
平安产险--ai部门
1. redis各种应⽤用场景

a. 更更多的数据结构；

b. 可持久化；

c. 计数器器；

d. 发布-订阅功能；
e. 事务功能；

f. 过期回调功能；

g. 队列列功能；

h. 排序、聚合查询功能。

2. redis持久化机制
a. RDB：快照形式是直接把内存中的数据保存到⼀一个 dump ⽂文件中，定时保存，保存策略略。（会丢数据）
b. AOF：把所有的对Redis的服务器器进⾏行行修改的命令都存到⼀一个⽂文件⾥里里，命令的集合。（影响性能）

3. mysql调优
a. explain select语句句；
b. 当只要⼀一条数据时使⽤用limit 1；
c. 为搜索字段建索引；

d. 避免select *；
e. 字段尽量量使⽤用not null；
f. 垂直分割；

g. 拆分⼤大的delete和insert语句句：delete和insert会锁表；
h. 分表分库分区。

4. 有没了了解Docker，Docker和虚拟机有什什么区别？
1、虚拟机：我们传统的虚拟机需要模拟整台机器器包括硬件，每台虚拟机都需要有⾃自⼰己的操作系统，虚拟机⼀一旦被开

启，预分配给他的资源将全部被占⽤用。，每⼀一个虚拟机包括应⽤用，必要的⼆二进制和库，以及⼀一个完整的⽤用户操作系统。

2、Docker：容器器技术是和我们的宿主机共享硬件资源及操作系统可以实现资源的动态分配。
容器器包含应⽤用和其所有的依赖包，但是与其他容器器共享内核。容器器在宿主机操作系统中，在⽤用户空间以分离的进程运

⾏行行。

3、对⽐比：
1. docker启动快速属于秒级别。虚拟机通常需要⼏几分钟去启动。

2. docker需要的资源更更少，docker在操作系统级别进⾏行行虚拟化，docker容器器和内核交互，⼏几乎没有性能损耗，

性能优于通过Hypervisor层与内核层的虚拟化。；

3. docker更更轻量量，docker的架构可以共⽤用⼀一个内核与共享应⽤用程序库，所占内存极⼩小。同样的硬件环境，

Docker运⾏行行的镜像数远多于虚拟机数量量。对系统的利利⽤用率⾮非常⾼高

4. 与虚拟机相⽐比，docker隔离性更更弱，docker属于进程之间的隔离，虚拟机可实现系统级别隔离；

5. 安全性： docker的安全性也更更弱。Docker的租户root和宿主机root等同，⼀一旦容器器内的⽤用户从普通⽤用户权限

提升为root权限，它就直接具备了了宿主机的root权限，进⽽而可进⾏行行⽆无限制的操作。虚拟机租户root权限和宿主机的root虚拟

机权限是分离的，并且虚拟机利利⽤用如Intel的VT-d和VT-x的ring-1硬件隔离技术，这种隔离技术可以防⽌止虚拟机突破和彼此

交互，⽽而容器器⾄至今还没有任何形式的硬件隔离，这使得容器器容易易受到攻击。

6. 可管理理性：docker的集中化管理理⼯工具还不不算成熟。各种虚拟化技术都有成熟的管理理⼯工具，例例如VMware

vCenter提供完备的虚拟机管理理能⼒力力。

7. ⾼高可⽤用和可恢复性：docker对业务的⾼高可⽤用⽀支持是通过快速重新部署实现的。虚拟化具备负载均衡，⾼高可⽤用，

容错，迁移和数据保护等经过⽣生产实践检验的成熟保障机制，VMware可承诺虚拟机99.999%⾼高可⽤用，保证业务连续性。

8. 快速创建、删除：虚拟化创建是分钟级别的，Docker容器器创建是秒级别的，Docker的快速迭代性，决定了了⽆无论

是开发、测试、部署都可以节约⼤大量量时间。

9. 交付、部署：虚拟机可以通过镜像实现环境交付的⼀一致性，但镜像分发⽆无法体系化；Docker在Dockerfile中记

录了了容器器构建过程，可在集群中实现快速分发和快速部署;

