
丰巢科技
1.bio与nio的区别

1、bio同步阻塞io：在此种⽅方式下，⽤用户进程在发起⼀一个IO操作以后，必须等待IO操作的完成，只有当真正完成了了IO操作
以后，⽤用户进程才能运⾏行行。JAVA传统的IO模型属于此种⽅方式！
2、nio同步⾮非阻塞式I/O；java NIO采⽤用了了双向通道进⾏行行数据传输，在通道上我们可以注册我们感兴趣的事件：连接事件、
读写事件；NIO主要有三⼤大核⼼心部分：Channel(通道)，Buffer(缓冲区), Selector。传统IO基于字节流和字符流进⾏行行操作，
⽽而NIO基于Channel和Buffer(缓冲区)进⾏行行操作，数据总是从通道读取到缓冲区中，或者从缓冲区写⼊入到通道中。
Selector(选择区)⽤用于监听多个通道的事件（⽐比如：连接打开，数据到达）。因此，单个线程可以监听多个数据通道。

1. BIO （Blocking I/O）：同步阻塞I/O模式，数据的读取写⼊入必须阻塞在⼀一个线程内等待其完成。这⾥里里使⽤用那个经典的烧
开⽔水例例⼦子，这⾥里里假设⼀一个烧开⽔水的场景，有⼀一排⽔水壶在烧开⽔水，BIO的⼯工作模式就是， 叫⼀一个线程停留留在⼀一个⽔水壶那，直
到这个⽔水壶烧开，才去处理理下⼀一个⽔水壶。但是实际上线程在等待⽔水壶烧开的时间段什什么都没有做。

2. NIO （New I/O）：同时⽀支持阻塞与⾮非阻塞模式，但这⾥里里我们以其同步⾮非阻塞I/O模式来说明，那么什什么叫做同步⾮非阻
塞？如果还拿烧开⽔水来说，NIO的做法是叫⼀一个线程不不断的轮询每个⽔水壶的状态，看看是否有⽔水壶的状态发⽣生了了改变，从
⽽而进⾏行行下⼀一步的操作。

3. AIO （ Asynchronous I/O）：异步⾮非阻塞I/O模型。异步⾮非阻塞与同步⾮非阻塞的区别在哪⾥里里？异步⾮非阻塞⽆无需⼀一个线程
去轮询所有IO操作的状态改变，在相应的状态改变后，系统会通知对应的线程来处理理。对应到烧开⽔水中就是，为每个⽔水壶
上⾯面装了了⼀一个开关，⽔水烧开之后，⽔水壶会⾃自动通知我⽔水烧开了了。

2.select与poll的区别
1、io多路路复⽤用：

1、概念：IO多路路复⽤用是指内核⼀一旦发现进程指定的⼀一个或者多个IO条件准备读取，它就通知该进程。
2、优势：与多进程和多线程技术相⽐比，I/O多路路复⽤用技术的最⼤大优势是系统开销⼩小，系统不不必创建进程/线程，也不不必

维护这些进程/线程，从⽽而⼤大⼤大减⼩小了了系统的开销。
3、系统：⽬目前⽀支持I/O多路路复⽤用的系统调⽤用有 select，pselect，poll，epoll。

2、select：select⽬目前⼏几乎在所有的平台上⽀支持，其良好跨平台⽀支持也是它的⼀一个优点。select的⼀一个缺点在于单个进程
能够监视的⽂文件描述符的数量量存在最⼤大限制，在Linux上⼀一般为1024，可以通过修改宏定义甚⾄至重新编译内核的⽅方式提升
这⼀一限制，但是这样也会造成效率的降低。

3、poll：它没有最⼤大连接数的限制，原因是它是基于链表来存储的，但是同样有⼀一个缺点：
a. ⼤大量量的fd的数组被整体复制于⽤用户态和内核地址空间之间，⽽而不不管这样的复制是不不是有意义。
b. poll还有⼀一个特点是“⽔水平触发”，如果报告了了fd后，没有被处理理，那么下次poll时会再次报告该fd。

epoll跟select都能提供多路I/O复⽤的解决⽅案。在现在的Linux内核⾥有都能够⽀持，其中epoll是Linux所特有，⽽select则
应该是POSIX所规定，⼀般操作系统均有实现。

3.zookeeper的⼯工作原理理
1、定义：zookeeper是⼀一种为分布式应⽤用所设计的⾼高可⽤用、⾼高性能且⼀一致的开源协调服务，它提供了了⼀一项基本服务：分布

式锁服务。后来摸索出了了其他使⽤用⽅方法：配置维护、组服务、分布式消息队列列、分布式通知/协调等。

2、特点：
 1、能够⽤用在⼤大型分布式系统中；

 2、具有⼀一致性、可⽤用性、容错性，不不会因为⼀一个节点的错误⽽而崩溃；

3、⽤用途：⽤用户⼤大型分布式系统，作协调服务⻆角⾊色；
1、分布式锁应⽤用：通过对集群进⾏行行master选举，来解决分布式系统中的单点故障（⼀一主n从，主挂全挂）。

2、协调服务；

3、注册中⼼心；

4、原理理：

 术语：

 数据结构Znode：zookeeper数据采⽤用树形层次结构，和标准⽂文件系统⾮非常相似，树中每个节点被称为Znode；

 通知机制Watcher：zookeeper可以为所有的读操作（exists()、getChilden()及getData()）设置watch，

watch事件是⼀一次性出发器器，当watch的对象状态发⽣生改变时，将会触发次对象上watch所对应的事件。watch事件将被异步的发送

给客户端，并且zookeeper为watch机制提供了了有序的⼀一致性保证。

 基本流程：分布式锁应⽤用场景

 1、传统的⼀一主n从分布式系统，容易易发⽣生单点故障，传统解决⽅方式是增加⼀一个备⽤用节点，定期给主节点发送Ping包，主节

点回复ack，但是如果⽹网络原因ack丢失，那么会出现两个主节点，造成数据混乱。

 2、zookeeper的引⼊入可以管理理两个主节点，其中挂了了⼀一个，会将另外⼀一个作为新的主节点，挂的节点回来时担任备⽤用节

咕
泡
学
院

点；

咕
泡
学
院

4.cap理理论
1、概念：⼀一个分布式系统最多只能同时满⾜足⼀一致性（Consistency）、可⽤用性（Availability）和分区容错性（Partition
tolerance）这三项中的两项。
2、⼀一致性：更更新操作成功并返回客户端完成后，所有节点在同⼀一时间的数据完全⼀一致，所以，⼀一致性，说的就是数据⼀一
致性。

