
⼀一⾯面 3：CSS-HTML 知识点与⾼高频考题解析   
CSS 和 HTML 是⽹网⻚页开发中布局相关的组成部分，涉及的内容⽐比较多和杂乱，本⼩小节重点介绍下常考
的知识点。

知识点梳理理   

选择器器的权重和优先级

盒模型

盒⼦子⼤大⼩小计算
margin 的重叠计算

浮动 float

浮动布局概念
清理理浮动

定位 position

⽂文档流概念
定位分类
fixed 定位特点
绝对定位计算⽅方式

flex 布局

如何实现居中对⻬齐？

理理解语义化

CSS3 动画

重绘和回流

选择器器的权重和优先级   

CSS 选择器器有很多，不不同的选择器器的权重和优先级不不⼀一样，对于⼀一个元素，如果存在多个选择器器，那
么就需要根据权重来计算其优先级。

权重分为四级，分别是：

1. 代表内联样式，如 style="xxx" ，权值为 1000；
2. 代表 ID 选择器器，如 #content ，权值为 100；
3. 代表类、伪类和属性选择器器，如 .content 、 :hover 、 [attribute] ，权值为 10；
4. 代表元素选择器器和伪元素选择器器，如 div 、 p ，权值为 1。

需要注意的是：通⽤用选择器器（*）、⼦子选择器器（>）和相邻同胞选择器器（+）并不不在这四个等级中，所
以他们的权值都为 0。 权重值⼤大的选择器器其优先级也⾼高，相同权重的优先级⼜又遵循后定义覆盖前⾯面定
义的情况。

盒模型



盒模型   

什什么是“盒⼦子”   

初学 CSS 的朋友，⼀一开始学 CSS 基础知识的时候⼀一定学过 padding  border 和 margin ，即内边

距、边框和外边距。它们三者就构成了了⼀一个“盒⼦子”。就像我们收到的快递，本来买了了⼀一部⼩小⼩小的⼿手
机，收到的却是那么⼤大⼀一个盒⼦子。因为⼿手机⽩白⾊色的包装盒和⼿手机机器器之间有间隔层（内边距），⼿手机
⽩白⾊色盒⼦子有厚度，虽然很薄（边框），盒⼦子和快递箱⼦子之间还有⼀一层泡沫板（外边距）。这就是⼀一个
典型的盒⼦子。

如上图，真正的内容就是这些⽂文字，⽂文字外围有 10px 的内边距，5px 的边框，10px 的外边距。看到
盒⼦子了了吧？

题⽬目：盒⼦子模型的宽度如何计算

固定宽度的盒⼦子   

如上图，得到⽹网⻚页效果之后，我们可以⽤用截图⼯工具来量量⼀一下⽂文字内容的宽度。发现，⽂文字内容的宽度
刚好是 300px，也就是我们设置的宽度。

因此，在盒⼦子模型中，我们设置的宽度都是内容宽度，不不是整个盒⼦子的宽度。⽽而整个盒⼦子的宽度是：
（内容宽度 + border 宽度 + padding 宽度 + margin 宽度）之和。这样我们改四个中的其中⼀一
个，都会导致盒⼦子宽度的改变。这对我们来说不不友好。

没关系，这个东⻄西不不友好早就有⼈人发现了了，⽽而且已经解决，下⽂文再说。

充满⽗父容器器的盒⼦子   

默认情况下， div 是 display:block ，宽度会充满整个⽗父容器器。如下图：

但是别忘记，这个 div 是个盒⼦子模型，它的整个宽度包括（内容宽度 + border 宽度 + padding 宽
度 + margin 宽度），整个的宽度充满⽗父容器器。

<div style="padding:10px; border:5px solid blue; margin: 10px; 
width:300px;">
    之前看过⼀一篇⽂文章，叫做《浏览器器⼯工作原理理：新式⽹网络浏览器器幕后揭秘》，
    ⽂文章⾔言简意赅的介绍的浏览器器的⼯工作过程，web前端
</div>

