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> docker pull redislabs/rebloom # FEVE(%
> docker run -p6379:6379 redislabs/rebloom # =17

dl=1=]

B
> redis-cli # HFiEZz=HH redis RS

MR LE=FBSMITIRBERE, TEMAIMARMETIERST .

g TR AR B A (E

METERE - NEARIES, bf.add Fiplc=, bf.exists &if
TTERERFE, ENAEN set £819 sadd ] sismember Z4~
%, 32 bf.add RE—IXRARI—1T TR, WREEIRAMZ
T, MEEMAE bf .madd 8L . EFUREEZE—XRBEEZ T TER
SEFE, REERHZ bf .mexists 15X,




127.0.0.1:6379> bf.add codehole userl
(integer) 1

127.0.0.1:6379> bf.add codehole user?2
(integer) 1

127.0.0.1:6379> bf.add codehole user3
(integer) 1

127.0.0.1:6379> bf.exists codehole userl
(integer) 1

127.0.0.1:6379> bf.exists codehole user?
(integer) 1

127.0.0.1:6379> bf.exists codehole user3
(integer) 1

127.0.0.1:6379> bf.exists codehole user4
(integer) 0

127.0.0.1:6379> bf.madd codehole user4 user5
usero

1) (integer) 1

2) (integer) 1

3) (integer) 1

127.0.0.1:6379> bf.mexists codehole user4 user5
usero user’?

1) (integer) 1

2) (integer) 1

3) (integer) 1

4) (integer) 0

LR, — M ERiRFA. TEHAIA Python BIAIIARS T
=, BEMEIF/L T TRORE, mEIESSHINRA,



# coding: utf-8
import redis
client = redis.StrictRedis()

client.delete("codehole™)
for 1 in range(100000):
client.execute_command("bf.add", "codehole",
"user®dd" % 1)
ret = client.execute_command("bf.exists",
"codehole", "user%d" % 1)
1f ret == 0:
print 1
break

Java EFim Jedis-2.x G REIEST BVLE, PRMRIIEERE
F3 Jedis 31h(a) Redis Module 121289 bf.xxx $#§< ., RedisLabs 12
HT—1EMAYE JReBloom
(https://github.com/RedisLabs/JReBloom), {EEREEET
Jedis-3.0, Jedis-3.0 XTEBERRREHA release, KEHAN
maven N RBE, FE Github L T8, ®#EFERALRAAE,
AR MARR, ERTAEA lettuce (https://github.com/lettuce-
io/lettuce-core), EER2— Redis WEFix, L Jedis =,
EREMXEFTIESTE.



https://github.com/RedisLabs/JReBloom
https://github.com/lettuce-io/lettuce-core

public class BloomTest {

public static void main(String[] args) {
Client client = new Client();

client.delete("codehole");

for (int 1 = 0; 1 < 100000; 1i++) {
client.add("codehole", "user" + 1);
boolean ret = client.exists("codehole",

"user" + 1);

if (lret) {
System.out.println(i);
break;

¥

}

client.close();

}

¥

MT EENREE, REkATEERNERRERL, EHET
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bf.exists EEHRIINTR, BRERAEMNECSRT T,



# coding: utf-8
import redis
client = redis.StrictRedis()

client.delete("codehole™)
for 1 in range(100000):
client.execute_command("bf.add", "codehole",
"user%d" % 1)
#OFR 141, XTEpmbEdiEzE R LI
ret = client.execute_command("bf.exists",
"codehole", "user%d" % (1+1))
1f ret == 1:
print 1
break

Java hi:



public class BloomTest {

public static void main(String[] args) {
Client client = new Client();

client.delete("codehole");
for (int 1 = 0; 1 < 100000; 1i++) {
client.add("codehole", "user" + 1);
boolean ret = client.exists("codehole",
"user" + (1 + 1));
1f (ret) {
System.out.println(i);
break;
Iy
¥

client.close();

}

h
E1TlE, BNEE THEE 214, MEEE 214 R, BHM
TIRAL

AN ERAIRNE? FAICHEN L —EFRSE, REYIDH 2
$H, FEF—HEANTETESR, ARBANZI—HNFEHEFE
58, AT ENFNSREE—FNE D EENRFAIE,

# coding: utf-8

import redis
import random




client = redis.StrictRedis()

CHARS = '"'.join([chrCord('a') + 1) for 1 1in
range(26)])

def random_string(n):
chars = []
for 1 in range(n):
1dx = random.randint(@, len(CHARS) - 1)
chars.append(CHARS[1dx])
return ''.join(chars)

users = list(set([random_string(64) for 1 1in
range(100000)1))

print 'total users', len(users)

users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

client.delete("codehole™)
falses = 0

for user 1in users_train:

client.execute_command("bf.add", "codehole",
user)
print 'all trained'
for user 1n users_test:

ret = client.execute_command("bf.exists",
"codehole", user)

1f ret ==

falses += 1

print falses, len(users_test)




Java kR:

public class BloomTest {

private String chars;