3、可⽤用性：服务⼀一直可⽤用，⽽而且是正常响应时间。
4、分区容错性：分布式系统在遇到某节点或⽹网络分区故障的时候，仍然能够对外提供满⾜足⼀一致性和可⽤用性的服务。

5.⼆二段式满⾜足cap理理论的哪两个理理论
两阶段提交协议在正常情况下能保证系统的强⼀一致性，但是在出现异常情况下，当前处理理的操作处于错误状态，需要管理理

员⼈人⼯工⼲干预解决，因此可⽤用性不不够好，这也符合CAP协议的⼀一致性和可⽤用性不不能兼得的原理理。
6.线程池的参数配置，为什什么java官⽅方提供⼯工⼚厂⽅方法给线程池

1、线程池简介：

2、核⼼心参数：

咕
泡
学
院

3、⼯工⼚厂⽅方法作⽤用：ThreadPoolExecutor类就是Executor的实现类，但ThreadPoolExecutor在使⽤用上并不不是那么⽅方便便，在
实例例化时需要传⼊入很多歌参数，还要考虑线程的并发数等与线程池运⾏行行效率有关的参数，所以官⽅方建议使⽤用Executors⼯工
程类来创建线程池对象。

7.分布式框架dubbo的好处，不不⽤用dubbo可不不可以。为什什么要使⽤用分布式
1、dubbo好处：

1、远程通讯: 提供对多种基于⻓长连接的NIO框架抽象封装， 包括多种线程模型，序列列化，以及“请求-响应”模式的信
息交换⽅方式。
2、软负载均衡及容错机制: 提供基于接⼝口⽅方法的透明远程过程调⽤用，包括多协议⽀支持，以及软负载均衡，失败容错，
地址路路由，动态配置等集群⽀支持。
可在内⽹网替代F5等硬件负载均衡器器，降低成本，减少单点。
3、服务⾃自动注册与发现: 基于注册中⼼心⽬目录服务，使服务消费⽅方能动态的查找服务提供⽅方，使地址透明，使服务提供
⽅方可以平滑增加或减少机器器 。
4、提供完善的管理理控制台dubbo-admin与简单的控制中⼼心dubbo-monitor
5、Dubbo提供了了伸缩性很好的插件模型，很⽅方便便进⾏行行扩展（ExtensionLoader）

2、不不⽤用dubbo可不不可以：可以，使⽤用springcloud。
3、分布式作⽤用：

a. 系统之间的耦合度⼤大⼤大降低，可以独⽴立开发、独⽴立部署、独⽴立测试，系统与系统之间的边界⾮非常明确，排错也变得

相当容易易，开发效率⼤大⼤大提升。

b. 系统之间的耦合度降低，从⽽而系统更更易易于扩展。我们可以针对性地扩展某些服务。假设这个商城要搞⼀一次⼤大促，下

单量量可能会⼤大⼤大提升，因此我们可以针对性地提升订单系统、产品系统的节点数量量，⽽而对于后台管理理系统、数据分析

系统⽽而⾔言，节点数量量维持原有⽔水平即可。

c. 服务的复⽤用性更更⾼高。⽐比如，当我们将⽤用户系统作为单独的服务后，该公司所有的产品都可以使⽤用该系统作为⽤用户系

统，⽆无需重复开发。

8.七个垃圾回收器器之间如何搭配使⽤用
1. Serial New收集器器是针对新⽣生代的收集器器，采⽤用的是复制算法；
2. Parallel New（并⾏行行）收集器器，新⽣生代采⽤用复制算法，⽼老老年年代采⽤用标记整理理；
3. Parallel Scavenge（并⾏行行）收集器器，针对新⽣生代，采⽤用复制收集算法；
4. Serial Old（串串⾏行行）收集器器，新⽣生代采⽤用复制，⽼老老年年代采⽤用标记清理理；
5. Parallel Old（并⾏行行）收集器器，针对⽼老老年年代，标记整理理；
6. CMS收集器器，基于标记清理理；

咕
泡
学
院

7. G1收集器器(JDK)：整体上是基于标记清理理，局部采⽤用复制；
综上：新⽣生代基本采⽤用复制算法，⽼老老年年代采⽤用标记整理理算法。cms采⽤用标记清理理；

9.接⼝口限流⽅方案
1. 限制 总并发数（⽐比如 数据库连接池、线程池）
2. 限制 瞬时并发数（如 nginx 的 limit_conn 模块，⽤用来限制 瞬时并发连接数）

3. 限制 时间窗⼝口内的平均速率（如 Guava 的 RateLimiter、nginx 的 limit_req 模块，限制每秒的平均速率）

4. 限制 远程接⼝口 调⽤用速率
5. 限制 MQ 的消费速率

6. 可以根据 ⽹网络连接数、⽹网络流量量、CPU 或 内存负载 等来限流

10.ConcurrentHashMap使⽤用原理理
 1、⼯工作机制（分⽚片思想）：它引⼊入了了⼀一个“分段锁”的概念，具体可以理理解为把⼀一个⼤大的Map拆分成N个⼩小的segment，根据

key.hashCode()来决定把key放到哪个HashTable中。可以提供相同的线程安全，但是效率提升N倍，默认提升16倍。

 2、应⽤用：当读>写时使⽤用，适合做缓存，在程序启动时初始化，之后可以被多个线程访问；

 3、hash冲突：

 1、简介：HashMap中调⽤用hashCode()⽅方法来计算hashCode。由于在Java中两个不不同的对象可能有⼀一样的hashCode,所以

不不同的键可能有⼀一样hashCode，从⽽而导致冲突的产⽣生。

 2、hash冲突解决：使⽤用平衡树来代替链表，当同⼀一hash中的元素数量量超过特定的值便便会由链表切换到平衡树

 4、⽆无锁读：ConcurrentHashMap之所以有较好的并发性是因为ConcurrentHashMap是⽆无锁读和加锁写，并且利利⽤用了了分段锁（不不

是在所有的entry上加锁，⽽而是在⼀一部分entry上加锁）；

 读之前会先判断count(jdk1.6)，其中的count是被volatile修饰的(当变量量被volatile修饰后，每次更更改该变量量的时候会将更更

改结果写到系统主内存中，利利⽤用多处理理器器的缓存⼀一致性，其他处理理器器会发现⾃自⼰己的缓存⾏行行对应的内存地址被修改，就会将⾃自⼰己处理理器器的缓

存⾏行行设置为失效，并强制从系统主内存获取最新的数据。)，故可以实现⽆无锁读。

11.解决map的并发问题⽅方案
HashMap不不是线程安全的；Hashtable线程安全，但效率低，因为是Hashtable是使⽤用synchronized的，所有线程竞争同⼀一把

锁；⽽而ConcurrentHashMap不不仅线程安全⽽而且效率⾼高，因为它包含⼀一个segment数组，将数据分段存储，给每⼀一段数据配⼀一把锁，也就

是所谓的锁分段技术。

12.什什么是协程，以及实现要点
1、⽣生产者/消费者模式不不是⾼高性能的实现：

1.涉及到同步锁。
2.涉及到线程阻塞状态和可运⾏行行状态之间的切换。
3.涉及到线程上下⽂文的切换。

2、协成定义：协程，英⽂文Coroutines，是⼀一种⽐比线程更更加轻量量级的存在。正如⼀一个进程可以拥有多个线程⼀一样，⼀一个线
程也可以拥有多个协程。最重要的是，协程不不是被操作系统内核所管理理，⽽而完全是由程序所控制（也就是在⽤用户态执

⾏行行）。

这样带来的好处就是性能得到了了很⼤大的提升，不不会像线程切换那样消耗资源。

咕
泡
学
院

3、协成优点：协程的暂停完全由程序控制，线程的阻塞状态是由操作系统内核来进⾏行行切换。因此，协程的开销远远⼩小于
线程的开销。

4、实现：
1、Lua语⾔言

Lua从5.0版本开始使⽤用协程，通过扩展库coroutine来实现。
2、Python语⾔言
正如刚才所写的代码示例例，python可以通过 yield/send 的⽅方式实现协程。在python 3.5以后， async/await 成为

了了更更好的替代⽅方案。

3、Go语⾔言
Go语⾔言对协程的实现⾮非常强⼤大⽽而简洁，可以轻松创建成百上千个协程并发执⾏行行。

4、Java语⾔言
Java语⾔言并没有对协程的原⽣生⽀支持，但是某些开源框架模拟出了了协程的功能

13.lru cache 使⽤用hash map 的实现（算法）
1、概念：其实解释起来很简单，LRU就是Least Recently Used的缩写，翻译过来就是“最近最少使⽤用”。也就是说LRU算
法会将最近最少⽤用的缓存移除，让给最新使⽤用的缓存。⽽而往往最常读取的，也就是读取次数最多的，所以利利⽤用好LRU算
法，我们能够提供对热点数据的缓存效率，能够提⾼高缓存服务的内存使⽤用率。

2、实现：
1、思路路：

i. 限制缓存⼤大⼩小

ii. 查询出最近最晚⽤用的缓存

iii. 给最近最少⽤用的缓存做⼀一个标识

2、代码：

1 import java.util.LinkedHashMap;
2 import java.util.Map;
3 /**
4 * 简单⽤用LinkedHashMap来实现的LRU算法的缓存
5 */
6 public class LRUCache<K, V> extends LinkedHashMap<K, V> {
7 private int cacheSize;
8 public LRUCache(int cacheSize) {
9 super(16, (float) 0.75, true);
10 this.cacheSize = cacheSize;
11 }
12 protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {

咕
泡
学
院

13 return size() > cacheSize;
14 }
15 }

14.图的深度遍历和⼴广度遍历（算法）
1、深度优先遍历：

深度优先遍历结果是： A B E F C D G H I
深度优先遍历尽可能优先往深层次进⾏搜索
2、⼴广度优先遍历：

⼴广度优先遍历结果是： A B C D E F G H I
⼴度优先遍历按层次优先搜索最近的结点，⼀层⼀层往外搜索。

15.基本排序（算法）
1. 快速排序：

a. 原理理：快速排序采⽤用的是⼀一种分治的思想,它先找⼀一个基准数,然后将⽐比这个基准数⼩小的数字都放到它的左边,然后再

递归调⽤用,分别对左右两边快速排序,直到每⼀一边只有⼀一个数字.整个排序就完成了了.
b. 复杂度：O(n)
c. 特点：快速排序是我们平常最常使⽤用的⼀一种排序算法,因为它速度快,效率⾼高,是最优秀的⼀一种排序算法.

2. 冒泡排序：

a. 原理理：冒泡排序其实就是逐⼀一⽐比较交换,进⾏行行⾥里里外两次循环,外层循环为遍历所有数字,逐个确定每个位置,⾥里里层循环为

确定了了位置后,遍历所有后⾯面没有确定位置的数字,与该位置的数字进⾏行行⽐比较,只要⽐比该位置的数字⼩小,就和该位置的数字

进⾏行行交换.
b. 复杂度：O(n^2)，最佳时间复杂度为O(n)
c. 特点：冒泡排序在我们实际开发中,使⽤用的还是⽐比较少的.它更更加适合数据规模⽐比较少的时候,因为它的效率是⽐比较低
的,但是优点是逻辑简单,容易易让我们记得.

3. 直接插⼊入排序：

a. 原理理：直接插⼊入排序是将从第⼆二个数字开始,逐个拿出来,插⼊入到之前排好序的数列列⾥里里.
b. 复杂度：O(n^2)，最佳时间复杂度为O(n)
c. 特点：

4. 直接选择排序：

a. 原理理：直接选择排序是从第⼀一个位置开始遍历位置,找到剩余未排序的数据⾥里里最⼩小的,找到最⼩小的后,再做交换

b. 复杂度：O(n^2)

咕
泡
学
院

c. 特点：和冒泡排序⼀一样,逻辑简单,但是效率不不⾼高,适合少量量的数据排序

16.设计模式的使⽤用
17.java 8 流式使⽤用

1 List<Integer> evens = nums.stream().filter(num -> num % 2 == 0).collect(Collectors.toList());
2 //1、stream()操作将集合转换成⼀一个流，
3 //2、filter()执⾏行行我们⾃自定义的筛选处理理，这⾥里里是通过lambda表达式筛选出所有偶数，
4 //3、最后我们通过collect()对结果进⾏行行封装处理理，并通过Collectors.toList()指定其封装成为⼀一个List集合返回。

18.java的对象⼀一致性
19.操作系统的读写屏障
20.java 域的概念

field，域是⼀一种属性，可以是⼀一个类变量量，⼀一个对象变量量，⼀一个对象⽅方法变量量或者是⼀一个函数的参数。
21.分布式设计领域的概念

1、分布式系统设计的两⼤大思路路：中⼼心化和去中⼼心化
中⼼心化：中⼼心化的设计思想在⾃自然界和⼈人类⽣生活中是如此的普遍和⾃自然，它的设计思想也很简单，分布式集群中的

节点按照⻆角⾊色分⼯工，可以分为两种⻆角⾊色--“领导”和“⼲干活的”，中⼼心化的⼀一个思路路就是“领导”通常分发任务并监督“⼲干
活的”，谁空闲了了就给它安排任务，谁病倒了了就⼀一脚踢出去，然后把它的任务分给其他⼈人；中⼼心化的另⼀一个思路路是领

导只负责⽣生成任务⽽而不不再指派任务，由每个“⼲干活的”⾃自发去领任务。

去中⼼心化：全球IP互联⽹网就是⼀一个典型的去中⼼心化的分布式控制架构，联⽹网的任意设备宕机都只会影响很⼩小范围的
功能。去中⼼心化设计通常没有“领导”和“⼲干活的”，⻆角⾊色⼀一样，地位平等，因此不不存在单点故障。实际上，完全意义的

去中⼼心化分布式系统并不不多⻅见，很多看起来是去中⼼心化但⼯工作机制采⽤用了了中⼼心化设计思想的分布式系统正在不不断涌

现，在这种架构下，集群中的领导是动态选择出来的，⽽而不不是⼈人为预先指定的，⽽而且在集群发⽣生故障的情况下，集群

的成员会⾃自发举⾏行行会议选举新的领导。典型案例例如：zookeeper、以及Go语⾔言实现的Etcd。
2、分布式系统的⼀一致性原理理

在说明⼀一致性原理理之前，可以先了了解⼀一下cap理理论和base理理论，具体⻅见《事务与柔性事务》中的说明。
对于多副本的⼀一致性处理理，通常有⼏几种⽅方法：同步更更新--即写操作需要等待两个节点都更更新成功才返回，这样的话
如果⼀一旦发⽣生⽹网络分区故障，写操作便便不不可⽤用，牺牲了了A。异步更更新--即写操作直接返回，不不需要等待节点更更新成
功，节点异步地去更更新数据，这种⽅方式，牺牲了了C来保证A。折衷--只要保证集群中超过半数的节点正常并达到⼀一致性
即可满⾜足要求，此时读操作只要⽐比较副本集数据的修改时间或者版本号即可选出最新的，所以系统是强⼀一致性的。如

果允许“数据⼀一致性存在延迟时间”，则是最终⼀一致性。

如Cassandra中的折衷型⽅方案QUORUM，只要超过半数的节点更更新成功便便返回，读取时返回多数副本的⼀一致的值。
然后，对于不不⼀一致的副本，可以通过read repair的⽅方式解决。read repair：读取某条数据时，查询所有副本中的这条
数据，⽐比较数据与⼤大多数副本的最新数据是否⼀一致，若否，则进⾏行行⼀一致性修复。此种情况是强⼀一致性的。

⼜又如Redis的master-slave模式，更更新成功⼀一个节点即返回，其他节点异步地去备份数据。这种⽅方式只保证了了最终⼀一
致性。最终⼀一致性：相⽐比于数据时刻保持⼀一致的强⼀一致性，最终⼀一致性允许某段时间内数据不不⼀一致。但是随着时间的

增⻓长，数据最终会到达⼀一致的状态。此种情况只能保证最终⼀一致性。著名的DNS也是最终⼀一致性的成功例例⼦子。
强⼀一致性算法：1989年年就诞⽣生了了著名的Paxos经典算法（zookeeper就采⽤用了了Paxos算法的近亲兄弟Zab算法），但
由于Paxos算法难以理理解、实现和排错，所以不不断有⼈人尝试优化算法，2013年年终于有了了重⼤大突破：Raft算法的出现，
其中Go语⾔言实现的Raft算法就是Etcd，功能类似于zookeeper。

Base的思想：基本可⽤用、柔性状态、最终⼀一致性，主要针对数据库领域的数据拆分，通过数据分⽚片（如Mycat、
Amodeba等）来提升系统的可⽤用性。由于分⽚片拆分后会涉及分布式事务，所以接下来看⼀一下如何⽤用最终⼀一致性的思路路
来实现分布式事务，也就是柔性事务。

3、柔性事务：具体⻅见《事务与柔性事务》。
4、分布式系统的关键Zookeeper

⽬目标是解决分布式系统的⼏几个问题：集群集中化配置，集群节点动态发现机制，简单可靠的节点Leader选举机制，
分布式锁。

ZNode有⼀一个ACL访问权限控制列列表，提供对节点增删改查的API，提供监听ZNode变化的实时通知接⼝口--Watch接
⼝口。

ZNode类型：持久节点（可以实现配置中⼼心）、临时节点（和创建这个节点的客户端会话绑定，可实现集群节点动
态发现，可以实现服务注册中⼼心）、时序节点（创建节点时会加上数字后缀，通过选择编号最⼩小的ZNode可以实现
Leader选举机制）、临时性时序节点（同时具备临时节点和时序节点的特性，主要⽤用于分布式锁的实现）。

22.如何实现双11的购物限流（redis实现⽅方案）

咕
泡
学
院

https://zhuanlan.zhihu.com/p/34119319
https://zhuanlan.zhihu.com/p/34119319

1、限流策略略：
Nginx接⼊入层限流

按照⼀一定的规则如帐号、IP、系统调⽤用逻辑等在Nginx层⾯面做限流
业务应⽤用系统限流

通过业务代码控制流量量这个流量量可以被称为信号量量，可以理理解成是⼀一种锁，它可以限制⼀一项资源最多能同时被多少进程访

问。

2、lua脚本：

1 local key = KEYS[1] --限流KEY（⼀一秒⼀一个）
2 local limit = tonumber(ARGV[1]) --限流⼤大⼩小
3 local current = tonumber(redis.call('get', key) or "0")
4 if current + 1 > limit then --如果超出限流⼤大⼩小
5 return 0
6 else --请求数+1，并设置2秒过期
7 redis.call("INCRBY", key,"1")
8 redis.call("expire", key,"2")
9 end
10 return 1

