)l#

Fie

6.1.05 NMAE—MNMEHTE, eI T 100 & MAN45E T AT R
6.1.1 LR — AP RECEH, AP BT LR R s F, B E, X A
PRER [l — AN B IR X AN B E 1 5 B R 2 A AN [ ) HUE

6.1.2 —PIH 10 M, T 0-9. A0 st &, A N B XEERIF] 0 i, A7 2 /DRhED?
6.1.3 —MELFHE, K K KE. HE7 7 X 787 .

6.1.4 —HERXHW, REKEEEKE . (ISR F0 m 2 FD

6.1.5 HEFEAARRM X, o FHZAE B B 15 48 B[] 2

6.1.6 go PMERIEE T2, 8 FH WMEE B BE 1T 44 I 1) 2

6.1.7 KPRl IR X0 2 R, —A> socket A5 500 MR, CLizEX 200 A
JEATRAEER, RAET T 300 K ToiE s ?

6.1.8 AW T, A1, REHA?

6.1.9 ¥if http PHil, AiKRE AAAA, Z/Dil B iiA1iE AAAA TR IETE K.

6.2.0 i M AN api_gateway, api_gateway ff T &S84 iH:4:, FHAPUGBE K0 H
P2

6.2.1 mysql AT b+, ATl — O R 5] 45 2

6.2.2 BIEEIRER T PIOZEAHEE?

6.2.3 [ int 4 primary key A H string G452

6.2.4 R E >R TTIE?

6.2.5 KL, ITHRALFWT, 5—/MER), REMHEGH top 10 product_id.

6.2.6 RS, A ARSHER B A4S B1 211, B1 210 Uik R A RS A2 211, & RSH )2
6.2.7 AMEA®FETE, R Linux BT E, R0 debug?

6.2.8 WA Fiifli — A mysql A 1HERE?

6.2.9 go BREF, IREMEAM 4, KA T panic, (HRTEREN recover T o REURIFITAE?
6.3.0 socket H1, 7t tep THZET, a5 R 10 NMRSCKIR. 1-7 ABNF], 56 8 IRELR. X
PORAE—E RS ? W 8 B E Ik, MERIUn &A%, Sl E 1-7 R EE,
SR G R 8-10 IR IFALHE 234 & 9-10 IR IR & 3k 2

6.3.1 free -h, buffers F1 cached 14 A A

6.3.2 E G AE AR, WRERE ARG G, RaHEM 4

6.3.3 R4, WRSAE—MEFHRE, WA RE 7

6.3.4 AULBERE AT 4

6.3.5 — MR 20 NEFE, ERALEFEFIRA fork, FrRUHFESH 20 NEAEG?

6.3.6 tep/ip VL EL 1 il A ZE 4 )

6.3.7 301/302 A+ A X2 R BG4 5.

6.3.8 50X AHIEE R ) NIRRT 4 ?

6.3.9 close wait I time wait s&ft4 ? WATHEE? A4 R X2

6.4.0 http req 1 resp Ft) o 4 A Wk L4

6.4.1 HaREREIEATIF, FRAPIRE

6.4.2 an— AL S5 H B 5 redis, It redis #UFEE S EOL S AT, e ik

6.4.3 redis sharding 45 Wl LE {1k

6.4.4 M KEEPRE R A redis TRA7, BALEOE UG R T5 2, B0t (B4R — Mkt
SIS



6.4.5 X redis *KH hash fi sharding, IIEH 8 N1, ME T ERAE pos = hash(key) % 8, A&
JERTFEAE pos T bo XFEMA A A UF bR AR ? 24 8 AN SEY R F] 10 N A, MiZEA4
IR A A E TR BT ES?  (—F % hash, presharding)

6.4.6 WA RAE redis FIZLHE EEE 01— 8. L P L2 EERAFE SR, ARMEAE redis
WEAE. AW FEAF update_db(username); update_redis(username). 1HZ#4T update_db
JE ¥, update_redis ¥ B AT F A4 ] FIMEMR I A 0] @



6.1.0 5 MAE—MNERHITE, REIRET 100 KET. MNLET—MIETR.

6.1.1 SR — A FEESA, HATHHETURES. . F, HLA—I R X4
ERBOR F — AN B IR EIXAN A AR B E R 2 AR R I EUE.

6.1.2 —3F 10 MR, 45 0-9. N0 KK, & NBNREZ 0 1, HEEDOME
¥

6.1.3 —NALFHA, KB K R HFHTRERAFRF.

6.1.4 —R-XW, REKBEBKE. (IBRAELTREEZM)

6.1.5 HREMLRERIX G, FFHLERIIRETH [ ?

6.1.6 go WMERIIABE TN, R UME R HIRETT& I 18] ?

6.1.7 KPR DA bR X 51?2 FEAEMAE T, —1 socket 5 500 1%, =iLEL 200
RIEAEAE, BRARFE T 300 KiE sz ?

6.1.8 FERFWT, A1, REHA?

6.1.9 it http M, A¥iRiX AAAA, ZE/Dilk B kN AAAA ERIEERK.

6.2.0 JRE S AN api_gateway, api_gateway T &S F 4, A ANHIATT
FAtE?

6.2.1 mysql NFAEM b+, AP XWHRTI%H?

6.2.2 QIBBEERGINZEAEE?

6.2.3 ffH int i primary key ff# [ string HH4L%?



6.2.4 BIRENRIITIIE?

6.2.5 K&, THLFWT, 5—/MEH, REMHEIFH top 10 product_id.

6.2.6 RS, AJREIER B RS Bl #:0, BLEOXGER A RS A2 B0, &2A84&EH
B2

6.2.7 MEARE TR, RfEH Linux BN TR, #REUMT debug?

6.2.8 WA FfE—A mysql iEEIHIHERE?

6.2.9 go ¥, REMERWE, KET panic, HEERHN recover T . REGREIH 4
157?

