
应⽤ 7：⼀⽑不拔 —— 漏⽃限流
漏⽃限流是最常⽤的限流⽅法之⼀，顾名思义，这个算法的灵感源于
漏⽃（funnel）的结构。

漏⽃的容量是有限的，如果将漏嘴堵住，然后⼀直往⾥⾯灌⽔，它就
会变满，直⾄再也装不进去。如果将漏嘴放开，⽔就会往下流，流⾛
⼀部分之后，就⼜可以继续往⾥⾯灌⽔。如果漏嘴流⽔的速率⼤于灌
⽔的速率，那么漏⽃永远都装不满。如果漏嘴流⽔速率⼩于灌⽔的速
率，那么⼀旦漏⽃满了，灌⽔就需要暂停并等待漏⽃腾空。

所以，漏⽃的剩余空间就代表着当前⾏为可以持续进⾏的数量，漏嘴
的流⽔速率代表着系统允许该⾏为的最⼤频率。下⾯我们使⽤代码来
描述单机漏⽃算法。

coding: utf8

import time

class Funnel(object):

 def __init__(self, capacity, leaking_rate):
 self.capacity = capacity # 漏⽃容量
 self.leaking_rate = leaking_rate # 漏嘴流
⽔速率
 self.left_quota = capacity # 漏⽃剩余空间
 self.leaking_ts = time.time() # 上⼀次漏⽔
时间

 def make_space(self):
 now_ts = time.time()
 delta_ts = now_ts - self.leaking_ts # 距
离上⼀次漏⽔过去了多久
 delta_quota = delta_ts *
self.leaking_rate # ⼜可以腾出不少空间了
 if delta_quota < 1: # 腾的空间太少，那就等下
次吧
 return
 self.left_quota += delta_quota # 增加剩余
空间
 self.leaking_ts = now_ts # 记录漏⽔时间
 if self.left_quota > self.capacity: # 剩
余空间不得⾼于容量
 self.left_quota = self.capacity

 def watering(self, quota):
 self.make_space()
 if self.left_quota >= quota: # 判断剩余空
间是否⾜够
 self.left_quota -= quota
 return True
 return False

funnels = {} # 所有的漏⽃

capacity 漏⽃容量
leaking_rate 漏嘴流⽔速率 quota/s
def is_action_allowed(
 user_id, action_key, capacity,
leaking_rate):
 key = '%s:%s' % (user_id, action_key)
 funnel = funnels.get(key)
 if not funnel:
 funnel = Funnel(capacity, leaking_rate)
 funnels[key] = funnel
 return funnel.watering(1)

for i in range(20):
 print is_action_allowed('laoqian', 'reply',
15, 0.5)

再提供⼀个 Java 版本的：

public class FunnelRateLimiter {

 static class Funnel {
 int capacity;
 float leakingRate;
 int leftQuota;
 long leakingTs;

 public Funnel(int capacity, float
leakingRate) {
 this.capacity = capacity;
 this.leakingRate = leakingRate;
 this.leftQuota = capacity;
 this.leakingTs =
System.currentTimeMillis();
 }

 void makeSpace() {
 long nowTs = System.currentTimeMillis();
 long deltaTs = nowTs - leakingTs;
 int deltaQuota = (int) (deltaTs *
leakingRate);
 if (deltaQuota < 0) { // 间隔时间太⻓，整数数字
过⼤溢出
 this.leftQuota = capacity;
 this.leakingTs = nowTs;
 return;
 }
 if (deltaQuota < 1) { // 腾出空间太⼩，最⼩单位
是1
 return;
 }
 this.leftQuota += deltaQuota;
 this.leakingTs = nowTs;
 if (this.leftQuota > this.capacity) {

 this.leftQuota = this.capacity;
 }
 }

 boolean watering(int quota) {
 makeSpace();
 if (this.leftQuota >= quota) {
 this.leftQuota -= quota;
 return true;
 }
 return false;
 }
 }

 private Map<String, Funnel> funnels = new
HashMap<>();

 public boolean isActionAllowed(String userId,
String actionKey, int capacity, float
leakingRate) {
 String key = String.format("%s:%s", userId,
actionKey);
 Funnel funnel = funnels.get(key);
 if (funnel == null) {
 funnel = new Funnel(capacity, leakingRate);
 funnels.put(key, funnel);
 }
 return funnel.watering(1); // 需要1个quota
 }
}