<div style="padding:10px; border:5px solid blue; margin: 10px; 
width:300px;">
    之前看过⼀一篇⽂文章，叫做《浏览器器⼯工作原理理：新式⽹网络浏览器器幕后揭秘》，
    ⽂文章⾔言简意赅的介绍的浏览器器的⼯工作过程，web前端
    之前看过⼀一篇⽂文章，叫做《浏览器器⼯工作原理理：新式⽹网络浏览器器幕后揭秘》，
    ⽂文章⾔言简意赅的介绍的浏览器器的⼯工作过程，web前端
</div>



问题就在这⾥里里。如果⽗父容器器宽度不不变，我们⼿手动增⼤大 margin 、 border 或 padding 其中⼀一项的宽

度值，都会导致内容宽度的减少。极端情况下，如果内容的宽度压缩到不不能再压缩了了（例例如⼀一个字的
宽度），那么浏览器器会强迫增加⽗父容器器的宽度。这可不不是我们想要看到的。

包裹内容的盒⼦子   

这种情况下⽐比较简单，内容的宽度按照内容计算，盒⼦子的宽度将在内容宽度的基础上再增加
（ padding 宽度 + border 宽度 + margin 宽度）之和。

box-sizing:border-box   

前⾯面提到，为盒⼦子模型设置宽度，结果只是设置了了内容的宽度，这个不不合理理。如何解决这⼀一问题？答
案就是为盒⼦子指定样式： box-sizing:border-box 。

上图中，为 div 设置了了 box-sizing:border-box 之后，300px 的宽度是内容 + padding  + 边框
的宽度（不不包括 margin ），这样就⽐比较符合我们的实际要求了了。建议⼤大家在为系统写 CSS 时候，第
⼀一个样式是：

⼤大名鼎鼎的 Bootstrap 也把 box-sizing:border-box 加⼊入到它的 * 选择器器中，我们为什什么不不这样

做呢？

纵向 margin 重叠   

这⾥里里提到 margin，就不不得不不提⼀一下 margin 的这⼀一特性——纵向重叠。如 <p> 的纵向 margin 是
16px，那么两个 <p> 之间纵向的距离是多少？—— 按常理理来说应该是 16 + 16 = 32px，但是答案仍
然是 16px。因为纵向的 margin 是会重叠的，如果两者不不⼀一样⼤大的话，⼤大的会把⼩小的“吃掉”。

浮动 float   

<div style="padding:10px; border:5px solid blue; margin: 10px; 
width:300px;">
    之前看过⼀一篇⽂文章，叫做《浏览器器⼯工作原理理：新式⽹网络浏览器器幕后揭秘》
</div>

<div style="padding:10px; border:5px solid blue; margin: 10px; width:300px; 
box-sizing:border-box;">
    之前看过⼀一篇⽂文章，叫做《浏览器器⼯工作原理理：新式⽹网络浏览器器幕后揭秘》
</div>

* {
    box-sizing:border-box;
}



float ⽤用于⽹网⻚页布局⽐比较多，使⽤用起来也⽐比较简单，这⾥里里总结了了⼀一些⽐比较重要、需要注意的知识点，供
⼤大家参考。

误解和误⽤用   

float 被设计出来的初衷是⽤用于⽂文字环绕效果，即⼀一个图⽚片⼀一段⽂文字，图⽚片 float:left 之后，⽂文字

会环绕图⽚片。

但是，后来⼤大家发现结合 float + div 可以实现之前通过 table 实现的⽹网⻚页布局，因此就被“误
⽤用”于⽹网⻚页布局了了。

题⽬目：为何 float 会导致⽗父元素塌陷？

破坏性   

float 的破坏性 —— float 破坏了了⽗父标签的原本结构，使得⽗父标签出现了了坍塌现象。导致这⼀一现象的最
根本原因在于：被设置了了 float 的元素会脱离⽂文档流。其根本原因在于 float 的设计初衷是解决⽂文字环
绕图⽚片的问题。⼤大家要记住 float 的这个影响。