5. 同⼀一个宿主机中多个Docker容器器之间如何通信？多个宿主机中Docker容器器之间如何通信？
1、这⾥里里同主机不不同容器器之间通信主要使⽤用Docker桥接（Bridge）模式。
2、不不同主机的容器器之间的通信可以借助于 pipework 这个⼯工具。

平安产险-核⼼系统部
1、简历：

1. 介绍简历上主要项⽬目，画框架图，说流程。

2. 针对简历上的技能进⾏行行提问。

2、队列列：
3. 说说rabbitmq的结构。

a. 消息处理理过程：

b. 四种交换机：

i. 直连交换机，Direct exchange：带路路由功能的交换机，根据routing_key（消息发送的时候需要指定）直接绑
定到队列列，⼀一个交换机也可以通过过个routing_key绑定多个队列列。
ii. 扇形交换机，Fanout exchange：⼴广播消息。
iii. 主题交换机，Topic exchange：发送到主题交换机上的消息需要携带指定规则的routing_key，主题交换机会
根据这个规则将数据发送到对应的(多个)队列列上。

iv. ⾸首部交换机，Headers exchange：⾸首部交换机是忽略略routing_key的⼀一种路路由⽅方式。路路由器器和交换机路路由的

规则是通过Headers信息来交换的，这个有点像HTTP的Headers。将⼀一个交换机声明成⾸首部交换机，绑定⼀一个

队列列的时候，定义⼀一个Hash的数据结构，消息发送的时候，会携带⼀一组hash数据结构的信息，当Hash的内容匹

配上的时候，消息就会被写⼊入队列列。

4. rabbitmq队列列与消费者的关系？
a. ⼀一个队列列可以绑定多个消费者；

b. 消息分发：若该队列列⾄至少有⼀一个消费者订阅，消息将以循环（round-robin）的⽅方式发送给消费者。每条消息只会
分发给⼀一个订阅的消费者（前提是消费者能够正常处理理消息并进⾏行行确认）。

5. rabbitmq交换器器种类。
1. fanout交换器器：它会把所有发送到该交换器器的消息路路由到所有与该交换器器绑定的队列列中；
2. direct交换器器：direct类型的交换器器路路由规则很简单，它会把消息路路由到哪些BindingKey和RoutingKey完全匹配的
队列列中；

3. topic交换器器：匹配规则⽐比direct更更灵活。
4. headers交换器器：根据发送消息内容的headers属性进⾏行行匹配（由于性能很差，不不实⽤用）。

6. 项⽬目中哪⾥里里⽤用到了了kafka，kafka特性？
a. 场景：

i. ⼤大数据部⻔门流数据处理理；

ii. elk；
b. 特性：

它被设计为⼀一个分布式系统，易易于向外扩展；

它同时为发布和订阅提供⾼高吞吐量量；

它⽀支持多订阅者，当失败时能⾃自动平衡消费者；

它将消息持久化到磁盘，因此可⽤用于批量量消费，例例如ETL，以及实时应⽤用程序。
7. rabbitmq、RocketMq、kafka对⽐比。

http://en.wikipedia.org/wiki/Extract,_transform,_load

1. 中⼩小型公司⾸首选RabbitMQ：管理理界⾯面简单，⾼高并发。
2. ⼤大型公司可以选择RocketMQ：更更⾼高并发，可对rocketmq进⾏行行定制化开发。
3. ⽇日志采集功能，⾸首选kafka，专为⼤大数据准备。

3、SpringCloud：
8. 介绍springcloud核⼼心组件及其作⽤用，以及springcloud⼯工作流程。
M.

