MA 5: BEREIE — mETIE
i

F—FENFESTEA HyperLoglog #UEEMSFHITHEN, BIERE
BMNMME, TUBRAEZBHEASHNAITEK,

EBRURBNEMNEE—MEETEEXLE HyperLoglog 2 H
T, EMEENNT, EREMT pfadd F pfcount 5iE, ZEIR
{# pfcontains X AGE,

HMERZR, WABNEERMBEZEFIREMEN, ExAB(r
EHEMIANS, EBXMENEXRE, AFPEELEINA
B, [BERT, FEEFREFERFUQLIHIAEEN?

MBRIRSECR T AP BINMERHLICE, SEGFERGHEEN
BN ZMETHPIBRICRERTHE, TREFREELZFERIC
X, HAEZIRAFERK, BTHFEIRFEXRSNELT, X
MAI, HEARASNAELFEIERE IR EA?

SEfR L, MRHELIEREFMEERARDIEEE, ZEMEEINEHITE
EEHAT exists B, SRAARERSH, HEERREILEE
718,

{RAlREXM8E T &7, ERALZHHRICREMEFLER, BFR
BEAEFRZEN? MEXTEFHEZEEMEN BEMEEKR, RIEF
F—1TH, MEEESE/LFEA? BERAEFNE, EEXIEALE, X

ZENIN?

XS, frfZidiE4s (Bloom Filter) N=E17 T, EMaEL! JHXE
REXMAEE)EN, EEEREENEN, E£ZELLEETE 90%
ME, REHMEIRLRTEH, BMEF —EMRAIME,

LRI ET4?

iE LSRR v AR A — P RN E AR set 513, HIRMEREDN
contains FiAEFIMIE NN RESHFEN, ErgESRH. BEEME
TSRt ARIFAAEH, RESHRENSE, ENBREY MR
HEVEX B IS5, RSB/IVININIRAIEEER,

SfmETESRETNMEFEN, ITMEAUENFE SERMMFE
i, BMBEENFE. TR, S ERMARMFRE, 8EMAIA
R HERAIME, PIEERANSIIE, AIEAIREIRIREIA

IR ARER LRI (REARNREAES), FRBORFIMEIRT
(718

EELEERST, wETRREERIEEILEEZEINN
B, BEKFEINFAT, etiadiRER/N—87 (=F), BE
RS HFAT EHEEERRR . XFEMA ST 2 RIEHEEFESLREF A
RNEHETEER,

Redis FREVFnPETiEES

Redis EAIRMHMMIETIRZE] T Redis 4.0 IR T BG4I Z
TIENEL) ., MmELRFERN—T M INEER Redis Server 1, 45
Redis =1t 7 3@ KRYTfE R EINEE,

TEEIEMAIE—T Redis 4.0 HETIESRE, NTEEENIZLE
0F2, F1EZA Docker IE,

> docker pull redislabs/rebloom # FEVE(%
> docker run -p6379:6379 redislabs/rebloom # =17

dl=1=]

B
> redis-cli # HFiEZz=HH redis RS

MR LE=FBSMITIRBERE, TEMAIMARMETIERST .

g TR AR B A (E

METERE - NEARIES, bf.add Fiplc=, bf.exists &if
TTERERFE, ENAEN set £819 sadd] sismember Z4~
%, 32 bf.add RE—IXRARI—1T TR, WREEIRAMZ
T, MEEMAE bf .madd 8L . EFUREEZE—XRBEEZ T TER
SEFE, REERHZ bf .mexists 15X,

127.0.0.1:6379> bf.add codehole userl
(integer) 1

127.0.0.1:6379> bf.add codehole user?2
(integer) 1

127.0.0.1:6379> bf.add codehole user3
(integer) 1

127.0.0.1:6379> bf.exists codehole userl
(integer) 1

127.0.0.1:6379> bf.exists codehole user?
(integer) 1

127.0.0.1:6379> bf.exists codehole user3
(integer) 1

127.0.0.1:6379> bf.exists codehole user4
(integer) 0

127.0.0.1:6379> bf.madd codehole user4 user5
usero

1) (integer) 1

2) (integer) 1

3) (integer) 1

127.0.0.1:6379> bf.mexists codehole user4 user5
usero user’?