包裹性   

包裹性也是 float 的⼀一个⾮非常重要的特性，⼤大家⽤用 float 时⼀一定要熟知这⼀一特性。咱们还是先从⼀一个⼩小
例例⼦子看起：

如上图，普通的 div 如果没有设置宽度，它会撑满整个屏幕，在之前的盒⼦子模型那⼀一节也讲到过。⽽而
如果给 div 增加 float:left 之后，它突然变得紧凑了了，宽度发⽣生了了变化，把内容中的三个字包裹了了

——这就是包裹性。为 div 设置了了 float 之后，其宽度会⾃自动调整为包裹住内容宽度，⽽而不不是撑满整
个⽗父容器器。

注意，此时 div 虽然体现了了包裹性，但是它的 display 样式是没有变化的，还是 display: block 。

float 为什什么要具有包裹性？其实答案还是得从 float 的设计初衷来寻找，float 是被设计⽤用于实现⽂文字
环绕效果的。⽂文字环绕图⽚片⽐比较好理理解，但是如果想要让⽂文字环绕⼀一个 div 呢？此时 div 不不被“包裹”起
来的话，就⽆无法实现环绕效果了了。

清空格   

float 还有⼀一个⼤大家可能不不是很熟悉的特性——清空格。按照惯例例，咱还是先举例例⼦子说明。

<div>
    <img src="image/1.png" style="float:left">
    ⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字⼀一段⽂文字
</div>



加上 float:left 之后：

上⾯面第⼀一张图中，正常的 img 中间是会有空格的，因为多个 img 标签会有换⾏行行，⽽而浏览器器识别换⾏行行
为空格，这也是很正常的。第⼆二张图中，为 img 增加了了 float:left 的样式，这就使得 img 之间没
有了了空格，4 个 img 紧紧挨着。

如果⼤大家之前没注意，现在想想之前写过的程序，是不不是有这个特性。为什什么 float 适合⽤用于⽹网⻚页排
版（俗称“砌砖头”）？就是因为 float 排版出来的⽹网⻚页严丝合缝，中间连个苍蝇都⻜飞不不进去。

“清空格”这⼀一特性的根本原因是 float 会导致节点脱离⽂文档流结构。它都不不属于⽂文档流结构了了，那么它
身边的什什么换⾏行行、空格就都和它没了了关系，它就尽量量往⼀一边靠拢，能靠多近就靠多近，这就是清空格
的本质。

题⽬目：⼿手写 clearfix

clearfix   

清除浮动的影响，⼀一般使⽤用的样式如下，统称 clearfix 代码。所有 float 元素的⽗父容器器，⼀一般情况
下都应该加 clearfix 这个 class。

⼩小结   

float 的设计初衷是解决⽂文字环绕图⽚片的问题，后来误打误撞⽤用于做布局，因此有许多不不合适或者需要
注意的地⽅方，上⽂文基本都讲到了了需要的知识点。如果是刚开始接触 float 的同学，学完上⾯面的基础知
识之后，还应该做⼀一些练习实战⼀一下 —— 经典的“圣杯布局”和“双⻜飞翼布局”。这⾥里里就不不再展开讲了了，
⽹网上资料料⾮非常多，例例如浅谈⾯面试中常考的两种经典布局——圣杯与双⻜飞翼（此⽂文的最后两张图清晰地

<div style="border: 2px solid blue; padding:3px;">
    <img src="image/1.png"/>
    <img src="image/2.png"/>
    <img src="image/3.png"/>
    <img src="image/4.png"/>
</div>

.clearfix:after {
    content: '';
    display: table;
    clear: both;
}
.clearfix {
    *zoom: 1; /* 兼容 IE 低版本 */
}

<div class="clearfix">
    <img src="image/1.png" style="float: left"/>
    <img src="image/2.png" style="float: left"/>
</div>

https://juejin.im/entry/5a8868cdf265da4e7e10c133?utm_source=gold_browser_extension


展示了了这两种布局）。

定位 position   

position ⽤用于⽹网⻚页元素的定位，可设置 static/relative/absolute/fixed 这些值，其中 static 是默认
值，不不⽤用介绍。