Funnel 对象的 make_space ⽅法是漏⽃算法的核⼼，其在每次灌
⽔前都会被调⽤以触发漏⽔，给漏⽃腾出空间来。能腾出多少空间取
决于过去了多久以及流⽔的速率。Funnel 对象占据的空间⼤⼩不再
和⾏为的频率成正⽐，它的空间占⽤是⼀个常量。

问题来了，分布式的漏⽃算法该如何实现？能不能使⽤ Redis 的基
础数据结构来搞定？

我们观察 Funnel 对象的⼏个字段，我们发现可以将 Funnel 对象的
内容按字段存储到⼀个 hash 结构中，灌⽔的时候将 hash 结构的字
段取出来进⾏逻辑运算后，再将新值回填到 hash 结构中就完成了⼀
次⾏为频度的检测。

但是有个问题，我们⽆法保证整个过程的原⼦性。从 hash 结构中取
值，然后在内存⾥运算，再回填到 hash 结构，这三个过程⽆法原⼦
化，意味着需要进⾏适当的加锁控制。⽽⼀旦加锁，就意味着会有加
锁失败，加锁失败就需要选择重试或者放弃。

如果重试的话，就会导致性能下降。如果放弃的话，就会影响⽤户体
验。同时，代码的复杂度也跟着升⾼很多。这真是个艰难的选择，我
们该如何解决这个问题呢？Redis-Cell 救星来了！

Redis-Cell

Redis 4.0 提供了⼀个限流 Redis 模块，它叫 redis-cell。该模块也
使⽤了漏⽃算法，并提供了原⼦的限流指令。有了这个模块，限流问
题就⾮常简单了。

该模块只有1条指令cl.throttle，它的参数和返回值都略显复
杂，接下来让我们来看看这个指令具体该如何使⽤。

> cl.throttle laoqian:reply 15 30 60 1
 ▲ ▲ ▲ ▲ ▲
 | | | | └───── need
1 quota (可选参数，默认值也是1)
 | | └──┴─────── 30
operations / 60 seconds 这是漏⽔速率
 | └───────────── 15
capacity 这是漏⽃容量
 └─────────────────── key
laoqian

上⾯这个指令的意思是允许「⽤户⽼钱回复⾏为」的频率为每 60s
最多 30 次(漏⽔速率)，漏⽃的初始容量为 15，也就是说⼀开始可
以连续回复 15 个帖⼦，然后才开始受漏⽔速率的影响。我们看到这
个指令中漏⽔速率变成了 2 个参数，替代了之前的单个浮点数。⽤
两个参数相除的结果来表达漏⽔速率相对单个浮点数要更加直观⼀
些。

> cl.throttle laoqian:reply 15 30 60
1) (integer) 0 # 0 表示允许，1表示拒绝
2) (integer) 15 # 漏⽃容量capacity
3) (integer) 14 # 漏⽃剩余空间left_quota
4) (integer) -1 # 如果拒绝了，需要多⻓时间后再试(漏⽃
有空间了，单位秒)
5) (integer) 2 # 多⻓时间后，漏⽃完全空出来
(left_quota==capacity，单位秒)

在执⾏限流指令时，如果被拒绝了，就需要丢弃或重试。cl.throttle
指令考虑的⾮常周到，连重试时间都帮你算好了，直接取返回结果数
组的第四个值进⾏ sleep 即可，如果不想阻塞线程，也可以异步定
时任务来重试。

思考

漏⽃限流模块除了应⽤于 UGC，还能应⽤于哪些地⽅？

拓展阅读

1. 《Redis-Cell 作者 Itamar Haber 其⼈趣事》

Redis-Cell 作者 Itamar Haber 的介绍很有意思——⼀个「⾃封」
的 Redis 极客。还有，Cell 这个模块居然是⽤ Rust 编写的。——
原来 Redis 模块可以使⽤ Rust 编写？！

这意味着我们不⽤去搞古⽼的 C 语⾔了。⽼钱表示要重新拾起放弃
很久的 Rust 语⾔。哎，⼲程序员这⼀⾏，真是要活到⽼，学到死
啊！�

