
应⽤ 5：层峦叠嶂 —— 布隆过滤
器

上⼀节我们学会了使⽤ HyperLogLog 数据结构来进⾏估数，它⾮常
有价值，可以解决很多精确度不⾼的统计需求。

但是如果我们想知道某⼀个值是不是已经在 HyperLogLog 结构⾥⾯
了，它就⽆能为⼒了，它只提供了 pfadd 和 pfcount ⽅法，没有提
供 pfcontains 这种⽅法。

讲个使⽤场景，⽐如我们在使⽤新闻客户端看新闻时，它会给我们不
停地推荐新的内容，它每次推荐时要去重，去掉那些已经看过的内
容。问题来了，新闻客户端推荐系统如何实现推送去重的？

你会想到服务器记录了⽤户看过的所有历史记录，当推荐系统推荐新
闻时会从每个⽤户的历史记录⾥进⾏筛选，过滤掉那些已经存在的记
录。问题是当⽤户量很⼤，每个⽤户看过的新闻⼜很多的情况下，这
种⽅式，推荐系统的去重⼯作在性能上跟的上么？

实际上，如果历史记录存储在关系数据库⾥，去重就需要频繁地对数
据库进⾏ exists 查询，当系统并发量很⾼时，数据库是很难扛住压
⼒的。

你可能⼜想到了缓存，但是如此多的历史记录全部缓存起来，那得浪
费多⼤存储空间啊？⽽且这个存储空间是随着时间线性增⻓，你撑得
住⼀个⽉，你能撑得住⼏年么？但是不缓存的话，性能⼜跟不上，这



该怎么办？

这时，布隆过滤器 (Bloom Filter) 闪亮登场了，它就是专⻔⽤来解
决这种去重问题的。它在起到去重的同时，在空间上还能节省 90%
以上，只是稍微有那么点不精确，也就是有⼀定的误判概率。

布隆过滤器是什么？

布隆过滤器可以理解为⼀个不怎么精确的 set 结构，当你使⽤它的
contains ⽅法判断某个对象是否存在时，它可能会误判。但是布隆
过滤器也不是特别不精确，只要参数设置的合理，它的精确度可以控
制的相对⾜够精确，只会有⼩⼩的误判概率。

当布隆过滤器说某个值存在时，这个值可能不存在；当它说不存在
时，那就肯定不存在。打个⽐⽅，当它说不认识你时，肯定就不认
识；当它说⻅过你时，可能根本就没⻅过⾯，不过因为你的脸跟它认
识的⼈中某脸⽐较相似 (某些熟脸的系数组合)，所以误判以前⻅过
你。

套在上⾯的使⽤场景中，布隆过滤器能准确过滤掉那些已经看过的内
容，那些没有看过的新内容，它也会过滤掉极⼩⼀部分 (误判)，但是
绝⼤多数新内容它都能准确识别。这样就可以完全保证推荐给⽤户的
内容都是⽆重复的。

Redis 中的布隆过滤器

Redis 官⽅提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后
才正式登场。布隆过滤器作为⼀个插件加载到 Redis Server 中，给
Redis 提供了强⼤的布隆去重功能。

下⾯我们来体验⼀下 Redis 4.0 的布隆过滤器，为了省去繁琐安装
过程，我们直接⽤ Docker 吧。



> docker pull redislabs/rebloom  # 拉取镜像
> docker run -p6379:6379 redislabs/rebloom  # 运⾏
容器
> redis-cli  # 连接容器中的 redis 服务

如果上⾯三条指令执⾏没有问题，下⾯就可以体验布隆过滤器了。

布隆过滤器基本使⽤

布隆过滤器有⼆个基本指令，bf.add 添加元素，bf.exists 查询
元素是否存在，它的⽤法和 set 集合的 sadd 和 sismember 差不
多。注意 bf.add 只能⼀次添加⼀个元素，如果想要⼀次添加多
个，就需要⽤到 bf.madd 指令。同样如果需要⼀次查询多个元素是
否存在，就需要⽤到 bf.mexists 指令。



127.0.0.1:6379> bf.add codehole user1
(integer) 1
127.0.0.1:6379> bf.add codehole user2
(integer) 1
127.0.0.1:6379> bf.add codehole user3
(integer) 1
127.0.0.1:6379> bf.exists codehole user1
(integer) 1
127.0.0.1:6379> bf.exists codehole user2
(integer) 1
127.0.0.1:6379> bf.exists codehole user3
(integer) 1
127.0.0.1:6379> bf.exists codehole user4
(integer) 0
127.0.0.1:6379> bf.madd codehole user4 user5 
user6
1) (integer) 1
2) (integer) 1
3) (integer) 1
127.0.0.1:6379> bf.mexists codehole user4 user5 
user6 user7
1) (integer) 1
2) (integer) 1
3) (integer) 1
4) (integer) 0