题⽬目：relative 和 absolute 有何区别？

relative   

相对定位 relative 可以⽤用⼀一个例例⼦子很轻松地演示出来。例例如我们写 4 个 <p> ，出来的样⼦子⼤大家不不⽤用看

也能知道。

然后我们在第三个 <p> 上⾯面，加上 position:relative 并且设置 left 和 top 值，看这个 <p> 有

什什么变化。

上图中，⼤大家应该要识别出两个信息（相信⼤大部分⼈人会忽略略第⼆二个信息）

第三个 <p> 发⽣生了了位置变化，分别向右向下移动了了10px；
其他的三个 <p> 位置没有发⽣生变化，这⼀一点也很重要。

可⻅见，relative 会导致⾃自身位置的相对变化，⽽而不不会影响其他元素的位置、⼤大⼩小。这是 relative 的要
点之⼀一。还有第⼆二个要点，就是 relative 产⽣生⼀一个新的定位上下⽂文。下⽂文有关于定位上下⽂文的详细介
绍，这⾥里里可以先通过⼀一个例例⼦子来展示⼀一下区别：

注意看这两图的区别，下⽂文将有解释。

absolute   

还是先写⼀一个基本的 demo。

<p>第⼀一段⽂文字</p>
<p>第⼆二段⽂文字</p>
<p>第三段⽂文字</p>
<p>第四段⽂文字</p>

<p>第⼀一段⽂文字</p>
<p>第⼆二段⽂文字</p>
<p style="position:relative; top: 10px; left: 10px">第三段⽂文字</p>
<p>第四段⽂文字</p>

<p>第⼀一段⽂文字</p>
<p>第⼆二段⽂文字</p>
<p style="background: yellow">第三段⽂文字</p>
<p>第四段⽂文字</p>



然后，我们把第三个 <p> 改为 position:absolute; ，看看会发⽣生什什么变化。

从上⾯面的结果中，我们能看出⼏几点信息：

absolute 元素脱离了了⽂文档结构。和 relative 不不同，其他三个元素的位置重新排列列了了。只要元素
会脱离⽂文档结构，它就会产⽣生破坏性，导致⽗父元素坍塌。（此时你应该能⽴立刻想起来，float 元
素也会脱离⽂文档结构。）
absolute 元素具有“包裹性”。之前 <p> 的宽度是撑满整个屏幕的，⽽而此时 <p> 的宽度刚好是内

容的宽度。
absolute 元素具有“跟随性”。虽然 absolute 元素脱离了了⽂文档结构，但是它的位置并没有发⽣生变
化，还是⽼老老⽼老老实实地呆在它原本的位置，因为我们此时没有设置 top、left 的值。
absolute 元素会悬浮在⻚页⾯面上⽅方，会遮挡住下⽅方的⻚页⾯面内容。

最后，通过给 absolute元素设置 top、left 值，可⾃自定义其内容，这个都是平时⽐比较常⽤用的了了。这⾥里里
需要注意的是，设置了了 top、left 值时，元素是相对于最近的定位上下⽂文来定位的，⽽而不不是相对于浏
览器器定位。

fixed   

其实 fixed 和 absolute 是⼀一样的，唯⼀一的区别在于：absolute 元素是根据最近的定位上下⽂文确定位
置，⽽而 fixed 根据 window （或者 iframe）确定位置。

题⽬目：relative、absolute 和 fixed 分别依据谁来定位？

定位上下⽂文   

relative 元素的定位永远是相对于元素⾃自身位置的，和其他元素没关系，也不不会影响其他元素。

fixed 元素的定位是相对于 window （或者 iframe）边界的，和其他元素没有关系。但是它具有破坏
性，会导致其他元素位置的变化。

absolute 的定位相对于前两者要复杂许多。如果为 absolute 设置了了 top、left，浏览器器会根据什什么去
确定它的纵向和横向的偏移量量呢？答案是浏览器器会递归查找该元素的所有⽗父元素，如果找到⼀一个设置
了了 position:relative/absolute/fixed 的元素，就以该元素为基准定位，如果没找到，就以浏览

器器边界定位。如下两个图所示：

 

flex布局   

布局的传统解决⽅方案基于盒⼦子模型，依赖 display  属性 + position  属性 + float  属性。它对
于那些特殊布局⾮非常不不⽅方便便，⽐比如，垂直居中（下⽂文会专⻔门讲解）就不不容易易实现。在⽬目前主流的移动
端⻚页⾯面中，使⽤用 flex 布局能更更好地完成需求，因此 flex 布局的知识是必须要掌握的。

