储，密
集存储会恒定占⽤ 12k 字节。

密集存储结构

不论是稀疏存储还是密集存储，Redis 内部都是使⽤字符串位图来存
储 HyperLogLog 所有桶的计数值。密集存储的结构⾮常简单，就是
连续 16384 个 6bit 串成的字符串位图。

那么给定⼀个桶编号，如何获取它的 6bit 计数值呢？这 6bit 可能
在⼀个字节内部，也可能会跨越字节边界。我们需要对这⼀个或者两
个字节进⾏适当的移位拼接才可以得到计数值。

假设桶的编号为idx，这个 6bit 计数值的起始字节位置偏移⽤
offset_bytes表示，它在这个字节的起始⽐特位置偏移⽤
offset_bits 表示。我们有

offset_bytes = (idx * 6) / 8
offset_bits = (idx * 6) % 8

前者是商，后者是余数。⽐如 bucket 2 的字节偏移是 1，也就是第
2 个字节。它的位偏移是4，也就是第 2 个字节的第 5 个位开始是
bucket 2 的计数值。需要注意的是字节位序是左边低位右边⾼位，
⽽通常我们使⽤的字节都是左边⾼位右边低位，我们需要在脑海中进
⾏倒置。

如果 offset_bits ⼩于等于 2，那么这 6bit 在⼀个字节内部，可以
直接使⽤下⾯的表达式得到计数值 val

val = buffer[offset_bytes] >> offset_bits # 向右
移位

如果 offset_bits ⼤于 2，那么就会跨越字节边界，这时需要拼接两
个字节的位⽚段。

低位值
low_val = buffer[offset_bytes] >> offset_bits
低位个数
low_bits = 8 - offset_bits
拼接，保留低6位
val = (high_val << low_bits | low_val) & 0b111111

不过下⾯ Redis 的源码要晦涩⼀点，看形式它似乎只考虑了跨越字
节边界的情况。这是因为如果 6bit 在单个字节内，上⾯代码中的
high_val 的值是零，所以这⼀份代码可以同时照顾单字节和双字
节。

// 获取指定桶的计数值
#define HLL_DENSE_GET_REGISTER(target,p,regnum)
do { \
 uint8_t *_p = (uint8_t*) p; \
 unsigned long _byte = regnum*HLL_BITS/8; \
 unsigned long _fb = regnum*HLL_BITS&7; \ #
%8 = &7
 unsigned long _fb8 = 8 - _fb; \
 unsigned long b0 = _p[_byte]; \
 unsigned long b1 = _p[_byte+1]; \
 target = ((b0 >> _fb) | (b1 << _fb8)) &
HLL_REGISTER_MAX; \
} while(0)

// 设置指定桶的计数值
#define HLL_DENSE_SET_REGISTER(p,regnum,val) do {
\
 uint8_t *_p = (uint8_t*) p; \
 unsigned long _byte = regnum*HLL_BITS/8; \
 unsigned long _fb = regnum*HLL_BITS&7; \
 unsigned long _fb8 = 8 - _fb; \
 unsigned long _v = val; \
 _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
 _p[_byte] |= _v << _fb; \
 _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
 _p[_byte+1] |= _v >> _fb8; \
} while(0)

稀疏存储结构

稀疏存储适⽤于很多计数值都是零的情况。下图表示了⼀般稀疏存储
计数值的状态。

当多个连续桶的计数值都是零时，Redis 使⽤了⼀个字节来表示接下
来有多少个桶的计数值都是零：00xxxxxx。前缀两个零表示接下来
的 6bit 整数值加 1 就是零值计数器的数量，注意这⾥要加 1 是因
为数量如果为零是没有意义的。⽐如 00010101表示连续 22 个零
值计数器。6bit 最多只能表示连续 64 个零值计数器，所以 Redis
⼜设计了连续多个多于 64 个的连续零值计数器，它使⽤两个字节来
表示：01xxxxxx yyyyyyyy，后⾯的 14bit 可以表示最多连续
16384 个零值计数器。这意味着 HyperLogLog 数据结构中 16384
个桶的初始状态，所有的计数器都是零值，可以直接使⽤ 2 个字节
来表示。