1) (integer) 1

2) (integer) 1

3) (integer) 1

4) (integer) 0

LR, — M ERiRFA. TEHAIA Python BIAIIARS T
=, BEMEIF/L T TRORE, mEIESSHINRA,

coding: utf-8
import redis
client = redis.StrictRedis()

client.delete("codehole™)
for 1 in range(100000):
client.execute_command("bf.add", "codehole",
"user®dd" % 1)
ret = client.execute_command("bf.exists",
"codehole", "user%d" % 1)
1f ret == 0:
print 1
break

Java EFim Jedis-2.x G REIEST BVLE, PRMRIIEERE
F3 Jedis 31h(a) Redis Module 121289 bf.xxx $#§< ., RedisLabs 12
HT—1EMAYE JReBloom
(https://github.com/RedisLabs/JReBloom), {EEREEET
Jedis-3.0, Jedis-3.0 XTEBERRREHA release, KEHAN
maven N RBE, FE Github L T8, ®#EFERALRAAE,
AR MARR, ERTAEA lettuce (https://github.com/lettuce-
io/lettuce-core), EER2— Redis WEFix, L Jedis =,
EREMXEFTIESTE.

https://github.com/RedisLabs/JReBloom
https://github.com/lettuce-io/lettuce-core

public class BloomTest {

public static void main(String[] args) {
Client client = new Client();

client.delete("codehole");

for (int 1 = 0; 1 < 100000; 1i++) {
client.add("codehole", "user" + 1);
boolean ret = client.exists("codehole",

"user" + 1);

if (lret) {
System.out.println(i);
break;

¥

}

client.close();

}

¥

MT EENREE, REkATEERNERRERL, EHET
100000 T txR, ®2BIRF, XEEARZE? WRIFEAIELH
W, AIDCREEFESEMN— 0 1, Me&MRAREIRF.,

REAMETHEDEFENTELNINTREEATIRA, ERFIX
AL N IRTER. PAATAIEM G — T LEARE, (£
bf.exists EEHRIINTR, BRERAEMNECSRT T,

coding: utf-8
import redis
client = redis.StrictRedis()

client.delete("codehole™)
for 1 in range(100000):
client.execute_command("bf.add", "codehole",
"user%d" % 1)
#OFR 141, XTEpmbEdiEzE R LI
ret = client.execute_command("bf.exists",
"codehole", "user%d" % (1+1))
1f ret == 1:
print 1
break

Java hi:

public class BloomTest {

public static void main(String[] args) {
Client client = new Client();

client.delete("codehole");
for (int 1 = 0; 1 < 100000; 1i++) {
client.add("codehole", "user" + 1);
boolean ret = client.exists("codehole",
"user" + (1 + 1));
1f (ret) {
System.out.println(i);
break;
Iy
¥

client.close();

}

h
E1TlE, BNEE THEE 214, MEEE 214 R, BHM
TIRAL

AN ERAIRNE? FAICHEN L —EFRSE, REYIDH 2
$H, FEF—HEANTETESR, ARBANZI—HNFEHEFE
58, AT ENFNSREE—FNE D EENRFAIE,

coding: utf-8

import redis
import random

client = redis.StrictRedis()

CHARS = '"'.join([chrCord('a') + 1) for 1 1in
range(26)])

def random_string(n):
chars = []
for 1 in range(n):
1dx = random.randint(@, len(CHARS) - 1)
chars.append(CHARS[1dx])
return ''.join(chars)

users = list(set([random_string(64) for 1 1in
range(100000)1))

print 'total users', len(users)

users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

client.delete("codehole™)
falses = 0

for user 1in users_train:

client.execute_command("bf.add", "codehole",
user)
print 'all trained'
for user 1n users_test:

ret = client.execute_command("bf.exists",
"codehole", user)

1f ret ==

falses += 1

print falses, len(users_test)

Java kR:

public class BloomTest {

private String chars;

{
StringBuilder builder = new StringBuilder();
for (int 1 = 0; 1 < 26; 1++) {
builder.append((char) ('a' + 1));
Iy
chars = builder.toString(Q);
}

private String randomString(int n) {
StringBuilder builder = new StringBuilder();
for (int 1 =0; 1 < n; 1++) {
int i1dx =
ThreadLocalRandom. current().nextInt(chars.length(