基本使⽤用   

任何⼀一个容器器都可以使⽤用 flex 布局，代码也很简单。



注意，第三个 <div> 的 flex: 2 ，其他的 <div> 的 flex: 1 ，这样第⼆二个 <div> 的宽度就是其

他的 <div> 的两倍。

设计原理理   

设置了了 display: flex 的元素，我们称为“容器器”（flex container），其所有的⼦子节点我们称为“成
员”（flex item）。容器器默认存在两根轴：⽔水平的主轴（main axis）和垂直的交叉轴（cross axis）。
主轴的开始位置（与边框的交叉点）叫做 main start，结束位置叫做 main end；交叉轴的开始位置
叫做 cross start，结束位置叫做cross end。项⽬目默认沿主轴排列列。单个项⽬目占据的主轴空间叫做
main size，占据的交叉轴空间叫做 cross size。

将以上⽂文字和图⽚片结合起来，再详细看⼀一遍，这样就能理理解 flex 的设计原理理，才能更更好地实际使⽤用。

设置主轴的⽅方向   

flex-direction 可决定主轴的⽅方向，有四个可选值：

row（默认值）：主轴为⽔水平⽅方向，起点在左端。
row-reverse：主轴为⽔水平⽅方向，起点在右端。
column：主轴为垂直⽅方向，起点在上沿。
column-reverse：主轴为垂直⽅方向，起点在下沿。

以上代码设置的主轴⽅方向，将依次对应下图：

设置主轴的对⻬齐⽅方式   

<style type="text/css">
    .container {
      display: flex;
    }
    .item {
        border: 1px solid #000;
        flex: 1;
    }
</style>

<div class="container">
    <div class="item">aaa</div>
    <div class="item" style="flex: 2">bbb</div>
    <div class="item">ccc</div>
    <div class="item">ddd</div>
</div>

.box {
  flex-direction: column-reverse| column | row | row-reverse;
}



justify-content 属性定义了了项⽬目在主轴上的对⻬齐⽅方式，值如下：

flex-start（默认值）：向主轴开始⽅方向对⻬齐。
flex-end：向主轴结束⽅方向对⻬齐。
center： 居中。
space-between：两端对⻬齐，项⽬目之间的间隔都相等。
space-around：每个项⽬目两侧的间隔相等。所以，项⽬目之间的间隔⽐比项⽬目与边框的间隔⼤大⼀一
倍。

交叉轴的对⻬齐⽅方式   

align-items 属性定义项⽬目在交叉轴上如何对⻬齐，值如下：

flex-start：交叉轴的起点对⻬齐。
flex-end：交叉轴的终点对⻬齐。
center：交叉轴的中点对⻬齐。
baseline: 项⽬目的第⼀一⾏行行⽂文字的基线对⻬齐。
stretch（默认值）：如果项⽬目未设置⾼高度或设为 auto，将占满整个容器器的⾼高度。

如何实现居中对⻬齐？   

题⽬目：如何实现⽔水平居中？

⽔水平居中   

inline 元素⽤用 text-align: center; 即可，如下：

block 元素可使⽤用 margin: auto; ，PC 时代的很多⽹网站都这么搞。

.box {
    justify-content: flex-start | flex-end | center | space-between | 
space-around;
}

.box {
    align-items: flex-start | flex-end | center | baseline | stretch;
}

.container {
   text-align: center;
}



绝对定位元素可结合 left 和 margin 实现，但是必须知道宽度。

题⽬目：如何实现垂直居中？

垂直居中   

inline 元素可设置 line-height 的值等于 height 值，如单⾏行行⽂文字垂直居中：

绝对定位元素，可结合 left 和 margin 实现，但是必须知道尺⼨寸。

优点：兼容性好
缺点：需要提前知道尺⼨寸

.container {
    text-align: center; 
}
.item {
    width: 1000px;
    margin: auto; 
}