减少⽹络开销: 不使⽤ Lua 的代码需要向 Redis 发送多次请求, ⽽脚本只需⼀次即可, 减少⽹络传输;
原⼦操作: Redis 将整个脚本作为⼀个原⼦执⾏, ⽆需担⼼并发, 也就⽆需事务;
复⽤: 脚本会永久保存 Redis 中, 其他客户端可继续使⽤.
2、ip限流lua脚本：

1 local key = "rate.limit:" .. KEYS[1]
2 local limit = tonumber(ARGV[1])
3 local expire_time = ARGV[2]
4 ​

5 local is_exists = redis.call("EXISTS", key)
6 if is_exists == 1 then
7 if redis.call("INCR", key) > limit then
8 return 0
9 else
10 return 1
11 end
12 else
13 redis.call("SET", key, 1)
14 redis.call("EXPIRE", key, expire_time)
15 return 1
16 end

3、java执⾏行行代码：

1 import org.apache.commons.io.FileUtils;
2 ​

3 import redis.clients.jedis.Jedis;
4 ​

5 import java.io.File;
6 import java.io.IOException;
7 import java.net.URISyntaxException;
8 import java.util.ArrayList;
9 import java.util.List;
10 import java.util.concurrent.CountDownLatch;
11 ​

12 public class RedisLimitRateWithLUA {

咕
泡
学
院

13 ​

14 public static void main(String[] args) {
15 final CountDownLatch latch = new CountDownLatch(1);
16 ​

17 for (int i = 0; i < 7; i++) {
18 new Thread(new Runnable() {
19 public void run() {
20 try {
21 latch.await();
22 System.out.println("请求是否被执⾏行行："+accquire());
23 } catch (Exception e) {
24 e.printStackTrace();
25 }
26 }
27 }).start();
28 ​

29 }
30 ​

31 latch.countDown();
32 }
33 ​

34 public static boolean accquire() throws IOException, URISyntaxException {
35 Jedis jedis = new Jedis("127.0.0.1");
36 File luaFile = new File(RedisLimitRateWithLUA.class.getResource("/").toURI().getPath(
37 String luaScript = FileUtils.readFileToString(luaFile);
38 ​

39 String key = "ip:" + System.currentTimeMillis()/1000; // 当前秒
40 String limit = "5"; // 最⼤大限制
41 List<String> keys = new ArrayList<String>();
42 keys.add(key);
43 List<String> args = new ArrayList<String>();
44 args.add(limit);
45 Long result = (Long)(jedis.eval(luaScript, keys, args)); // 执⾏行行lua脚本，传⼊入参数
46 return result == 1;
47 }
48 }
49 ​