似乎很准确啊，⼀个都没误判。下⾯我们⽤ Python 脚本加⼊很多元
素，看看加到第⼏个元素的时候，布隆过滤器会出现误判。



# coding: utf-8

import redis

client = redis.StrictRedis()

client.delete("codehole")
for i in range(100000):
    client.execute_command("bf.add", "codehole", 
"user%d" % i)
    ret = client.execute_command("bf.exists", 
"codehole", "user%d" % i)
    if ret == 0:
        print i
        break

Java 客户端 Jedis-2.x 没有提供指令扩展机制，所以你⽆法直接使
⽤ Jedis 来访问 Redis Module 提供的 bf.xxx 指令。RedisLabs 提
供了⼀个单独的包 JReBloom
(https://github.com/RedisLabs/JReBloom)，但是它是基于
Jedis-3.0，Jedis-3.0 这个包⽬前还没有进⼊ release，没有进⼊
maven 的中央仓库，需要在 Github 上下载。在使⽤上很不⽅便，
如果怕麻烦，还可以使⽤ lettuce (https://github.com/lettuce-
io/lettuce-core)，它是另⼀个 Redis 的客户端，相⽐ Jedis ⽽⾔，
它很早就⽀持了指令扩展。

https://github.com/RedisLabs/JReBloom
https://github.com/lettuce-io/lettuce-core


public class BloomTest {

  public static void main(String[] args) {
    Client client = new Client();

    client.delete("codehole");
    for (int i = 0; i < 100000; i++) {
      client.add("codehole", "user" + i);
      boolean ret = client.exists("codehole", 
"user" + i);
      if (!ret) {
        System.out.println(i);
        break;
      }
    }

    client.close();
  }

}

执⾏上⾯的代码后，你会张⼤了嘴巴发现居然没有输出，塞进去了
100000 个元素，还是没有误判，这是怎么回事？如果你不死⼼的
话，可以将数字再加⼀个 0 试试，你会发现依然没有误判。

原因就在于布隆过滤器对于已经⻅过的元素肯定不会误判，它只会误
判那些没⻅过的元素。所以我们要稍微改⼀下上⾯的脚本，使⽤
bf.exists 去查找没⻅过的元素，看看它是不是以为⾃⼰⻅过了。



# coding: utf-8

import redis

client = redis.StrictRedis()

client.delete("codehole")
for i in range(100000):
    client.execute_command("bf.add", "codehole", 
"user%d" % i)
    # 注意 i+1，这个是当前布隆过滤器没⻅过的
    ret = client.execute_command("bf.exists", 
"codehole", "user%d" % (i+1))
    if ret == 1:
        print i
        break

Java 版:



public class BloomTest {

  public static void main(String[] args) {
    Client client = new Client();

    client.delete("codehole");
    for (int i = 0; i < 100000; i++) {
      client.add("codehole", "user" + i);
      boolean ret = client.exists("codehole", 
"user" + (i + 1));
      if (ret) {
        System.out.println(i);
        break;
      }
    }

    client.close();
  }

}

运⾏后，我们看到了输出是 214，也就是到第 214 的时候，它出现
了误判。

那如何来测量误判率呢？我们先随机出⼀堆字符串，然后切分为 2
组，将其中⼀组塞⼊布隆过滤器，然后再判断另外⼀组的字符串存在
与否，取误判的个数和字符串总量⼀半的百分⽐作为误判率。

# coding: utf-8

import redis
import random



client = redis.StrictRedis()

CHARS = ''.join([chr(ord('a') + i) for i in 
range(26)])

def random_string(n):
    chars = []
    for i in range(n):
        idx = random.randint(0, len(CHARS) - 1)
        chars.append(CHARS[idx])
    return ''.join(chars)

users = list(set([random_string(64) for i in 
range(100000)]))
print 'total users', len(users)
users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

client.delete("codehole")
falses = 0

for user in users_train:
    client.execute_command("bf.add", "codehole", 
user)
print 'all trained'
for user in users_test:
    ret = client.execute_command("bf.exists", 
"codehole", user)
    if ret == 1:
        falses += 1

print falses, len(users_test)