.container {
    position: relative;
    width: 500px;
}
.item {
    width: 300px;
    height: 100px;
    position: absolute;
    left: 50%;
    margin: -150px;
}

.container {
   height: 50px;
   line-height: 50px;
}



绝对定位可结合 transform 实现居中。

优点：不不需要提前知道尺⼨寸
缺点：兼容性不不好

绝对定位结合 margin: auto ，不不需要提前知道尺⼨寸，兼容性好。

.container {
    position: relative;
    height: 200px;
}
.item {
    width: 80px;
    height: 40px;
    position: absolute;
    left: 50%;
    top: 50%;
    margin-top: -20px;
    margin-left: -40px;
}

.container {
    position: relative;
    height: 200px;
}
.item {
    width: 80px;
    height: 40px;
    position: absolute;
    left: 50%;
    top: 50%;
    transform: translate(-50%, -50%);
    background: blue;
}

.container {
    position: relative;
    height: 300px;
}
.item {
    width: 100px;
    height: 50px;
    position: absolute;
    left: 0;
    top: 0;
    right: 0;
    bottom: 0;
    margin: auto;



其他的解决⽅方案还有，不不过没必要掌握太多，能说出上⽂文的这⼏几个解决⽅方案即可。

理理解语义化   

题⽬目：如何理理解 HTML 语义化？

所谓“语义”就是为了了更更易易读懂，这要分两部分：

让⼈人（写程序、读程序）更更易易读懂
让机器器（浏览器器、搜索引擎）更更易易读懂

让⼈人更更易易读懂   

对于⼈人来说，代码可读性、语义化就是⼀一个⾮非常⼴广泛的概念了了，例例如定义 JS 变量量的时候使⽤用更更易易读懂
的名称，定义 CSS class 的时候也⼀一样，例例如 length  list 等，⽽而不不是使⽤用 a  b 这种谁都看不不懂
的名称。

不不过我们平常考查的“语义化”并不不会考查这么⼴广义、这么泛的问题，⽽而是考查 HTML 的语义化，是为
了了更更好地让机器器读懂 HTML。

让机器器更更易易读懂   

HTML 符合 XML 标准，但⼜又和 XML 不不⼀一样 —— HTML 不不允许像 XML 那样⾃自定义标签名称，HTML
有⾃自⼰己规定的标签名称。问题就在这⾥里里 —— HTML 为何要⾃自⼰己规定那么多标签名称呢，例例如 p

div  h1  ul 等 —— 就是为了了语义化。其实，如果你精通 CSS 的话，你完全可以全部⽤用 <div> 标

签来实现所有的⽹网⻚页效果，其他的 p  h1  ul 等标签可以⼀一个都不不⽤用。但是我们不不推荐这么做，这
样做就失去了了 HTML 语义化的意义。

拿搜索引擎来说，爬⾍虫下载到我们⽹网⻚页的 HTML 代码，它如何更更好地去理理解⽹网⻚页的内容呢？—— 就是
根据 HTML 既定的标签。 h1 标签就代表是标题； p ⾥里里⾯面的就是段落详细内容，权重肯定没有标题

⾼高； ul ⾥里里⾯面就是列列表； strong 就是加粗的强调的内容 …… 如果我们不不按照 HTML 语义化来写，全
部都⽤用 <div> 标签，那搜索引擎将很难理理解我们⽹网⻚页的内容。

为了了加强 HTML 语义化，HTML5 标准中⼜又增加了了 header  section  article 等标签。因此，书
写 HTML 时，语义化是⾮非常重要的，否则 W3C 也没必要⾟辛⾟辛苦苦制定出这些标准来。