springcloud由以下⼏几个核⼼心组件构成：
Eureka：各个服务启动时，Eureka Client都会将服务注册到Eureka Server，并且Eureka Client还可以反过来从
Eureka Server拉取注册表，从⽽而知道其他服务在哪⾥里里
Ribbon：服务间发起请求的时候，基于Ribbon做负载均衡，从⼀一个服务的多台机器器中选择⼀一台
Feign：基于Feign的动态代理理机制，根据注解和选择的机器器，拼接请求URL地址，发起请求
Hystrix：发起请求是通过Hystrix的线程池来⾛走的，不不同的服务⾛走不不同的线程池，实现了了不不同服务调⽤用的隔离，避免
了了服务雪崩的问题

Zuul：如果前端、移动端要调⽤用后端系统，统⼀一从Zuul⽹网关进⼊入，由Zuul⽹网关转发请求给对应的服务
9. 介绍springcloud⼼心跳机制，以及消费端如何发现服务端（Ribbon）？

特性 ActiveMQ RabbitMQ RocketMQ kafka

开发语⾔言 java erlang java scala

单机吞吐量量 万级 万级 10万级 10万级

时效性 ms级 us级 ms级 ms级以内

可⽤用性 ⾼高(主从架构) ⾼高(主从架构) ⾮非常⾼高(分布式架构) ⾮非常⾼高(分布式架构)

功能特性
成熟的产品，在很多公司
得到应⽤用；有较多的⽂文
档；各种协议⽀支持较好

基于erlang开发，所以并
发能⼒力力很强，性能极其
好，延时很低;管理理界⾯面较
丰富

MQ功能⽐比较完备，扩展
性佳

只⽀支持主要的MQ功能，
像⼀一些消息查询，消息回
溯等功能没有提供，毕竟
是为⼤大数据准备的，在⼤大
数据领域应⽤用⼴广。

a. 当⼀一个服务实例例启动，会将它的ip地址等信息注册到eureka；
b. 当a服务调⽤用b服务，a服务会通过Ribbon检查本地是否有b服务实例例信息的缓存；
c. Ribbon会定期从eureka刷新本地缓存。

10. eureka的缺点。
a. 某个服务不不可⽤用时，各个Eureka Client不不能及时的知道，需要1~3个⼼心跳周期才能感知，但是，由于基于Netflix的
服务调⽤用端都会使⽤用Hystrix来容错和降级，当服务调⽤用不不可⽤用时Hystrix也能及时感知到，通过熔断机制来降级服务调
⽤用，因此弥补了了基于客户端服务发现的时效性的缺点。

11. eureka缓存机制？

a. 第⼀一层缓存：readOnlyCacheMap，本质上是ConcurrentHashMap：这是⼀一个JVM的CurrentHashMap只读缓存，
这个主要是为了了供客户端获取注册信息时使⽤用，其缓存更更新，依赖于定时器器的更更新，通过和readWriteCacheMap 的
值做对⽐比，如果数据不不⼀一致，则以readWriteCacheMap 的数据为准。readOnlyCacheMap 缓存更更新的定时器器时间间
隔，默认为30秒
b. 第⼆二层缓存：readWriteCacheMap，本质上是Guava缓存：此处存放的是最终的缓存， 当服务下线，过期，注
册，状态变更更，都会来清除这个缓存⾥里里⾯面的数据。 然后通过CacheLoader进⾏行行缓存加载，在进⾏行行
readWriteCacheMap.get(key)的时候，⾸首先看这个缓存⾥里里⾯面有没有该数据，如果没有则通过CacheLoader的load⽅方法