Java 版:

public class BloomTest {

  private String chars;
  {
    StringBuilder builder = new StringBuilder();
    for (int i = 0; i < 26; i++) {
      builder.append((char) ('a' + i));
    }
    chars = builder.toString();
  }

  private String randomString(int n) {
    StringBuilder builder = new StringBuilder();
    for (int i = 0; i < n; i++) {
      int idx = 
ThreadLocalRandom.current().nextInt(chars.length(
));
      builder.append(chars.charAt(idx));
    }
    return builder.toString();
  }

  private List<String> randomUsers(int n) {
    List<String> users = new ArrayList<>();
    for (int i = 0; i < 100000; i++) {
      users.add(randomString(64));
    }
    return users;
  }

  public static void main(String[] args) {



    BloomTest bloomer = new BloomTest();
    List<String> users = 
bloomer.randomUsers(100000);
    List<String> usersTrain = users.subList(0, 
users.size() / 2);
    List<String> usersTest = 
users.subList(users.size() / 2, users.size());

    Client client = new Client();
    client.delete("codehole");
    for (String user : usersTrain) {
      client.add("codehole", user);
    }
    int falses = 0;
    for (String user : usersTest) {
      boolean ret = client.exists("codehole", 
user);
      if (ret) {
        falses++;
      }
    }
    System.out.printf("%d %d\n", falses, 
usersTest.size());
    client.close();
  }

}

运⾏⼀下，等待⼤约⼀分钟，输出:

total users 100000
all trained
628 50000



可以看到误判率⼤约 1% 多点。你也许会问这个误判率还是有点⾼
啊，有没有办法降低⼀点？答案是有的。

我们上⾯使⽤的布隆过滤器只是默认参数的布隆过滤器，它在我们第
⼀次 add 的时候⾃动创建。Redis 其实还提供了⾃定义参数的布隆
过滤器，需要我们在 add 之前使⽤bf.reserve指令显式创建。如
果对应的 key 已经存在，bf.reserve会报错。bf.reserve有三
个参数，分别是 key, error_rate和initial_size。错误率越
低，需要的空间越⼤。initial_size参数表示预计放⼊的元素数
量，当实际数量超出这个数值时，误判率会上升。

所以需要提前设置⼀个较⼤的数值避免超出导致误判率升⾼。如果不
使⽤ bf.reserve，默认的error_rate是 0.01，默认的
initial_size是 100。

接下来我们使⽤ bf.reserve 改造⼀下上⾯的脚本：

# coding: utf-8

import redis
import random

client = redis.StrictRedis()

CHARS = ''.join([chr(ord('a') + i) for i in 
range(26)])

def random_string(n):
    chars = []
    for i in range(n):
        idx = random.randint(0, len(CHARS) - 1)
        chars.append(CHARS[idx])
    return ''.join(chars)



users = list(set([random_string(64) for i in 
range(100000)]))
print 'total users', len(users)
users_train = users[:len(users)/2]
users_test = users[len(users)/2:]

falses = 0
client.delete("codehole")
# 增加了下⾯这⼀句
client.execute_command("bf.reserve", "codehole", 
0.001, 50000)
for user in users_train:
    client.execute_command("bf.add", "codehole", 
user)
print 'all trained'
for user in users_test:
    ret = client.execute_command("bf.exists", 
"codehole", user)
    if ret == 1:
        falses += 1

print falses, len(users_test)

Java 版本：

public class BloomTest {

  private String chars;
  {
    StringBuilder builder = new StringBuilder();
    for (int i = 0; i < 26; i++) {



      builder.append((char) ('a' + i));
    }
    chars = builder.toString();
  }

  private String randomString(int n) {
    StringBuilder builder = new StringBuilder();
    for (int i = 0; i < n; i++) {
      int idx = 
ThreadLocalRandom.current().nextInt(chars.length(
));
      builder.append(chars.charAt(idx));
    }
    return builder.toString();
  }

  private List<String> randomUsers(int n) {
    List<String> users = new ArrayList<>();
    for (int i = 0; i < 100000; i++) {
      users.add(randomString(64));
    }
    return users;
  }

  public static void main(String[] args) {
    BloomTest bloomer = new BloomTest();
    List<String> users = 
bloomer.randomUsers(100000);
    List<String> usersTrain = users.subList(0, 
users.size() / 2);
    List<String> usersTest = 
users.subList(users.size() / 2, users.size());