23.mysql调优
 1、选择最合适的字段属性：类型、⻓长度、是否允许NULL等；尽量量把字段设为not null，⼀一⾯面查询时对⽐比是否为null；

 2.要尽量量避免全表扫描，⾸首先应考虑在 where 及 order by 涉及的列列上建⽴立索引。

 3.应尽量量避免在 where ⼦子句句中对字段进⾏行行 null 值判断、使⽤用!= 或 <> 操作符，否则将导致引擎放弃使⽤用索引⽽而进⾏行行全表扫描

 4.应尽量量避免在 where ⼦子句句中使⽤用 or 来连接条件，如果⼀一个字段有索引，⼀一个字段没有索引，将导致引擎放弃使⽤用索引⽽而进⾏行行

全表扫描

 5.in 和 not in 也要慎⽤用，否则会导致全表扫描

 6.模糊查询也将导致全表扫描，若要提⾼高效率，可以考虑字段建⽴立前置索引或⽤用全⽂文检索；

 7.如果在 where ⼦子句句中使⽤用参数，也会导致全表扫描。因为SQL只有在运⾏行行时才会解析局部变量量，但优化程序不不能将访问计划的选

择推迟到运⾏行行时；它必须在编译时进⾏行行选择。然 ⽽而，如果在编译时建⽴立访问计划，变量量的值还是未知的，因⽽而⽆无法作为索引选择的输⼊入

项。

 9.应尽量量避免在where⼦子句句中对字段进⾏行行函数操作，这将导致引擎放弃使⽤用索引⽽而进⾏行行全表扫描。

 10.不不要在 where ⼦子句句中的“=”左边进⾏行行函数、算术运算或其他表达式运算，否则系统将可能⽆无法正确使⽤用索引。

 11.在使⽤用索引字段作为条件时，如果该索引是复合索引，那么必须使⽤用到该索引中的第⼀一个字段作为条件时才能保证系统使⽤用该索

引，否则该索引将不不会被使⽤用，并且应尽可能的让字段顺序与索引顺序相⼀一致。

咕
泡
学
院

 12.不不要写⼀一些没有意义的查询，如需要⽣生成⼀一个空表结构：

 13.Update 语句句，如果只更更改1、2个字段，不不要Update全部字段，否则频繁调⽤用会引起明显的性能消耗，同时带来⼤大量量⽇日志。

 14.对于多张⼤大数据量量（这⾥里里⼏几百条就算⼤大了了）的表JOIN，要先分⻚页再JOIN，否则逻辑读会很⾼高，性能很差。

 15.select count(*) from table；这样不不带任何条件的count会引起全表扫描，并且没有任何业务意义，是⼀一定要杜绝的。

 16.索引并不不是越多越好，索引固然可以提⾼高相应的 select 的效率，但同时也降低了了 insert 及 update 的效率，因为

insert 或 update 时有可能会重建索引，所以怎样建索引需要慎重考虑，视具体情况⽽而定。⼀一个表的索引数最好不不要超过6个，若太多

则应考虑⼀一些不不常使⽤用到的列列上建的索引是否有 必要。

 17.应尽可能的避免更更新 clustered 索引数据列列，因为 clustered 索引数据列列的顺序就是表记录的物理理存储顺序，⼀一旦该列列值

改变将导致整个表记录的顺序的调整，会耗费相当⼤大的资源。若应⽤用系统需要频繁更更新 clustered 索引数据列列，那么需要考虑是否应将

该索引建为 clustered 索引。

 18.尽量量使⽤用数字型字段，若只含数值信息的字段尽量量不不要设计为字符型，这会降低查询和连接的性能，并会增加存储开销。这是因

为引擎在处理理查询和连 接时会逐个⽐比较字符串串中每⼀一个字符，⽽而对于数字型⽽而⾔言只需要⽐比较⼀一次就够了了。

 19.尽可能的使⽤用 varchar/nvarchar 代替 char/nchar ，因为⾸首先变⻓长字段存储空间⼩小，可以节省存储空间，其次对于查询

来说，在⼀一个相对较⼩小的字段内搜索效率显然要⾼高些。

 20.任何地⽅方都不不要使⽤用 select * from t ，⽤用具体的字段列列表代替“*”，不不要返回⽤用不不到的任何字段。

 21.尽量量使⽤用表变量量来代替临时表。如果表变量量包含⼤大量量数据，请注意索引⾮非常有限（只有主键索引）。

 22. 避免频繁创建和删除临时表，以减少系统表资源的消耗。临时表并不不是不不可使⽤用，适当地使⽤用它们可以使某些例例程更更有效，例例

如，当需要重复引⽤用⼤大型表或常⽤用表中的某个数据集时。但是，对于⼀一次性事件， 最好使⽤用导出表。

 23.在新建临时表时，如果⼀一次性插⼊入数据量量很⼤大，那么可以使⽤用 select into 代替 create table，避免造成⼤大量量 log ，

以提⾼高速度；如果数据量量不不⼤大，为了了缓和系统表的资源，应先create table，然后insert。

 24.如果使⽤用到了了临时表，在存储过程的最后务必将所有的临时表显式删除，先 truncate table ，然后 drop table ，这样

可以避免系统表的较⻓长时间锁定。

 25.尽量量避免使⽤用游标，因为游标的效率较差，如果游标操作的数据超过1万⾏行行，那么就应该考虑改写。

 26.使⽤用基于游标的⽅方法或临时表⽅方法之前，应先寻找基于集的解决⽅方案来解决问题，基于集的⽅方法通常更更有效。

 27.与临时表⼀一样，游标并不不是不不可使⽤用。对⼩小型数据集使⽤用 FAST_FORWARD 游标通常要优于其他逐⾏行行处理理⽅方法，尤其是在必须引

⽤用⼏几个表才能获得所需的数据时。在结果集中包括“合计”的例例程通常要⽐比使⽤用游标执⾏行行的速度快。如果开发时 间允许，基于游标的⽅方法

和基于集的⽅方法都可以尝试⼀一下，看哪⼀一种⽅方法的效果更更好。

 28.在所有的存储过程和触发器器的开始处设置 SET NOCOUNT ON ，在结束时设置 SET NOCOUNT OFF 。⽆无需在执⾏行行存储过程和

触发器器的每个语句句后向客户端发送 DONE_IN_PROC 消息。

 29.尽量量避免⼤大事务操作，提⾼高系统并发能⼒力力。

 30.尽量量避免向客户端返回⼤大数据量量，若数据量量过⼤大，应该考虑相应需求是否合理理。

24.cdn（异地多活）
1、异地多活：异地多活指分布在异地的多个站点同时对外提供服务的业务场景。异地多活是⾼高可⽤用架构设计的⼀一种，与传

统的灾备设计的最主要区别在于“多活”，即所有站点都是同时在对外提供服务的。

2、两地容灾切换⽅方案：
容灾是异地多活中最核⼼心的⼀一环， 以两个城市异地多活部署架构图为例例： 咕

泡
学
院

在两个城市（城市1位于华南1地域、城市2位于华东1地域）均部署⼀一套完整的业务系统。

下单业务按照“user_id”％ 100 进⾏行行分⽚片，在正常情况下：

[00~49]分⽚片所有的读写都在城市1的数据库实例例主库。

[50～99]分⽚片所有的读写都在城市2的数据库实例例主库。

“城市1的数据库实例例主库”和 “城市2的数据库实例例主库”建⽴立DTS双向复制。

当出现异常时，需要进⾏行行容灾切换。可能出现的场景有以下4种：

将第2种、第3种异常情况，全部采⽤用第2种⽅方案进⾏行行处理理，那么不不管是所有的APP Server异常、所有的数据库异常、整个城

市异常，就直接按照城市级容灾⽅方案处理理，直接将APP Server、数据库切换到到另⼀一个城市。

3、多城异地多活：

多城市异地多活模式指的是3个或者3个以上城市间部署异地多活。该模式下存在中⼼心节点和单元节点：

中⼼心节点：指单元节点的增量量数据都需要实时的同步到中⼼心节点，同时中⼼心节点将所有分⽚片的增量量数据同步到其他单元节

点。

咕
泡
学
院

单元节点：即对应分⽚片读写的节点，该节点需要将该分⽚片的增量量同步到中⼼心节点，并且接收来⾃自于中⼼心节点的其他分⽚片的

增量量数据。

下图是3城市异地多活架构图，其中华东1就是中⼼心节点，华南1和华北北1是单元节点。

25.进程之间的通信⽅方式
1、匿匿名管道通信：

a. ⽗父进程创建管道，得到两个⽂文件描述符指向管道的两端

b. ⽗父进程fork出⼦子进程，⼦子进程也有两个⽂文件描述符指向同⼀一管道。
c. ⽗父进程关闭fd[0],⼦子进程关闭fd[1]，即⽗父进程关闭管道读端,⼦子进程关闭管道写端（因为管道只⽀支持单向通信）。⽗父
进程可以往管道⾥里里写,⼦子进程可以从管道⾥里里读,管道是⽤用环形队列列实现的,数据从写端流⼊入从读端流出,这样就实现了了进程

间通信。

2、⾼高级管道通信：将另⼀一个程序当做⼀一个新的进程在当前程序进程中启动，则它算是当前程序的⼦子进程，这种⽅方式我们
成为⾼高级管道⽅方式。

3、有名管道通信：有名管道也是半双⼯工的通信⽅方式，但是它允许⽆无亲缘关系进程间的通信。
4、消息队列列通信：消息队列列是由消息的链表，存放在内核中并由消息队列列标识符标识。消息队列列克服了了信号传递信息