去加载，加载成功之后将数据放⼊入缓存，同时返回数据。 readWriteCacheMap 缓存过期时间，默认为 180 秒 。

c. 缓存机制：设置了了⼀一个每30秒执⾏行行⼀一次的定时任务，定时去服务端获取注册信息。获取之后，存⼊入本地内存。
12. rpc和http的区别，使⽤用场景？

a. 区别：

传输协议

RPC，可以基于TCP协议，也可以基于HTTP协议

HTTP，基于HTTP协议
传输效率

RPC，使⽤用⾃自定义的TCP协议，可以让请求报⽂文体积更更⼩小，或者使⽤用HTTP2协议，也可以很好的减少报⽂文
的体积，提⾼高传输效率

HTTP，如果是基于HTTP1.1的协议，请求中会包含很多⽆无⽤用的内容，如果是基于HTTP2.0，那么简单的封
装以下是可以作为⼀一个RPC来使⽤用的，这时标准RPC框架更更多的是服务治理理
性能消耗，主要在于序列列化和反序列列化的耗时

RPC，可以基于thrift实现⾼高效的⼆二进制传输
HTTP，⼤大部分是通过json来实现的，字节⼤大⼩小和序列列化耗时都⽐比thrift要更更消耗性能

负载均衡

RPC，基本都⾃自带了了负载均衡策略略
HTTP，需要配置Nginx，HAProxy来实现

服务治理理（下游服务新增，重启，下线时如何不不影响上游调⽤用者）

RPC，能做到⾃自动通知，不不影响上游
HTTP，需要事先通知，修改Nginx/HAProxy配置

b. 总结：RPC主要⽤用于公司内部的服务调⽤用，性能消耗低，传输效率⾼高，服务治理理⽅方便便。HTTP主要⽤用于对外的异构
环境，浏览器器接⼝口调⽤用，APP接⼝口调⽤用，第三⽅方接⼝口调⽤用等。

13. 分布式事务如何保持⼀一致性？

1. ⼆二阶段提交：

a. 概念：参与者将操作成败通知协调者，再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还

是中⽌止操作。

b. 作⽤用：主要保证了了分布式事务的原⼦子性；第⼀一阶段为准备阶段，第⼆二阶段为提交阶段；

c. 缺点：不不仅要锁住参与者的所有资源，⽽而且要锁住协调者资源，开销⼤大。⼀一句句话总结就是：2PC效率很低，对
⾼高并发很不不友好。

2. 三阶段提交：

a. 概念：三阶段提交协议在协调者和参与者中都引⼊入超时机制，并且把两阶段提交协议的第⼀一个阶段拆分成了了两

步：询问，然后再锁资源，最后真正提交。这样三阶段提交就有CanCommit、PreCommit、DoCommit三个阶
段。

b. 缺点：如果进⼊入PreCommit后，Coordinator发出的是abort请求，假设只有⼀一个Cohort收到并进⾏行行了了abort操
作，

⽽而其他对于系统状态未知的Cohort会根据3PC选择继续Commit，此时系统状态发⽣生不不⼀一致性。
3. 柔性事务：

a. 概念：所谓柔性事务是相对强制锁表的刚性事务⽽而⾔言。流程⼊入下：服务器器A的事务如果执⾏行行顺利利，那么事务A

就先⾏行行提交，如果事务B也执⾏行行顺利利，则事务B也提交，整个事务就算完成。但是如果事务B执⾏行行失败，事务B本

身回滚，这时事务A已经被提交，所以需要执⾏行行⼀一个补偿操作，将已经提交的事务A执⾏行行的操作作反操作，恢复到

未执⾏行行前事务A的状态。
b. 缺点：业务侵⼊入性太强，还要补偿操作，缺乏普遍性，没法⼤大规模推⼴广。

4. 消息最终⼀一致性解决⽅方案之RabbitMQ实现：
a. 实现：发送⽅方确认+消息持久化+消费者确认。

14. 什什么情况下⽤用到分布式开发？

a. 优点：

i. 模块解耦：把模块拆分,使⽤用接⼝口通信,降低模块之间的耦合度.
ii. 项⽬目拆分，不不同团队负责不不同的⼦子项⽬目：把项⽬目拆分成若⼲干个⼦子项⽬目,不不同的团队负责不不同的⼦子项⽬目.
iii. 提⾼高项⽬目扩展性：增加功能时只需要再增加⼀一个⼦子项⽬目,调⽤用其他系统的接⼝口就可以。