如果连续⼏个桶的计数值⾮零，那就使⽤形如 1vvvvvxx 这样的⼀
个字节来表示。中间 5bit 表示计数值，尾部 2bit 表示连续⼏个
桶。它的意思是连续 （xx +1） 个计数值都是 （vvvvv + 1）。⽐
如 10101011 表示连续 4 个计数值都是 11。注意这两个值都需要
加 1，因为任意⼀个是零都意味着这个计数值为零，那就应该使⽤零
计数值的形式来表示。注意计数值最⼤只能表示到32，⽽
HyperLogLog 的密集存储单个计数值⽤ 6bit 表示，最⼤可以表示
到 63。当稀疏存储的某个计数值需要调整到⼤于 32 时，Redis 就
会⽴即转换 HyperLogLog 的存储结构，将稀疏存储转换成密集存
储。

Redis 为了⽅便表达稀疏存储，它将上⾯三种字节表示形式分别赋予
了⼀条指令。

1. ZERO:len 单个字节表示 00[len-1]，连续最多64个零计数值
2. VAL:value,len 单个字节表示 1[value-1][len-1]，连续 len
个值为 value 的计数值

3. XZERO:len 双字节表示 01[len-1]，连续最多16384个零计数
值

#define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
#define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
#define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) ==
0) /* 00xxxxxx */
#define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0)
== HLL_SPARSE_XZERO_BIT)
#define HLL_SPARSE_IS_VAL(p) ((*(p)) &
HLL_SPARSE_VAL_BIT)
#define HLL_SPARSE_ZERO_LEN(p) (((*(p)) &
0x3f)+1)
#define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) &
0x3f) << 8) | (*((p)+1)))+1)
#define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) &
0x1f)+1)
#define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
#define HLL_SPARSE_VAL_MAX_VALUE 32
#define HLL_SPARSE_VAL_MAX_LEN 4
#define HLL_SPARSE_ZERO_MAX_LEN 64
#define HLL_SPARSE_XZERO_MAX_LEN 16384

上图可以使⽤指令形式表示如下

存储转换

当计数值达到⼀定程度后，稀疏存储将会不可逆⼀次性转换为密集存
储。转换的条件有两个，任意⼀个满⾜就会⽴即发⽣转换

1. 任意⼀个计数值从 32 变成 33，因为VAL指令已经⽆法容纳，
它能表示的计数值最⼤为 32

2. 稀疏存储占⽤的总字节数超过 3000 字节，这个阈值可以通过
hll_sparse_max_bytes 参数进⾏调整。

计数缓存

前⾯提到 HyperLogLog 表示的总计数值是由 16384 个桶的计数值
进⾏调和平均后再基于因⼦修正公式计算得出来的。它需要遍历所有
的桶进⾏计算才可以得到这个值，中间还涉及到很多浮点运算。这个
计算量相对来说还是⽐较⼤的。

所以 Redis 使⽤了⼀个额外的字段来缓存总计数值，这个字段有
64bit，最⾼位如果为 1 表示该值是否已经过期，如果为 0， 那么
剩下的 63bit 就是计数值。

当 HyperLogLog 中任意⼀个桶的计数值发⽣变化时，就会将计数缓
存设为过期，但是不会⽴即触发计算。⽽是要等到⽤户显示调⽤
pfcount 指令时才会触发重新计算刷新缓存。缓存刷新在密集存储时
需要遍历 16384 个桶的计数值进⾏调和平均，但是稀疏存储时没有
这么⼤的计算量。也就是说只有当计数值⽐较⼤时才可能产⽣较⼤的
计算量。另⼀⽅⾯如果计数值⽐较⼤，那么⼤部分 pfadd 操作根本
不会导致桶中的计数值发⽣变化。

这意味着在⼀个极具变化的 HLL 计数器中频繁调⽤ pfcount 指令可
能会有少许性能问题。关于这个性能⽅⾯的担忧在 Redis 作者
antirez 的博客中也提到了。不过作者做了仔细的压⼒的测试，发现
这是⽆需担⼼的，pfcount 指令的平均时间复杂度就是 O(1)。

After this change even trying to add elements at
maximum speed using a pipeline of 32 elements
with 50 simultaneous clients, PFCOUNT was able
to perform as well as any other O(1) command
with very small constant times.

对象头

HyperLogLog 除了需要存储 16384 个桶的计数值之外，它还有⼀
些附加的字段需要存储，⽐如总计数缓存、存储类型。所以它使⽤了
⼀个额外的对象头来表示。

struct hllhdr {
 char magic[4]; /* 魔术字符串"HYLL" */
 uint8_t encoding; /* 存储类型 HLL_DENSE or
HLL_SPARSE. */
 uint8_t notused[3]; /* 保留三个字节未来可能会使⽤
*/
 uint8_t card[8]; /* 总计数缓存 */
 uint8_t registers[]; /* 所有桶的计数器 */
};

所以 HyperLogLog 整体的内部结构就是 HLL 对象头 加上 16384
个桶的计数值位图。它在 Redis 的内部结构表现就是⼀个字符串位
图。你可以把 HyperLogLog 对象当成普通的字符串来进⾏处理。

127.0.0.1:6379> pfadd codehole python java golang
(integer) 1
127.0.0.1:6379> get codehole
"HYLL\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x80C\x03\x84MK\x80P\xb8\x80^\xf3"

但是不可以使⽤ HyperLogLog 指令来操纵普通的字符串，因为它需
要检查对象头魔术字符串是否是 "HYLL"。

127.0.0.1:6379> set codehole python
OK
127.0.0.1:6379> pfadd codehole java golang
(error) WRONGTYPE Key is not a valid HyperLogLog
string value.

但是如果字符串以 "HYLL\x00" 或者 "HYLL\x01" 开头，那么就可
以使⽤ HyperLogLog 的指令。

127.0.0.1:6379> set codehole
"HYLL\x01whatmagicthing"
OK
127.0.0.1:6379> get codehole
"HYLL\x01whatmagicthing"
127.0.0.1:6379> pfadd codehole python java golang
(integer) 1

也许你会感觉⾮常奇怪，这是因为 HyperLogLog 在执⾏指令前需要
对内容进⾏格式检查，这个检查就是查看对象头的 magic 魔术字符
串是否是 "HYLL" 以及 encoding 字段是否是 HLL_SPARSE=0 或者
HLL_DENSE=1 来判断当前的字符串是否是 HyperLogLog 计数
器。如果是密集存储，还需要判断字符串的⻓度是否恰好等于密集计
数器存储的⻓度。

int isHLLObjectOrReply(client *c, robj *o) {
 ...
 /* Magic should be "HYLL". */
 if (hdr->magic[0] != 'H' || hdr->magic[1] !=
'Y' ||
 hdr->magic[2] != 'L' || hdr->magic[3] !=
'L') goto invalid;

 if (hdr->encoding > HLL_MAX_ENCODING) goto
invalid;

 if (hdr->encoding == HLL_DENSE &&
 stringObjectLen(o) != HLL_DENSE_SIZE)
goto invalid;

 return C_OK;

invalid:
 addReplySds(c,
 sdsnew("-WRONGTYPE Key is not a valid "
 "HyperLogLog string value.\r\n"));
 return C_ERR;
}

HyperLogLog 和 字符串的关系就好⽐ Geo 和 zset 的关系。你也
可以使⽤任意 zset 的指令来访问 Geo 数据结构，因为 Geo 内部存
储就是使⽤了⼀个纯粹的 zset来记录元素的地理位置。

