
应⽤ 4：四两拨千⽄ ——
HyperLogLog
在开始这⼀节之前，我们先思考⼀个常⻅的业务问题：如果你负责开
发维护⼀个⼤型的⽹站，有⼀天⽼板找产品经理要⽹站每个⽹⻚每天
的 UV 数据，然后让你来开发这个统计模块，你会如何实现？

如果统计 PV 那⾮常好办，给每个⽹⻚⼀个独⽴的 Redis 计数器就
可以了，这个计数器的 key 后缀加上当天的⽇期。这样来⼀个请
求，incrby ⼀次，最终就可以统计出所有的 PV 数据。

但是 UV 不⼀样，它要去重，同⼀个⽤户⼀天之内的多次访问请求只
能计数⼀次。这就要求每⼀个⽹⻚请求都需要带上⽤户的 ID，⽆论
是登陆⽤户还是未登陆⽤户都需要⼀个唯⼀ ID 来标识。

你也许已经想到了⼀个简单的⽅案，那就是为每⼀个⻚⾯⼀个独⽴的
set 集合来存储所有当天访问过此⻚⾯的⽤户 ID。当⼀个请求过来
时，我们使⽤ sadd 将⽤户 ID 塞进去就可以了。通过 scard 可以取
出这个集合的⼤⼩，这个数字就是这个⻚⾯的 UV 数据。没错，这是
⼀个⾮常简单的⽅案。

但是，如果你的⻚⾯访问量⾮常⼤，⽐如⼀个爆款⻚⾯⼏千万的
UV，你需要⼀个很⼤的 set 集合来统计，这就⾮常浪费空间。如果
这样的⻚⾯很多，那所需要的存储空间是惊⼈的。为这样⼀个去重功



能就耗费这样多的存储空间，值得么？其实⽼板需要的数据⼜不需要
太精确，105w 和 106w 这两个数字对于⽼板们来说并没有多⼤区
别，So，有没有更好的解决⽅案呢？

这就是本节要引⼊的⼀个解决⽅案，Redis 提供了 HyperLogLog 数
据结构就是⽤来解决这种统计问题的。HyperLogLog 提供不精确的
去重计数⽅案，虽然不精确但是也不是⾮常不精确，标准误差是
0.81%，这样的精确度已经可以满⾜上⾯的 UV 统计需求了。

HyperLogLog 数据结构是 Redis 的⾼级数据结构，它⾮常有⽤，但
是令⼈感到意外的是，使⽤过它的⼈⾮常少。

使⽤⽅法

HyperLogLog 提供了两个指令 pfadd 和 pfcount，根据字⾯意义
很好理解，⼀个是增加计数，⼀个是获取计数。pfadd ⽤法和 set
集合的 sadd 是⼀样的，来⼀个⽤户 ID，就将⽤户 ID 塞进去就是。
pfcount 和 scard ⽤法是⼀样的，直接获取计数值。



127.0.0.1:6379> pfadd codehole user1
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 1
127.0.0.1:6379> pfadd codehole user2
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 2
127.0.0.1:6379> pfadd codehole user3
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 3
127.0.0.1:6379> pfadd codehole user4
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 4
127.0.0.1:6379> pfadd codehole user5
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 5
127.0.0.1:6379> pfadd codehole user6
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 6
127.0.0.1:6379> pfadd codehole user7 user8 user9 
user10
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 10

简单试了⼀下，发现还蛮精确的，⼀个没多也⼀个没少。接下来我们
使⽤脚本，往⾥⾯灌更多的数据，看看它是否还可以继续精确下去，
如果不能精确，差距有多⼤。⼈⽣苦短，我⽤ Python！Python 脚



本⾛起来！�

# coding: utf-8

import redis

client = redis.StrictRedis()
for i in range(1000):
    client.pfadd("codehole", "user%d" % i)
    total = client.pfcount("codehole")
    if total != i+1:
        print total, i+1
        break

当然 Java 也不错，⼤同⼩异，下⾯是 Java 版本：

public class PfTest {
  public static void main(String[] args) {
    Jedis jedis = new Jedis();
    for (int i = 0; i < 1000; i++) {
      jedis.pfadd("codehole", "user" + i);
      long total = jedis.pfcount("codehole");
      if (total != i + 1) {
        System.out.printf("%d %d\n", total, i + 
1);
        break;
      }
    }
    jedis.close();
  }
}

我们来看下输出：



> python pftest.py
99 100

当我们加⼊第 100 个元素时，结果开始出现了不⼀致。接下来我们
将数据增加到 10w 个，看看总量差距有多⼤。

# coding: utf-8

import redis

client = redis.StrictRedis()
for i in range(100000):
    client.pfadd("codehole", "user%d" % i)
print 100000, client.pfcount("codehole")

Java 版：

public class JedisTest {
  public static void main(String[] args) {
    Jedis jedis = new Jedis();
    for (int i = 0; i < 100000; i++) {
      jedis.pfadd("codehole", "user" + i);
    }
    long total = jedis.pfcount("codehole");
    System.out.printf("%d %d\n", 100000, total);
    jedis.close();
  }
}

跑了约半分钟，我们看输出：

> python pftest.py
100000 99723



差了 277 个，按百分⽐是 0.277%，对于上⾯的 UV 统计需求来
说，误差率也不算⾼。然后我们把上⾯的脚本再跑⼀边，也就相当于
将数据重复加⼊⼀边，查看输出，可以发现，pfcount 的结果没有任
何改变，还是 99723，说明它确实具备去重功能。

pfadd 这个 pf 是什么意思？

它是 HyperLogLog 这个数据结构的发明⼈ Philippe Flajolet 的⾸
字⺟缩写，⽼师觉得他发型很酷，看起来是个佛系教授。

pfmerge 适合什么场合⽤？

HyperLogLog 除了上⾯的 pfadd 和 pfcount 之外，还提供了第三
个指令 pfmerge，⽤于将多个 pf 计数值累加在⼀起形成⼀个新的
pf 值。

⽐如在⽹站中我们有两个内容差不多的⻚⾯，运营说需要这两个⻚⾯
的数据进⾏合并。其中⻚⾯的 UV 访问量也需要合并，那这个时候
pfmerge 就可以派上⽤场了。



注意事项

HyperLogLog 这个数据结构不是免费的，不是说使⽤这个数据结构
要花钱，它需要占据⼀定 12k 的存储空间，所以它不适合统计单个
⽤户相关的数据。如果你的⽤户上亿，可以算算，这个空间成本是⾮
常惊⼈的。但是相⽐ set 存储⽅案，HyperLogLog 所使⽤的空间那
真是可以使⽤千⽄对⽐四两来形容了。

不过你也不必过于担⼼，因为 Redis 对 HyperLogLog 的存储进⾏
了优化，在计数⽐较⼩时，它的存储空间采⽤稀疏矩阵存储，空间占
⽤很⼩，仅仅在计数慢慢变⼤，稀疏矩阵占⽤空间渐渐超过了阈值时
才会⼀次性转变成稠密矩阵，才会占⽤ 12k 的空间。

HyperLogLog 实现原理

HyperLogLog 的使⽤⾮常简单，但是实现原理⽐较复杂，如果读者
没有特别的兴趣，下⾯的内容暂时可以跳过不看。

为了⽅便理解 HyperLogLog 的内部实现原理，我画了下⾯这张图



这张图的意思是，给定⼀系列的随机整数，我们记录下低位连续零位
的最⼤⻓度 k，通过这个 k 值可以估算出随机数的数量。
⾸先不问为什么，我们编写代码做⼀个实验，观察⼀下随机整数的数
量和 k 值的关系。

import math
import random

# 算低位零的个数
def low_zeros(value):
    for i in xrange(1, 32):
        if value >> i << i != value:
            break
    return i - 1

# 通过随机数记录最⼤的低位零的个数
class BitKeeper(object):



    def __init__(self):
        self.maxbits = 0

    def random(self):
        value = random.randint(0, 2**32-1)
        bits = low_zeros(value)
        if bits > self.maxbits:
            self.maxbits = bits

class Experiment(object):

    def __init__(self, n):
        self.n = n
        self.keeper = BitKeeper()

    def do(self):
        for i in range(self.n):
            self.keeper.random()

    def debug(self):
        print self.n, '%.2f' % math.log(self.n, 
2), self.keeper.maxbits

for i in range(1000, 100000, 100):
    exp = Experiment(i)
    exp.do()
    exp.debug()

Java 版：



public class PfTest {

  static class BitKeeper {
    private int maxbits;

    public void random() {
      long value = 
ThreadLocalRandom.current().nextLong(2L << 32);
      int bits = lowZeros(value);
      if (bits > this.maxbits) {
        this.maxbits = bits;
      }
    }

    private int lowZeros(long value) {
      int i = 1;
      for (; i < 32; i++) {
        if (value >> i << i != value) {
          break;
        }
      }
      return i - 1;
    }
  }

  static class Experiment {
    private int n;
    private BitKeeper keeper;

    public Experiment(int n) {
      this.n = n;
      this.keeper = new BitKeeper();
    }



    public void work() {
      for (int i = 0; i < n; i++) {
        this.keeper.random();
      }
    }

    public void debug() {
      System.out.printf("%d %.2f %d\n", this.n, 
Math.log(this.n) / Math.log(2), 
this.keeper.maxbits);
    }
  }

  public static void main(String[] args) {
    for (int i = 1000; i < 100000; i += 100) {
      Experiment exp = new Experiment(i);
      exp.work();
      exp.debug();
    }
  }

}

运⾏观察输出：



36400 15.15 13
36500 15.16 16
36600 15.16 13
36700 15.16 14
36800 15.17 15
36900 15.17 18
37000 15.18 16
37100 15.18 15
37200 15.18 13
37300 15.19 14
37400 15.19 16
37500 15.19 14
37600 15.20 15