    Client client = new Client();
    client.delete("codehole");
    // 对应 bf.reserve 指令
    client.createFilter("codehole", 50000, 
0.001);
    for (String user : usersTrain) {
      client.add("codehole", user);
    }
    int falses = 0;
    for (String user : usersTest) {
      boolean ret = client.exists("codehole", 
user);
      if (ret) {
        falses++;
      }
    }
    System.out.printf("%d %d\n", falses, 
usersTest.size());
    client.close();
  }

}

运⾏⼀下，等待约 1 分钟，输出如下：

total users 100000
all trained
6 50000

我们看到了误判率⼤约 0.012%，⽐预计的 0.1% 低很多，不过布隆
的概率是有误差的，只要不⽐预计误判率⾼太多，都是正常现象。

注意事项



布隆过滤器的initial_size估计的过⼤，会浪费存储空间，估计
的过⼩，就会影响准确率，⽤户在使⽤之前⼀定要尽可能地精确估计
好元素数量，还需要加上⼀定的冗余空间以避免实际元素可能会意外
⾼出估计值很多。

布隆过滤器的error_rate越⼩，需要的存储空间就越⼤，对于不需
要过于精确的场合，error_rate设置稍⼤⼀点也⽆伤⼤雅。⽐如在
新闻去重上⽽⾔，误判率⾼⼀点只会让⼩部分⽂章不能让合适的⼈看
到，⽂章的整体阅读量不会因为这点误判率就带来巨⼤的改变。

布隆过滤器的原理

学会了布隆过滤器的使⽤，下⾯有必要把原理解释⼀下，不然读者还
会继续蒙在⿎⾥

每个布隆过滤器对应到 Redis 的数据结构⾥⾯就是⼀个⼤型的位数
组和⼏个不⼀样的⽆偏 hash 函数。所谓⽆偏就是能够把元素的
hash 值算得⽐较均匀。

向布隆过滤器中添加 key 时，会使⽤多个 hash 函数对 key 进⾏
hash 算得⼀个整数索引值然后对位数组⻓度进⾏取模运算得到⼀个
位置，每个 hash 函数都会算得⼀个不同的位置。再把位数组的这⼏
个位置都置为 1 就完成了 add 操作。



向布隆过滤器询问 key 是否存在时，跟 add ⼀样，也会把 hash 的
⼏个位置都算出来，看看位数组中这⼏个位置是否都为 1，只要有⼀
个位为 0，那么说明布隆过滤器中这个 key 不存在。如果都是 1，
这并不能说明这个 key 就⼀定存在，只是极有可能存在，因为这些
位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组⽐较
稀疏，判断正确的概率就会很⼤，如果这个位数组⽐较拥挤，判断正
确的概率就会降低。具体的概率计算公式⽐较复杂，感兴趣可以阅读
扩展阅读，⾮常烧脑，不建议读者细看。

使⽤时不要让实际元素远⼤于初始化⼤⼩，当实际元素开始超出初始
化⼤⼩时，应该对布隆过滤器进⾏重建，重新分配⼀个 size 更⼤的
过滤器，再将所有的历史元素批量 add 进去 (这就要求我们在其它
的存储器中记录所有的历史元素)。因为 error_rate 不会因为数量超
出就急剧增加，这就给我们重建过滤器提供了较为宽松的时间。

空间占⽤估计

布隆过滤器的空间占⽤有⼀个简单的计算公式，但是推导⽐较繁琐，
这⾥就省去推导过程了，直接引出计算公式，感兴趣的读者可以点击
「扩展阅读」深⼊理解公式的推导过程。

布隆过滤器有两个参数，第⼀个是预计元素的数量 n，第⼆个是错误
率 f。公式根据这两个输⼊得到两个输出，第⼀个输出是位数组的⻓
度 l，也就是需要的存储空间⼤⼩ (bit)，第⼆个输出是 hash 函数的
最佳数量 k。hash 函数的数量也会直接影响到错误率，最佳的数量
会有最低的错误率。