CSS3 动画   

CSS3 可以实现动画，代替原来的 Flash 和 JavaScript ⽅方案。

⾸首先，使⽤用 @keyframes 定义⼀一个动画，名称为 testAnimation ，如下代码，通过百分⽐比来设置不不

同的 CSS 样式，规定动画的变化。所有的动画变化都可以这么定义出来。

}



然后，针对⼀一个 CSS 选择器器来设置动画，例例如针对 div 元素设置动画，如下：

animation-name 对应到动画名称， animation-duration 是动画时⻓长，还有其他属性：

animation-timing-function ：规定动画的速度曲线。默认是 ease

animation-delay ：规定动画何时开始。默认是 0
animation-iteration-count ：规定动画被播放的次数。默认是 1
animation-direction ：规定动画是否在下⼀一周期逆向地播放。默认是 normal

animation-play-state  ：规定动画是否正在运⾏行行或暂停。默认是 running

animation-fill-mode ：规定动画执⾏行行之前和之后如何给动画的⽬目标应⽤用，默认是 none ，

保留留在最后⼀一帧可以⽤用 forwards

题⽬目：CSS 的 transition 和 animation 有何区别？

⾸首先 transition 和 animation 都可以做动效，从语义上来理理解， transition 是过渡，由⼀一个状

态过渡到另⼀一个状态，⽐比如⾼高度 100px 过渡到 200px ；⽽而 animation 是动画，即更更专业做动效

的， animation 有帧的概念，可以设置关键帧 keyframe ，⼀一个动画可以由多个关键帧多个状态过

渡组成，另外 animation 也包含上⾯面提到的多个属性。

重绘和回流   

重绘和回流是⾯面试题经常考的题⽬目，也是性能优化当中应该注意的点，下⾯面笔者简单介绍下。

重绘：指的是当⻚页⾯面中的元素不不脱离⽂文档流，⽽而简单地进⾏行行样式的变化，⽐比如修改颜⾊色、背景
等，浏览器器重新绘制样式
回流：指的是处于⽂文档流中 DOM 的尺⼨寸⼤大⼩小、位置或者某些属性发⽣生变化时，导致浏览器器重新
渲染部分或全部⽂文档的情况

@keyframes testAnimation
{
    0%   {background: red; left:0; top:0;}
    25%  {background: yellow; left:200px; top:0;}
    50%  {background: blue; left:200px; top:200px;}
    75%  {background: green; left:0; top:200px;}
    100% {background: red; left:0; top:0;}
}

div {
    width: 100px;
    height: 50px;
    position: absolute;

    animation-name: myfirst;
    animation-duration: 5s;
}



相⽐比之下，回流要⽐比重绘消耗性能开⽀支更更⼤大。另外，⼀一些属性的读取也会引起回流，⽐比如读取某个
DOM 的⾼高度和宽度，或者使⽤用 getComputedStyle ⽅方法。在写代码的时候要避免回流和重绘。⽐比如

在笔试中可能会遇⻅见下⾯面的题⽬目：

题⽬目：找出下⾯面代码的优化点，并且优化它

上⾯面的代码在循环中每次都获取 dom ，然后对其内部的 HTML 进⾏行行累加 li ，每次都会操作 DOM 结
构，可以改成使⽤用 documentFragment 或者先遍历组成 HTML 的字符串串，最后操作⼀一
次 innerHTML 。

⼩小结   

本⼩小节总结了了 CSS 和 HTML 常考的知识点，包括 CSS 中⽐比较重要的定位、布局的知识，也介绍了了⼀一
些 CSS3 的知识点概念和题⽬目，以及 HTML 的语义化。

var data = ['string1', 'string2', 'string3'];
for(var i = 0; i < data.length; i++){
    var dom = document.getElementById('list');
    dom.innerHTML += '<li>' + data[i] + '</li>';
}


	一面 3：CSS-HTML 知识点与高频考题解析
	知识点梳理
	选择器的权重和优先级
	盒模型
	什么是“盒子”
	固定宽度的盒子
	充满父容器的盒子
	包裹内容的盒子
	box-sizing:border-box
	纵向 margin 重叠

	浮动float
	误解和误用
	破坏性
	包裹性
	清空格
	clearfix
	小结

	定位position
	relative
	absolute
	fixed
	定位上下文

	flex布局
	基本使用
	设计原理
	设置主轴的方向
	设置主轴的对齐方式
	交叉轴的对齐方式

	如何实现居中对齐？
	水平居中
	垂直居中

	理解语义化
	让人更易读懂
	让机器更易读懂

	CSS3 动画
	重绘和回流
	小结