{
StringBuilder builder = new StringBuilder();
for (int 1 = 0; 1 < 26; 1++) {
builder.append((char) ('a' + 1));
Iy
chars = builder.toString(Q);
}

private String randomString(int n) {
StringBuilder builder = new StringBuilder();
for (int 1 =0; 1 < n; 1++) {
int i1dx =
ThreadLocalRandom. current().nextInt(chars.length(

));
builder.append(chars.charAt(idx));

}
return builder.toString(Q);

h

private List<String> randomUsers(int n) {
List<String> users = new ArraylList<>();
for (int 1 = 0; 1 < 100000; i++) {
users.add(randomString(64));
Iy

return users,

h

public static void main(String[] args) {




BloomTest bloomer = new BloomTest();

List<String> users =
bloomer.randomUsers(100000);

List<String> usersTrain = users.sublList(0,
users.size() / 2);

List<String> usersTest =
users.sublList(users.size() / 2, users.size());

Client client = new Client();
client.delete("codehole");
for (String user : usersTrain) {
client.add("codehole", user);
Iy
int falses = 0;
for (String user : usersTest) {
boolean ret = client.exists("codehole",
user);
1f (ret) {
falses++;
}

h
System.out.printf("%d %d\n", falses,

usersTest.size());
client.close();

h

¥

BIT—TF, FHEARA—7H, Bd:

total users 100000
all trained
028 50000




AUEBERFAIRAA 1% 2R, MBFREXMRAREZE RS
W, BxEMNEFE—R? ERXEEN,

B LEEFERNAETER R ZINSHNRIELIEZS, EERIIE
—% add HIRHEBEENEIZE, Redis HELIARM T BEX S EMIE
TiEzs, EEFAE add ZE{EADT . reserveigL EXNEIE. A
RN key BER1F1E, bf.reservesiRis. bf.reserveg=
NS, DHIR key, error_ratefllinitial_size, HIRE
€, EENTEHA, initial_sizeS R TFUTHANNITEE
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FIAEERANEE— TRANNEERELESEPIRFRAS., WEAN
{EF bf.reserve, EXiABNerror_rateX 0.01, EXIAEY
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ETRHAVER bf.reserve BE— T _EEAVRIA:

# coding: utf-8

import redis
import random

client = redis.StrictRedis()

CHARS = ''.join([chr(Cord('a') + 1) for 1 1in
range(26)])

def random_string(n):
chars = []
for 1 in range(n):
1dx = random.randint(@, len(CHARS) - 1)
chars.append(CHARS[1dx])
return ''.join(chars)



users = list(set([random_string(64) for 1 1in
range(100000)1))

print 'total users', len(users)

users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

falses = 0
client.delete("codehole™)
# 15007 NEIX—1a)
client.execute_command("bf.reserve", "codehole",
0.001, 50000)
for user 1in users_train:

client.execute_command("bf.add", "codehole",
user)
print 'all trained'
for user 1n users_test:

ret = client.execute_command("bf.exists",
"codehole", user)

1f ret ==

falses += 1

print falses, len(users_test)

Java hR7Zx:

public class BloomTest {

private String chars;

1
StringBuilder builder = new StringBuilder();

for (int 1 = 0; 1 < 26; i++) {




builder.append((char) ('a' + 1));

}
chars = builder.toString(Q);

h

private String randomString(int n) {
StringBuilder builder = new StringBuilder();
for (int 1 =0; 1 < n; 1++) {
int idx =
ThreadLocalRandom. current().nextInt(chars.length(

));
builder.append(chars.charAt(i1dx));

}
return builder.toString();

}

private List<String> randomUsers(int n) {
List<String> users = new ArraylList<>();
for (int 1 = 0; 1 < 100000; i++) {
users.add(randomString(64));
¥

return users;

}

public static void main(String[] args) {
BloomTest bloomer = new BloomTest();
List<String> users =
bloomer.randomUsers(100000);
List<String> usersTrain = users.sublList(0,
users.size() / 2);
List<String> usersTest =
users.sublList(users.size() / 2, users.size());



Client client = new Client();
client.delete("codehole");
// 3N bf.reserve 1<
client.createFilter("codehole", 50000,
0.001);
for (String user : usersTrain) {
client.add("codehole", user);
}
int falses = 0;
for (String user : usersTest) {
boolean ret = client.exists("codehole",
user);
1f (ret) {
falses++;
¥

h
System.out.printf("%d %d\n", falses,

usersTest.size());
client.close();

h
¥

BIT—TF, FE4 1 98, BHNT:

total users 100000
all trained
o 50000
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https://krisives.github.io/bloom-calculator/

Bloom Filter Calculator

Enter the size of the bloom filter and the acceptable error rate and you will be shown the optimal configuration.
See this stack overflow post on how this is computed.

Count(n)
a00000000

Number of items you expect to add to the filter. You can use basic arithmetic.

Error(p)
0.001

Max allowed error (0.01 = 1%)

Functions (k)
9.96

Number of hashing functions

Size(m)
12939828810 bits (1579568.94 KE)

Size of the bloom filter. Usually denoted as m bits.
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1. Python Redis Bloom Filter
(https://github.com/robinhoodmarkets/pyreBloom)

2. Java Redis Bloom Filter
(https://github.com/Bagend/Orestes-Bloomfilter)
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