6.3.0 socket H, 7E tep thiETH, HIESA 10 MROSCKB. 1-7 KIRIEF], 2 8 REXR.
XWHEFB—ERWG? MEE 8 KEELER, MEBBIRL/SL: LI 1-7 KKME
%, REIREE] 8-10 RIEIE?ER 9-10 RINEHE <X ?

6.3.1 free -h, buffers #l cached HHAARF

6.3.2 EEHBERAH AR, WRBERR—IHEREGHE, KBB4

6.3.3 BIF#ERM A, WMRFE-MEIHE, WATERESH#E

6.3.4 I)LHERMH A

6.3.5 —PERER 20 MR, ERNMLETEA fork, FHHEERXF 20 MEED?

6.3.6 tcp/ip FREIEHIAIFE L

6.3.7 301/302 54X H? M EFEHARFA.



6.3.8 50X HHREHR G HI NIRRT A2

6.3.9 close wait fl time wait 24 ? WAHE? FHARX?

6.4.0 http req fl resp I E A WL

6.4.1 A2 REEREITIF, LRARE

6.4.2 TRIN— LK KB A redis, M redis MK SBOLEATH, ok
6.4.3 redis sharding % B4 ik

6.4.4 HREHIRERHA redis /7, BHESEURLFRE, Wit @RI —IMREH
TR

6.4.5 ¥ redis XH hash fi sharding, BL7EHR 8 MMM, BT RE pos = hash(key) %
8, AJERFFTE pos TR Lo RFMBEH 2QFAIRLL? 24 8 M RES RE 10 MK, M
BEAN? AHAEFET RN GTRG? (—Zt hash, presharding)

6.4.6 WA {RIE redis FOECHR 0GR 10— 3k . L F P 2 BEARAFAE SR B, SUARAFAE redis

A7 . H 0 FEE1E update_db(username); update_redis(username). {H /&7 update_db
Ja#l%, update_redis % HHAT . A4 T L IPMEMREHRIXA ) 7T



	6.1.0 5个人去一个海岛寻宝，最后一共找到了100枚金币。他们约定了一个分配方案。
	6.1.1 给你一个有序整数数组，数组中的数可以是正数、负数、零，请实现一个函数，这个函数返回一个整数：返回这个数组所有数的平方值中有多少种不同的取值。
	6.1.2 一个环有10个节点，编号0-9。从0点出发，走N步又能回到0点，共有多少种走法？
	6.1.3 一个乱序数组，求第K大的数。排序方式使用字典序。
	6.1.4 一棵二叉树，求最大通路长度。（即最大左右子树高度之和）
	6.1.5 进程和线程的区别，使用线程真的能节省时间？
	6.1.6 go协程的调度方式，使用协程真的能节省时间？
	6.1.7 水平触发边沿触发的区别？在边沿触发下，一个socket有500的数据，已读取200然后不再处理，是不是剩下的300就永远无法读取？
	6.1.8 有函数如下，输入1，返回什么？
	6.1.9 设计http协议，A端发送 AAAA，至少让B端知道AAAA已发送完成。
	6.2.0 流量总入口为api_gateway，api_gateway挂了会导致全部挂挂，用什么机制增大可用性？
	6.2.1 mysql为什么要用b+树，不用平衡二叉树做索引结构？
	6.2.2 创建数据库索引应该怎么考虑？
	6.2.3 使用int 做primary key和使用string 有什么优劣？
	6.2.4 数据库分表的方法？
	6.2.5 表结构，订单纪录如下，写一个语句，求卖的最好的 top 10 product_id。
	6.2.6 微服务，A服务请求B服务B1接口，B1接口又请求A服务A2接口。会不会有问题？
	6.2.7 不使用高级工具，只使用Linux自带的工具，你会如何debug?
	6.2.8 如何预估一个mysql语句的性能？
	6.2.9 go函数中，返回值未命名，发生了panic，但是在函数内recover了。函数返回什么值？
	6.3.0 socket中，在tcp协议层面，数据分为10个报文发放。1-7次很顺利，第8次丢失。这次通信一定失败吗？如果第8次数据会重发，那在接收端是不是：先读取到1-7次的数据，然后读取到8-10次的数据?还是9-10次的数据会先到达？
	6.3.1 free -h，buffers 和cached有什么不同
	6.3.2 后台进程有什么特点，如果要你设计一个进程是后台进程，你会考虑什么
	6.3.3 僵尸进程是什么，如果产生一个僵尸进程，如何查找僵尸进程
	6.3.4 孤儿进程是什么
	6.3.5 一个进程有20个线程，在某个线程中调用fork，新的进程会有20个线程吗？
	6.3.6 tcp/ip 流量控制和拥塞控制
	6.3.7 301/302有什么区别？应用上有什么异同。
	6.3.8 50X相关错误码的内涵是什么？
	6.3.9 close wait和time wait是什么？如何排查？有什么意义？
	6.4.0 http req和resp的中数据有哪些
	6.4.1 什么是连接的半打开，半关闭状态
	6.4.2 假如一个业务依赖单点redis，此redis故障将导致业务不可用，如何改进
	6.4.3 redis sharding有哪些做法
	6.4.4 当大量数据要求用redis保存，单机单点难以满足需要，设计（换寻找）一个负载均衡的方案
	6.4.5 当redis 采用hash做sharding，现在有8个节点，负载方案是 pos = hash(key) % 8，然后保存在pos节点上。这样做有什么好处坏处？当8个节点要扩充到10个节点，应该怎么办？有什么更方便扩充的方案吗？（一致性hash, presharding）