));
builder.append(chars.charAt(idx));

}
return builder.toString(Q);

h

private List<String> randomUsers(int n) {
List<String> users = new ArraylList<>();
for (int 1 = 0; 1 < 100000; i++) {
users.add(randomString(64));
Iy

return users,

h

public static void main(String[] args) {

BloomTest bloomer = new BloomTest();

List<String> users =
bloomer.randomUsers(100000);

List<String> usersTrain = users.sublList(0,
users.size() / 2);

List<String> usersTest =
users.sublList(users.size() / 2, users.size());

Client client = new Client();
client.delete("codehole");
for (String user : usersTrain) {
client.add("codehole", user);
Iy
int falses = 0;
for (String user : usersTest) {
boolean ret = client.exists("codehole",
user);
1f (ret) {
falses++;
}

h
System.out.printf("%d %d\n", falses,

usersTest.size());
client.close();

h

¥

BIT—TF, FHEARA—7H, Bd:

total users 100000
all trained
028 50000

AUEBERFAIRAA 1% 2R, MBFREXMRAREZE RS
W, BxEMNEFE—R? ERXEEN,

B LEEFERNAETER R ZINSHNRIELIEZS, EERIIE
—% add HIRHEBEENEIZE, Redis HELIARM T BEX S EMIE
TiEzs, EEFAE add ZE{EADT . reserveigL EXNEIE. A
RN key BER1F1E, bf.reservesiRis. bf.reserveg=
NS, DHIR key, error_ratefllinitial_size, HIRE
€, EENTEHA, initial_sizeS R TFUTHANNITEE
£, SXMMAEBHXTEEN, RAXRSEFH.

FIAEERANEE— TRANNEERELESEPIRFRAS., WEAN
{EF bf.reserve, EXiABNerror_rateX 0.01, EXIAEY
initial_size=E 100,

ETRHAVER bf.reserve BE— T _EEAVRIA:

coding: utf-8

import redis
import random

client = redis.StrictRedis()

CHARS = ''.join([chr(Cord('a') + 1) for 1 1in
range(26)])

def random_string(n):
chars = []
for 1 in range(n):
1dx = random.randint(@, len(CHARS) - 1)
chars.append(CHARS[1dx])
return ''.join(chars)

users = list(set([random_string(64) for 1 1in
range(100000)1))

print 'total users', len(users)

users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

falses = 0
client.delete("codehole™)
15007 NEIX—1a)
client.execute_command("bf.reserve", "codehole",
0.001, 50000)
for user 1in users_train:

client.execute_command("bf.add", "codehole",
user)
print 'all trained'
for user 1n users_test:

ret = client.execute_command("bf.exists",
"codehole", user)

1f ret ==

falses += 1

print falses, len(users_test)

Java hR7Zx:

public class BloomTest {

private String chars;

1
StringBuilder builder = new StringBuilder();

for (int 1 = 0; 1 < 26; i++) {

builder.append((char) ('a' + 1));

}
chars = builder.toString(Q);

h

private String randomString(int n) {
StringBuilder builder = new StringBuilder();
for (int 1 =0; 1 < n; 1++) {
int idx =
ThreadLocalRandom. current().nextInt(chars.length(

));
builder.append(chars.charAt(i1dx));

}
return builder.toString();

}

private List<String> randomUsers(int n) {
List<String> users = new ArraylList<>();
for (int 1 = 0; 1 < 100000; i++) {
users.add(randomString(64));
¥

return users;

}

public static void main(String[] args) {
BloomTest bloomer = new BloomTest();
List<String> users =
bloomer.randomUsers(100000);
List<String> usersTrain = users.sublList(0,
users.size() / 2);
List<String> usersTest =
users.sublList(users.size() / 2, users.size());

Client client = new Client();
client.delete("codehole");
// 3N bf.reserve 1<
client.createFilter("codehole", 50000,
0.001);
for (String user : usersTrain) {
client.add("codehole", user);
}
int falses = 0;
for (String user : usersTest) {
boolean ret = client.exists("codehole",
user);
1f (ret) {
falses++;
¥

h
System.out.printf("%d %d\n", falses,

usersTest.size());
client.close();

h
¥

BIT—TF, FE4 1 98, BHNT:

total users 100000
all trained
o 50000

BATEEI TiRAIR KL 0.012%, LEFUITAY 0.1% KR, Ik
HBREERERN, REALMNRAIRSAZ, BRETNR.