k=0.7*(l/n)  # 约等于
f=0.6185^(l/n)  # ^ 表示次⽅计算，也就是 math.pow

从公式中可以看出

1. 位数组相对越⻓ (l/n)，错误率 f 越低，这个和直观上理解是⼀
致的



2. 位数组相对越⻓ (l/n)，hash 函数需要的最佳数量也越多，影
响计算效率

3. 当⼀个元素平均需要 1 个字节 (8bit) 的指纹空间时 (l/n=8)，
错误率⼤约为 2%

4. 错误率为 10%，⼀个元素需要的平均指纹空间为 4.792 个
bit，⼤约为 5bit

5. 错误率为 1%，⼀个元素需要的平均指纹空间为 9.585 个
bit，⼤约为 10bit

6. 错误率为 0.1%，⼀个元素需要的平均指纹空间为 14.377 个
bit，⼤约为 15bit

你也许会想，如果⼀个元素需要占据 15 个 bit，那相对 set 集合的
空间优势是不是就没有那么明显了？这⾥需要明确的是，set 中会存
储每个元素的内容，⽽布隆过滤器仅仅存储元素的指纹。元素的内容
⼤⼩就是字符串的⻓度，它⼀般会有多个字节，甚⾄是⼏⼗个上百个
字节，每个元素本身还需要⼀个指针被 set 集合来引⽤，这个指针
⼜会占去 4 个字节或 8 个字节，取决于系统是 32bit 还是 64bit。
⽽指纹空间只有接近 2 个字节，所以布隆过滤器的空间优势还是⾮
常明显的。

如果读者觉得公式计算起来太麻烦，也没有关系，有很多现成的⽹站
已经⽀持计算空间占⽤的功能了，我们只要把参数输进去，就可以直
接看到结果，⽐如 布隆计算器
(https://krisives.github.io/bloom-calculator/)。

https://krisives.github.io/bloom-calculator/


实际元素超出时，误判率会怎样变化

当实际元素超出预计元素时，错误率会有多⼤变化，它会急剧上升
么，还是平缓地上升，这就需要另外⼀个公式，引⼊参数 t 表示实际
元素和预计元素的倍数 t

f=(1-0.5^t)^k  # 极限近似，k 是 hash 函数的最佳数量

当 t 增⼤时，错误率，f 也会跟着增⼤，分别选择错误率为
10%,1%,0.1% 的 k 值，画出它的曲线进⾏直观观察



从这个图中可以看出曲线还是⽐较陡峭的

1. 错误率为 10% 时，倍数⽐为 2 时，错误率就会升⾄接近
40%，这个就⽐较危险了

2. 错误率为 1% 时，倍数⽐为 2 时，错误率升⾄ 15%，也挺可怕
的

3. 错误率为 0.1%，倍数⽐为 2 时，错误率升⾄ 5%，也⽐较悬了

⽤不上 Redis4.0 怎么办？



Redis 4.0 之前也有第三⽅的布隆过滤器 lib 使⽤，只不过在实现上
使⽤ redis 的位图来实现的，性能上也要差不少。⽐如⼀次 exists
查询会涉及到多次 getbit 操作，⽹络开销相⽐⽽⾔会⾼出不少。另
外在实现上这些第三⽅ lib 也不尽完美，⽐如 pyrebloom 库就不⽀
持重连和重试，在使⽤时需要对它做⼀层封装后才能在⽣产环境中使
⽤。

1. Python Redis Bloom Filter
(https://github.com/robinhoodmarkets/pyreBloom)

2. Java Redis Bloom Filter
(https://github.com/Baqend/Orestes-Bloomfilter)

布隆过滤器的其它应⽤

在爬⾍系统中，我们需要对 URL 进⾏去重，已经爬过的⽹⻚就可以
不⽤爬了。但是 URL 太多了，⼏千万⼏个亿，如果⽤⼀个集合装下
这些 URL 地址那是⾮常浪费空间的。这时候就可以考虑使⽤布隆过
滤器。它可以⼤幅降低去重存储消耗，只不过也会使得爬⾍系统错过
少量的⻚⾯。

布隆过滤器在 NoSQL 数据库领域使⽤⾮常⼴泛，我们平时⽤到的
HBase、Cassandra 还有 LevelDB、RocksDB 内部都有布隆过滤器
结构，布隆过滤器可以显著降低数据库的 IO 请求数量。当⽤户来查
询某个 row 时，可以先通过内存中的布隆过滤器过滤掉⼤量不存在
的 row 请求，然后再去磁盘进⾏查询。

邮箱系统的垃圾邮件过滤功能也普遍⽤到了布隆过滤器，因为⽤了这
个过滤器，所以平时也会遇到某些正常的邮件被放进了垃圾邮件⽬录
中，这个就是误判所致，概率很低。

扩展阅读

https://github.com/robinhoodmarkets/pyreBloom
https://github.com/Baqend/Orestes-Bloomfilter


布隆过滤器的原理涉及到较为复杂的数学知识，感兴趣可以阅读下⾯
的链接⽂章继续深⼊了解内部原理：布隆过滤器
(http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html)

同样，如果你是个数学学渣，那⽼师我建议你谨慎观看，要注意保护
好⾃⼰的 24K 钛合⾦狗眼，避免闪瞎。

http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html