通过这实验可以发现 K 和 N 的对数之间存在显著的线性相关性：

N=2^K  # 约等于

如果 N 介于 2^K 和 2^(K+1) 之间，⽤这种⽅式估计的值都等于
2^K，这明显是不合理的。这⾥可以采⽤多个 BitKeeper，然后进⾏
加权估计，就可以得到⼀个⽐较准确的值。

import math
import random

def low_zeros(value):
    for i in xrange(1, 32):
        if value >> i << i != value:
            break
    return i - 1

class BitKeeper(object):



    def __init__(self):
        self.maxbits = 0

    def random(self, m):
        bits = low_zeros(m)
        if bits > self.maxbits:
            self.maxbits = bits

class Experiment(object):

    def __init__(self, n, k=1024):
        self.n = n
        self.k = k
        self.keepers = [BitKeeper() for i in 
range(k)]

    def do(self):
        for i in range(self.n):
            m = random.randint(0, 1<<32-1)
            # 确保同⼀个整数被分配到同⼀个桶⾥⾯，摘取⾼
位后取模
            keeper = self.keepers[((m & 
0xfff0000) >> 16) % len(self.keepers)]
            keeper.random(m)

    def estimate(self):
        sumbits_inverse = 0  # 零位数倒数
        for keeper in self.keepers:
            sumbits_inverse += 
1.0/float(keeper.maxbits)
        avgbits = float(self.k)/sumbits_inverse  



# 平均零位数
        return 2**avgbits * self.k  # 根据桶的数量对
估计值进⾏放⼤

for i in range(100000, 1000000, 100000):
    exp = Experiment(i)
    exp.do()
    est = exp.estimate()
    print i, '%.2f' % est, '%.2f' % (abs(est-i) / 
i)

下⾯是 Java 版：

public class PfTest {

  static class BitKeeper {
    private int maxbits;

    public void random(long value) {
      int bits = lowZeros(value);
      if (bits > this.maxbits) {
        this.maxbits = bits;
      }
    }

    private int lowZeros(long value) {
      int i = 1;
      for (; i < 32; i++) {
        if (value >> i << i != value) {
          break;
        }
      }



      return i - 1;
    }
  }

  static class Experiment {
    private int n;
    private int k;
    private BitKeeper[] keepers;

    public Experiment(int n) {
      this(n, 1024);
    }

    public Experiment(int n, int k) {
      this.n = n;
      this.k = k;
      this.keepers = new BitKeeper[k];
      for (int i = 0; i < k; i++) {
        this.keepers[i] = new BitKeeper();
      }
    }

    public void work() {
      for (int i = 0; i < this.n; i++) {
        long m = 
ThreadLocalRandom.current().nextLong(1L << 32);
        BitKeeper keeper = keepers[(int) (((m & 
0xfff0000) >> 16) % keepers.length)];
        keeper.random(m);
      }
    }

    public double estimate() {



      double sumbitsInverse = 0.0;
      for (BitKeeper keeper : keepers) {
        sumbitsInverse += 1.0 / (float) 
keeper.maxbits;
      }
      double avgBits = (float) keepers.length / 
sumbitsInverse;
      return Math.pow(2, avgBits) * this.k;
    }
  }

  public static void main(String[] args) {
    for (int i = 100000; i < 1000000; i += 
100000) {
      Experiment exp = new Experiment(i);
      exp.work();
      double est = exp.estimate();
      System.out.printf("%d %.2f %.2f\n", i, est, 
Math.abs(est - i) / i);
    }
  }

}

代码中分了 1024 个桶，计算平均数使⽤了调和平均 (倒数的平
均)。普通的平均法可能因为个别离群值对平均结果产⽣较⼤的影
响，调和平均可以有效平滑离群值的影响。



观察脚本的输出，误差率控制在百分⽐个位数：

100000 97287.38 0.03
200000 189369.02 0.05
300000 287770.04 0.04
400000 401233.52 0.00
500000 491704.97 0.02
600000 604233.92 0.01
700000 721127.67 0.03
800000 832308.12 0.04
900000 870954.86 0.03
1000000 1075497.64 0.08

真实的 HyperLogLog 要⽐上⾯的示例代码更加复杂⼀些，也更加精
确⼀些。上⾯的这个算法在随机次数很少的情况下会出现除零错误，
因为 maxbits=0 是不可以求倒数的。

pf 的内存占⽤为什么是 12k？

我们在上⾯的算法中使⽤了 1024 个桶进⾏独⽴计数，不过在
Redis 的 HyperLogLog 实现中⽤到的是 16384 个桶，也就是
2^14，每个桶的 maxbits 需要 6 个 bits 来存储，最⼤可以表示
maxbits=63，于是总共占⽤内存就是2^14 * 6 / 8 = 12k字
节。



思考 & 作业

尝试将⼀堆数据进⾏分组，分别进⾏计数，再使⽤ pfmerge 合并到
⼀起，观察 pfcount 计数值，与不分组的情况下的统计结果进⾏⽐
较，观察有没有差异。

扩展阅读

HyperLogLog 复杂的公式推导请阅读 Count-Distinct
Problem
(https://www.slideshare.net/KaiZhang130/countdistinct-
problem-88329470)，如果你的概率论基础不好，那就建议
不要看了（另，这个 PPT 需要翻墙观看）。

https://www.slideshare.net/KaiZhang130/countdistinct-problem-88329470