iv. 分布式部署：可以灵活的进⾏行行分布式部署.
v. 提⾼高代码的复⽤用性：⽐比如service层,如果不不采⽤用分布式rest服务⽅方式架构就会在⼿手机wap商城,微信商
城,pc,android，ios每个端都要写⼀一个service层逻辑,开发量量⼤大,难以维护⼀一起升级,这时候就可以采⽤用分布式rest服
务⽅方式,公⽤用⼀一个service层。

b. 缺点：

i. 系统之间的交互要使⽤用远程通信,接⼝口开发增⼤大⼯工作量量；

ii. ⽹网络请求有延时；

iii. 事务处理理⽐比较麻烦，需要使⽤用分布式事务。

4、jvm：
15. jvm内存模型，各个部分的特点？

1. PC寄存器器：
a. 每个线程拥有⼀一个pc寄存器器；
b. 指向下⼀一条指令的地址。

2. ⽅方法区：

a. 保存装载的类的元信息：类型的常量量池，字段、⽅方法信息，⽅方法字节码；

jdk6时，String等常量信息置于⽅法区，jdk7移到了堆中；
b. 通常和永久区（Perm）关联在⼀一起；

3. 堆：

a. 应⽤用系统对象都保存在java堆中；
b. 所有线程共享java堆；
c. 对分代GC来说，堆也是分代的；

4. 栈：

a. 线程私有；

b. 栈由⼀一系列列帧组成（因此java栈也叫做帧栈）；
c. 帧保存⼀一个⽅方法的局部变量量（局部变量量表）、操作数栈、常量量池指针；

d. 每⼀一次⽅方法调⽤用创建⼀一个帧，并压栈。

16. 类加载器器，双亲委派模型？

1. BootStrap ClassLoader 启动ClassLoader
2. Extension ClassLoader 扩展ClassLoader
3. App ClassLoader 应⽤用ClassLoader/系统ClassLoader

4. Custom ClassLoader ⾃自定义ClassLoader
除了BootStrap ClassLoader，每个ClassLoader都有⼀个Parent作为⽗亲。
1. ⾃底向上检查类是否已经加载；
2. ⾃顶向下尝试加载类。

5、双亲委派机制：当⼀一个类收到了了类加载请求，他⾸首先不不会尝试⾃自⼰己去加载这个类，⽽而是把这个请求委派给⽗父类去
完成，每⼀一个层次类加载器器都是如此，因此所有的加载请求都应该传送到启动类加载其中，只有当⽗父类加载器器反馈⾃自⼰己⽆无

法完成这个请求的时候（在它的加载路路径下没有找到所需加载的Class），⼦子类加载器器才会尝试⾃自⼰己去加载。

17. 类加载机制。

1. 概念：虚拟机把描述类的数据⽂文件（字节码）加载到内存，并对数据进⾏行行验证、准备、解析以及类初始化，最终形

成可以被虚拟机直接使⽤用的java类型（java.lang.Class对象）。
2. 类⽣生命周期：

类加载过程：读取⼆二进制字节流到jvm—>验证格式语义等—>为静态变量量分配内存空间—>常量量池引⽤用解析—>执
⾏行行static标识的代码
a. 加载过程：通过⼀一个类的全限定名来获取定义此类的⼆二进制字节流，将这个字节流所代表的静态存储结构转化