AR EIN

miETEZENinitial _sizefitaOid K, SRBFETE, (&it
BN, eI ERR, AFREERA 2B —EER D] eeittiEiihit
FrRlE, EHEENLE—ENREEBIEREFRTTEESEI
sHLIHMERS,

miEdiEsserror_rateiv)\, EENEFH=EMBAR, NFAE
B T8I E, error_ratelBRA—at AR, bk
MEEELMS, FHES—RRSINOXEAREILEENAR
3, XENEAREEANSENXRIRFH R FRERPOHE,

g iR AR R E

FRTEIIRESER, TEELELERERERE T, FTRAEEE

RUBEREHE
T
/f/\i 1
, \.

oo 1 oj|poj|o 1 ojpofo o0 1 0

B MR NS Redis WERSMEEME — T AR
FML DA —FBITR hash REN, PMBETIRMEEEBIETRN
hash (HEEFLERYY,

L fE TSR AR key B, S{ERAZ hash REXT key #H1T
hash EE— 1 EBARSMEARAENUBAKEHITREZESR—
&, 81 hash REHEES—TIAENUE. BIEAUEAHNX]L
MIEHEEN 1 BiFE T add B1E.

[t fE I iEaae key EEFEN, IR add —#F, =€ hash 19
NWMIERE LN, BEUHAPX/VMIERSHN 1, REF—
TMIR 0, BAIRPTRETIRIZFXT key AMFE, WREZE 1,
EXANEERAXT key M—EFE, REWBREFE, AAXLE
UHEN 1 JEERERAEEN key FEME. MRXMIEALLR
Wi, FETERABERMSRA, WRXMUEHELCBIAST, FIBTIE
AR RER. BENBRITEANEREZR, BA#rI BARNE
I RENE, EEGM, FNENXERE.

(ERRAEILE TR A TR, SXEbrTREA R Een
RN, ROZXmEELIRSHITERE, EFDE—1 size AR
Wikes, BRMAENFDHETELE add #E (XMBXRE(NEHE
RIFEZR PICRKPTBRIA ETR). BN error_rate A=RENNEHE
HRM ARG, XMABNEELIEF R TR ENRRIATE],

=8 G BT

LIRSV R ORAE—TRENITEAI, BEHESIERE,
XEMEEHSIRRET, EESIHITEAN, BABINEEI MRS
T RIENE AANEBEAESTE,

mELRFEM TS, F—TEITTRNNE n, FTEHEIR
R f, AVRBEXMTMRAGER ML, F— T MBS URENK
E |, WMEFBRIFMHEZEAN (bit), B_THiLE hash REH
RIEHE k, hash RERHEMZEERFLMEIERE, RENHE

AHRNERER,

k=0.7*(1/n) # 9%F
f=0.6185A(1l/n) # N TR HITE, tBElE math.pow

MANFEILAE T

1. (UEERXNE (/n), #BIRR f @, XTNEN LEEE—
(N

2. (IERAMEXNHEE (/n), hash BRESNSENEHHS, &
It B AR

3. Y—APREFHEE 1 PFF (8bit) BIIELZIFA (1/n=8),
EREALN 2%

4. HIRERN 10%, — P TRBENFIIELZER 4.792 7
bit, K2y Sbit

5. SRR 1%, — P RRBENTIIENE=EY 9.585 1
bit, X% 10bit

6. RN 0.1%, — M TERENTITRLZEN 14.377 1
bit, K£9J9 15bit

RTS8, MR—TTEFESLE 15 1 bit, HEX set FEMN
TERNBETLEMEZEBLARET? XEFERRANZE, set PEE
EETTRIRNS, MHEITRESEFETRNEN, TZNAS
NIV FRFENRE, E—REEZTFD, EEZ/LTTLEET
F1, BITERSEFTE—TIETHH set REHRSIH, XiEt
XNEdE 4 TFHE 8 1TFT, BURTREZE 32bit B= 64bit,
MmiENZE B RBEEE 2 TFT, MAfmETESRNZ BB EEIF
EHRERY,