少、管道只能承载⽆无格式字节流以及缓冲区⼤大⼩小受限等缺点。

5、信号量量通信：
6、信号通信：
7、共享内存通信：
8、套接字通信：

26.tcp/ip协议、http协议
27.⼆二级交换器器传输协议
28.spring 事务的传播
29.分布式下down机的处理理⽅方案（⼼心跳检测）

1、dubbo：服务器器宕机，zk临时被删除；
2、springcloud：每30s发送⼼心跳检测重新进⾏行行租约，如果客户端不不能多次更更新租约，它将在90s内从服务器器注册中⼼心移
除。

3、apm监控：
30、分布式弱⼀一致性下down机的处理理⽅方案
31、dubbo与zookeeper 两者作为注册中⼼心的区别，假如注册中⼼心挂了了，消费者还能调⽤用服务吗，⽤用什什么调⽤用的

1. 注册中⼼心对等集群，任意⼀一台宕掉后，会⾃自动切换到另⼀一台

2. 注册中⼼心全部宕掉，服务提供者和消费者仍可以通过本地缓存通讯

3. 服务提供者⽆无状态，任⼀一台 宕机后，不不影响使⽤用
4. 服务提供者全部宕机，服务消费者会⽆无法使⽤用，并⽆无限次重连等待服务者恢复

32、dubbo的原理理图（画出注册中⼼心，消费者，⽣生产者的关系图，并说出每个⻆角⾊色的作⽤用）
咕
泡
学
院

Consumer服务消费者，Provider服务提供者。Container服务容器器。消费当然是invoke提供者了了，invoke这条实线按照图
上的说明当然同步的意思了了。但是在实际调⽤用过程中，Provider的位置对于Consumer来说是透明的，上⼀一次调⽤用服务的位置
（IP地址）和下⼀一次调⽤用服务的位置，是不不确定的。这个地⽅方就需要使⽤用注册中⼼心来实现软负载。
33、项⽬目中有没有⽤用到多线程，⽤用到的话⽤用了了哪些
34、HashMap的底层原理理（包括底层数据结构，怎么扩容的）
 1、数据结构中有数组和链表来实现对数据的存储，但这两者基本上是两个极端。那么我们能不不能综合两者的特性，做出⼀一种寻址容

易易，插⼊入删除也容易易的数据结构？答案是肯定的，这就是我们要提起的哈希表。哈希表（(Hash table）既满⾜足了了数据的查找⽅方便便，同时

不不占⽤用太多的内容空间，使⽤用也⼗十分⽅方便便。

 2、HashMap底层是采⽤用数组来维护的.Entry静态内部类的数组

1 /**
2 * The table, resized as necessary. Length MUST Always be a power of two.
3 */
4 transient Entry[] table;
5 ​

6 static class Entry<K,V> implements Map.Entry<K,V> {
7 final K key;
8 V value;
9 Entry<K,V> next;
10 final int hash;
11 ……
12 }

 3、HashMap添加元素：将准备增加到map中的对象与该位置上的对象进⾏行行⽐比较(equals⽅方法),如果相同,那么就将该位置上的那个

对象(Entry类型)的value值替换掉,否则沿着该Entry的链继续重复上述过程,如果到链的最后任然没有找到与此对象相同的对象,那么

这个时候就会被增加到数组中,将数组中该位置上的那个Entry对象链到该对象的后⾯面(先hashcode计算位置，如果有值便便替换，⽆无值则

重复hashcode计算，直到最后在添加到hashmap最后⾯面；)

35、ConcurrentHashMap的原理理
 1、⼯工作机制（分⽚片思想）：它引⼊入了了⼀一个“分段锁”的概念，具体可以理理解为把⼀一个⼤大的Map拆分成N个⼩小的segment，根据