为⽅方法区的运⾏行行时数据结构。在内存中(⽅方法区)⽣生成⼀一个代表这个类的java.lang.Class对象，作为⽅方法区这个类的
各种数据的访问⼊入⼝口；

b. 验证过程：为了了确保Class⽂文件的字节流中包含的信息符合当前虚拟机的要求，⽂文件格式验证、元数据验证、
字节码验证、符号引⽤用验证；

c. 准备过程：正式为类属性分配内存并设置类属性初始值的阶段，这些内存都将在⽅方法区中进⾏行行分配；

准备阶段，static对象会被设置默认值，static final对象会被赋上给予的值。
d. 解析阶段：虚拟机将常量量池内的符号引⽤用替换为直接引⽤用的过程。

i. 符号引⽤用：字符串串，引⽤用对象不不⼀一定被加载；

ii. 直接引⽤用：指针或者地址偏移量量，引⽤用对象⼀一定在内存中。

e. 初始化阶段：类初始化阶段是类加载过程的最后⼀一步。初始化阶段就是执⾏行行类构造器器<clint>()⽅方法的过程。
f. 使⽤用阶段：

g. 卸载阶段：

18. java堆的结构，⼀一个bean被new出来之后，在内存空间的⾛走向？

1、JVM中堆空间可以分成三个⼤大区，新⽣生代、⽼老老年年代、永久代
2、新⽣生代可以划分为三个区，Eden区，两个Survivor区，在HotSpot虚拟机Eden和Survivor的⼤大⼩小⽐比例例为8c1

19. 如何让栈溢出，如何让⽅方法区溢出？

1. 运⾏行行时产⽣生⼤大量量的类去填满⽅方法区，直到溢出。

20. 写出⼏几个jvm优化配置参数。
1. 设定堆内存⼤大⼩小，这是最基本的。

2. -Xms：启动JVM时的堆内存空间。
3. -Xmx：堆内存最⼤大限制。
4. 设定新⽣生代⼤大⼩小。

5. 新⽣生代不不宜太⼩小，否则会有⼤大量量对象涌⼊入⽼老老年年代。

6. -XX:NewRatio：新⽣生代和⽼老老年年代的占⽐比。
7. -XX:NewSize：新⽣生代空间。
8. -XX:SurvivorRatio：伊甸园空间和幸存者空间的占⽐比。
9. -XX:MaxTenuringThreshold：对象进⼊入⽼老老年年代的年年龄阈值。
10. 设定垃圾回收器器

年年轻代：-XX:+UseParNewGC。
⽼老老年年代：-XX:+UseConcMarkSweepGC。
CMS可以将STW时间降到最低，但是不不对内存进⾏行行压缩，有可能出现“并⾏行行模式失败”。⽐比如⽼老老年年代空间还有

300MB空间，但是⼀一些10MB的对象⽆无法被顺序的存储。这时候会触发压缩处理理，但是CMS GC模式下的压缩处理理时间要
⽐比Parallel GC⻓长很多。

G1采⽤用”标记-整理理“算法，解决了了内存碎⽚片问题，建⽴立了了可预测的停顿时间类型，能让使⽤用者指定在⼀一个⻓长度为
M毫秒的时间段内，消耗在垃圾收集上的时间不不得超过N毫秒。
21. 有哪⼏几种GC机制？

1. 引⽤用计数法(没有被java采⽤用)：
a. 原理理：对于⼀一个对象A，只要有任何⼀一个对象引⽤用了了A，则A的引⽤用计数器器就加1，当引⽤用失效时，引⽤用计数器器
就减1，只要对象A的引⽤用计数器器的值为0，则对象A就会被回收。
b. 问题：

i. 引⽤用和去引⽤用伴随加法和减法，影响性能；

ii. 很难处理理循环引⽤用。

2. 标记清除法：

a. 原理理：现代垃圾回收算法的思想基础。标记-清除算法将垃圾回收分为两个阶段：标记阶段和清除阶段。⼀一种
可⾏行行的实现是，在标记节点，⾸首先通过根节点，标记所有从根节点开始的可达对象。因此，未被标记的对象就是