MREFERSATVTEERKMO, RBXR, BRZIARIMLL
EEXHTEZEGANIET, BNRABESH AL, MAMNE
EEIER, bWl ket EeES

(https://krisives.qgithub.io/bloom-calculator/).,

https://krisives.github.io/bloom-calculator/

Bloom Filter Calculator

Enter the size of the bloom filter and the acceptable error rate and you will be shown the optimal configuration.
See this stack overflow post on how this is computed.

Count(n)
a00000000

Number of items you expect to add to the filter. You can use basic arithmetic.

Error(p)
0.001

Max allowed error (0.01 = 1%)

Functions (k)
9.96

Number of hashing functions

Size(m)
12939828810 bits (1579568.94 KE)

Size of the bloom filter. Usually denoted as m bits.

"W

CPRTREBLA, IXFIRSEFEN

HXPrTRBETITTERN, HRRSBEZAZRMN, ESRREI LA
%, BEFEMET, IMBEARN T2, SIASE t RiRXEbn
TTRMFTTTRIE t

f=(1-0.5At)Ak # R, k 2 hash RESELHE

3 AR, #IRER, fHIREEBK, 23R ERERRN
10%,1%,0.1% B9 k {H, BELERIHZATTEVIER

1.0
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

o | o]

(1-=0.5%%)"3.35 show

—h
—
>
—

Il
4p

=
=
I

4»

(1-0.5"x)"6.70 show

h(x) = 4/[(1-0.5*x)*10.064 V] show

MIZEFRPIBAE i 268 2 EL AR BE LR RY

1. TIREN 10% Y, FEEEN 2 i, \REMSHEEREL
40%, XM FEEBER Y

2. HIRERN 1% B, BEEERN 2 B, EiREAZE 15%, tHEAA
iN

3. BIRERN 0.1%, FHtER 2 B, BREAZE 5%, tHEERET

I4 E Redis4.0 E4I?

Redis 4.0 ZHIBAE=7rMETIERSS lib €H, RAIESLME
£/ redis RINIEISRSCIMA, ERELHBEEARD, LEAI—IX exists
BEWTIREIZIR getbit ##E, MEFHBLEME LA, 5
SMESEH] EIXEESE =75 lib b AR5E3E, LBl pyrebloom FERAS
EENEL, HEANSZSENEM—EHRET EEETMEPE
.

1. Python Redis Bloom Filter
(https://github.com/robinhoodmarkets/pyreBloom)

2. Java Redis Bloom Filter
(https://github.com/Bagend/Orestes-Bloomfilter)

mE T iEaRIEH E N

ERBAREHR, FAFEX URL #1TEE, BLMEIRINTIFHIA] A
AHETY ., B2 URLXZT, JLFA/LMZ, MRA—TEEXT
XL URL it AR 2R E R B ERY, XEHER AT AZ RERMEY
wer. ERMANBREEEFEER, RAIESERRERFET
DERITTH,

2T IS 23 7E NoSQL BUBEIUEERIERET 72, B FITAEEIR
HBase. Cassandra *F LevelDB. RocksDB AEZR&RE 1L EZS
Z5ty, ISR UEZEREEURERN 10 BRE=E., SAPXKE
WED row i, aJSEBEERNEFFNMREDSESRDIERERAENFE
By row 153K, AEBEEEHITES.,

BB 78 RETILIR R T IEINRE R B E AR T e iTiRas, FNAT X
TREE, PRUATE B2 R L IEFE AR AR A0 7 Sk aR 4 B %
B, XTMERFIFE, BMERRE,

¥ R IE)E

https://github.com/robinhoodmarkets/pyreBloom
https://github.com/Baqend/Orestes-Bloomfilter

TR RNRIES LA AE N FAIR, B AEIE T E
MR EREORN T REAENRIE: mEdEes
(http://www.cnblogs.com/allensun/archive/2011/02/16/195

B, MRIRZBTHEFE, BEMBEWNREENE, BXERF
IFECH 24K XEZHER, BRALE,

http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html