key.hashCode()来决定把key放到哪个HashTable中。可以提供相同的线程安全，但是效率提升N倍，默认提升16倍。

 2、应⽤用：当读>写时使⽤用，适合做缓存，在程序启动时初始化，之后可以被多个线程访问；

 3、hash冲突：

 1、简介：HashMap中调⽤用hashCode()⽅方法来计算hashCode。由于在Java中两个不不同的对象可能有⼀一样的hashCode,所以

咕
泡
学
院

不不同的键可能有⼀一样hashCode，从⽽而导致冲突的产⽣生。

 2、hash冲突解决：使⽤用平衡树来代替链表，当同⼀一hash中的元素数量量超过特定的值便便会由链表切换到平衡树

 4、⽆无锁读：ConcurrentHashMap之所以有较好的并发性是因为ConcurrentHashMap是⽆无锁读和加锁写，并且利利⽤用了了分段锁（不不

是在所有的entry上加锁，⽽而是在⼀一部分entry上加锁）；

 读之前会先判断count(jdk1.6)，其中的count是被volatile修饰的(当变量量被volatile修饰后，每次更更改该变量量的时候

会将更更改结果写到系统主内存中，利利⽤用多处理理器器的缓存⼀一致性，其他处理理器器会发现⾃自⼰己的缓存⾏行行对应的内存地址被修改，就会将⾃自⼰己处理理

器器的缓存⾏行行设置为失效，并强制从系统主内存获取最新的数据。)，故可以实现⽆无锁读。

36、 分布式锁的实现
 基本原理理：⽤用⼀一个状态值表示锁，对锁的占⽤用和释放通过状态值来标识。

 1、三种分布式锁：

 1、Zookeeper：基于zookeeper瞬时有序节点实现的分布式锁，其主要逻辑如下（该图来⾃自于IBM⽹网站）。⼤大致思想即为：

每个客户端对某个功能加锁时，在zookeeper上的与该功能对应的指定节点的⽬目录下，⽣生成⼀一个唯⼀一的瞬时有序节点。判断是否获取锁的

⽅方式很简单，只需要判断有序节点中序号最⼩小的⼀一个。当释放锁的时候，只需将这个瞬时节点删除即可。同时，其可以避免服务宕机导致

的锁⽆无法释放，⽽而产⽣生的死锁问题。

 2、优点

 锁安全性⾼高，zk可持久化，且能实时监听获取锁的客户端状态。⼀一旦客户端宕机，则瞬时节点随之消失，zk因⽽而能

第⼀一时间释放锁。这也省去了了⽤用分布式缓存实现锁的过程中需要加⼊入超时时间判断的这⼀一逻辑。

 3、缺点

咕
泡
学
院

 性能开销⽐比较⾼高。因为其需要动态产⽣生、销毁瞬时节点来实现锁功能。所以不不太适合直接提供给⾼高并发的场景使⽤用。

 4、实现

 可以直接采⽤用zookeeper第三⽅方库curator即可⽅方便便地实现分布式锁。

 5、适⽤用场景

 对可靠性要求⾮非常⾼高，且并发程度不不⾼高的场景下使⽤用。如核⼼心数据的定时全量量/增量量同步等。

 2、memcached：memcached带有add函数，利利⽤用add函数的特性即可实现分布式锁。add和set的区别在于：如果多线程并

发set，则每个set都会成功，但最后存储的值以最后的set的线程为准。⽽而add的话则相反，add会添加第⼀一个到达的值，并返回true，

后续的添加则都会返回false。利利⽤用该点即可很轻松地实现分布式锁。

 2、优点

 并发⾼高效

 3、缺点

 memcached采⽤用列列⼊入LRU置换策略略，所以如果内存不不够，可能导致缓存中的锁信息丢失。

 memcached⽆无法持久化，⼀一旦重启，将导致信息丢失。

 4、使⽤用场景

 ⾼高并发场景。需要 1)加上超时时间避免死锁; 2)提供⾜足够⽀支撑锁服务的内存空间; 3)稳定的集群化管理理。

 3、redis：redis分布式锁即可以结合zk分布式锁锁⾼高度安全和memcached并发场景下效率很好的优点，其实现⽅方式和

memcached类似，采⽤用setnx即可实现。需要注意的是，这⾥里里的redis也需要设置超时时间。以避免死锁。可以利利⽤用jedis客户端实现。

1 ICacheKey cacheKey = new ConcurrentCacheKey(key, type);
2 return RedisDao.setnx(cacheKey, "1");

 2、数据库死锁机制和解决⽅方案：

 1、死锁：死锁是指两个或者两个以上的事务在执⾏行行过程中，因争夺锁资源⽽而造成的⼀一种互相等待的现象。

 2、处理理机制：解决死锁最有⽤用最简单的⽅方法是不不要有等待，将任何等待都转化为回滚，并且事务重新开始。但是有可能影响并

发性能。

 1、超时回滚，innodb_lock_wait_time设置超时时间；

 2、wait-for-graph⽅方法：跟超时回滚⽐比起来，这是⼀一种更更加主动的死锁检测⽅方式。InnoDB引擎也采⽤用这种⽅方式。

37、分布式session ，如何保持⼀一致
1、Session粘滞

1、将⽤用户的每次请求都通过某种⽅方法强制分发到某⼀一个Web服务器器上，只要这个Web服务器器上存储了了对应Session数
据，就可以实现会话跟踪。

2、优点：使⽤用简单，没有额外开销。
3、缺点：⼀一旦某个Web服务器器重启或宕机，相对应的Session数据将会丢失，⽽而且需要依赖负载均衡机制。
4、适⽤用场景：对稳定性要求不不是很⾼高的业务情景。

2、Session集中管理理
1、在单独的服务器器或服务器器集群上使⽤用缓存技术，如Redis存储Session数据，集中管理理所有的Session，所有的Web

服务器器都从这个存储介质中存取对应的Session，实现Session共享。
2、优点：可靠性⾼高，减少Web服务器器的资源开销。
3、缺点：实现上有些复杂，配置较多。
4、适⽤用场景：Web服务器器较多、要求⾼高可⽤用性的情况。
5、可⽤用⽅方案：开源⽅方案Spring Session，也可以⾃自⼰己实现，主要是重写HttpServletRequestWrapper中的getSession
⽅方法，博主也动⼿手写了了⼀一个，github搜索joincat⽤用户，然后⾃自取。

3、基于Cookie管理理
1、这种⽅方式每次发起请求的时候都需要将Session数据放到Cookie中传递给服务端。
2、优点：不不需要依赖额外外部存储，不不需要额外配置。
3、缺点：不不安全，易易被盗取或篡改；Cookie数量量和⻓长度有限制，需要消耗更更多⽹网络带宽。
4、适⽤用场景：数据不不重要、不不敏敏感且数据量量⼩小的情况。

总结

这四种⽅方式，相对来说，Session集中管理理更更加可靠，使⽤用也是最多的。
38、消息中间件都⽤用到哪些，他们的区别

咕
泡
学
院

1. 中⼩小型公司⾸首选RabbitMQ：管理理界⾯面简单，⾼高并发。
2. ⼤大型公司可以选择RocketMQ：更更⾼高并发，可对rocketmq进⾏行行定制化开发。
3. ⽇日志采集功能，⾸首选kafka，专为⼤大数据准备。

丰巢--0313
1. 我们知道hashmap线程不不安全，那⽤用什什么类可以代替它保证线程安全呢？他们⼜又是如何实现线程安全的呢？
2. 说说⼏几种GC机制，年年轻代什什么时候触发gc？
3. 说说⼀一致性hash？
4. mybatis基础知识；
5. mysql基础知识；
6. mysql单表达到多少数据量量需要分库分表？
7. hibernate基础知识。
8. 说说kafka的原理理，为什什么能保证这么⾼高的吞吐量量？
9. 对webservice有什什么了了解？
10. 说说你们公司git分⽀支管理理⽅方案？
11. ⽤用过mysql吗？如何进⾏行行分表分库？什什么时候需要分表分库？
12. 你们如何和前端进⾏行行接⼝口联调？

13. 说说你平时遇到的重⼤大难题或者挑战，以及你解决问题的思路路和流程。

特性 ActiveMQ RabbitMQ RocketMQ kafka

开发语⾔言 java erlang java scala

单机吞吐量量 万级 万级 10万级 10万级

时效性 ms级 us级 ms级 ms级以内

可⽤用性 ⾼高(主从架构) ⾼高(主从架构) ⾮非常⾼高(分布式架构) ⾮非常⾼高(分布式架构)

功能特性
成熟的产品，在很多公司
得到应⽤用；有较多的⽂文
档；各种协议⽀支持较好

基于erlang开发，所以并
发能⼒力力很强，性能极其
好，延时很低;管理理界⾯面较
丰富

MQ功能⽐比较完备，扩展
性佳

只⽀支持主要的MQ功能，
像⼀一些消息查询，消息回
溯等功能没有提供，毕竟
是为⼤大数据准备的，在⼤大
数据领域应⽤用⼴广。

咕
泡
学
院

咕
泡
学
院