未被引⽤用的垃圾对象。然后在清除阶段，清除所有未被标记的对象。

b. 问题：

i. 标记和清除两个过程效率不不⾼高，产⽣生内存碎⽚片导致需要分配较⼤大对象时⽆无法找到⾜足够的连续内存⽽而需要触

发⼀一次GC操作。
3. 标记压缩法：

a. 原理理：适合⽤用于存活对象较多的场合，如⽼老老年年代。它在标记-清除算法的基础上做了了⼀一些优化。标记阶段⼀一
样，但之后，将所有存活对象压缩到内存的⼀一端。之后，清除边界外所有的空间。
b. 优点：

i. 解决了了标记- 清除算法导致的内存碎⽚片问题和在存活率较⾼高时复制算法效率低的问题。
4. 复制算法：

a. 原理理：将原有的内存空间分为两块，每次只使⽤用其中⼀一块，在垃圾回收时，将正在使⽤用的内存中的存活对象复

制到未使⽤用的内存块中，之后清除正在使⽤用的内存块中的所有对象，交换两个内存的⻆角⾊色，完成垃圾回收。
b. 问题：

i. 不不适⽤用于存活对象⽐比较多的场合，如⽼老老年年代。

5. 分代回收法：

a. 原理理：根据对象存活周期的不不同将内存划分为⼏几块，⼀一般是新⽣生代和⽼老老年年代，新⽣生代基本采⽤用复制算法，⽼老老年年

代采⽤用标记整理理算法。

5、spring：
22. springboot启动过程。

1. 通过 SpringFactoriesLoader加载 META-INF/spring.factories⽂文件，获取并创建
SpringApplicationRunListener对象

2. 然后由 SpringApplicationRunListener来发出 starting 消息
3. 创建参数，并配置当前 SpringBoot 应⽤用将要使⽤用的 Environment
4. 完成之后，依然由 SpringApplicationRunListener来发出 environmentPrepared 消息
5. 创建 ApplicationContext
6. 初始化 ApplicationContext，并设置 Environment，加载相关配置等
7. 由 SpringApplicationRunListener来发出 contextPrepared消息，告知SpringBoot 应⽤用使⽤用的
ApplicationContext已准备OK
8. 将各种 beans 装载⼊入 ApplicationContext，继续由 SpringApplicationRunListener来发出
contextLoaded 消息，告知 SpringBoot 应⽤用使⽤用的 ApplicationContext已装填OK
9. refresh ApplicationContext，完成IoC容器器可⽤用的最后⼀一步
10. 由 SpringApplicationRunListener来发出 started 消息
11. 完成最终的程序的启动

12. 由 SpringApplicationRunListener来发出 running 消息，告知程序已运⾏行行起来了了
23. 说说⼏几个常⽤用的注解？

24. spring事件的实现原理理，写出常⽤用的⼏几个事件。
25. spring的bean的⽣生命周期？
26. BeanFactory和FactoryBean的区别。
27. spring中使⽤用到了了FactoryBean的哪个⽅方法？

6、数据结构：
28. 说说HashMap、ConcurrentHashMap数据结构，1.7与1.8的区别？
29. 谈谈数据结构，⽐比如TreeMap、⼆二叉树、红⿊黑树。
30. B-tree、B+tree？
31. 红⿊黑树左旋与右旋的区别？

7、并发：
32. concurrent包下有哪些类？
33. 三种分布式锁。

8、线程池：
34. 你知道哪些常⽤用的阻塞队列列？

35. newFixedThreadPool使⽤用到了了哪个阻塞队列列？
9、数据库：

36. 说说mysql存储引擎innodb和myisam的区别和使⽤用场景。
37. 说说mysql查询优化。
38. 说说脏读、不不可重复读、幻读；

39. 说说事务的四种特性（ACID）。
40. codis与redis集群的区别。

10、设计：
41. 要缓存⽹网站登录的⽤用户信息，你有⼏几种⽅方式？

42. 让你设计⼀一套分布式缓存，如何设计可以同时更更新所有服务器器的缓存？

43. 说说你在⼯工作中遇到的困难或者挑战。

