
1、⼯工⼚厂⽅方法模式(利利⽤用创建同⼀一接⼝口的不不同实例例)：

 1、普通⼯工⼚厂模式：建⽴立⼀一个⼯工⼚厂类，对实现了了同⼀一接⼝口的⼀一些类进⾏行行实例例的创建；

1 public class SendFactory {
2
3 public Sender produce(String type) {
4 if ("mail".equals(type)) {
5 return new MailSender();
6 } else if ("sms".equals(type)) {
7 return new SmsSender();
8 } else {
9 System.out.println("请输⼊入正确的类型!");
10 return null;
11 }
12 }
13 }

 2、多个⼯工⼚厂⽅方法模式：提供多个⼯工⼚厂⽅方法，分别创建对象；

1 public class SendFactory {
2
3 public Sender produceMail(){
4 return new MailSender();
5 }
6
7 public Sender produceSms(){
8 return new SmsSender();
9 }
10 }

 3、静态⼯工⼚厂⽅方法模式：将上⾯面的多个⼯工⼚厂⽅方法置为静态的，不不需要创建⼯工⼚厂实例例，直接调⽤用即可；

 4、适⽤用场景：凡是出现了了⼤大量量不不同种类的产品需要创建，并且具有共同的接⼝口时，可以通过⼯工⼚厂⽅方法模式进⾏行行创建。在以上的三种模式

中，第⼀一种如果传⼊入的字符串串有误，不不能正确创建对象，第三种相对于第⼆二种，不不需要实例例化⼯工⼚厂类，所以，⼤大多数情况下，我们会选⽤用第三种——静

态⼯工⼚厂⽅方法模式。

 2、抽象⼯工⼚厂模式(多个⼯工⼚厂)：创建多个⼯工⼚厂类，提⾼高⼯工⼚厂的扩展性，不不⽤用像上⾯面⼀一样如果增加产品则要去修改唯⼀一的⼯工⼚厂类；

 3、单例例模式(保证对象只有⼀一个实例例)：保证在⼀一个JVM中，该对象只有⼀一个实例例存在；

 1、适⽤用场景：

 1、某些类创建⽐比较频繁，对于⼀一些⼤大型的对象，这是⼀一笔很⼤大的系统开销。

 2、省去了了new操作符，降低了了系统内存的使⽤用频率，减轻GC压⼒力力。

 3、有些类如交易易所的核⼼心交易易引擎，控制着交易易流程，如果该类可以创建多个的话，系统完全乱了了。（⽐比如⼀一个军队出现了了多个司

令员同时指挥，肯定会乱成⼀一团），所以只有使⽤用单例例模式，才能保证核⼼心交易易服务器器独⽴立控制整个流程。

 2、代码：

1 public class Singleton {
2
3 /* 持有私有静态实例例，防⽌止被引⽤用，此处赋值为null，⽬目的是实现延迟加载 */
4 private static Singleton instance = null;
5
6 /* 私有构造⽅方法，防⽌止被实例例化 */
7 private Singleton() {
8 }
9
10 /* 静态⼯工程⽅方法，创建实例例 */
11 public static Singleton getInstance() {
12 if (instance == null) {
13 instance = new Singleton();
14 }
15 return instance;

16 }
17
18 /* 如果该对象被⽤用于序列列化，可以保证对象在序列列化前后保持⼀一致 */
19 public Object readResolve() {
20 return instance;
21 }
22 }

 3、分类：

 1、饿汉式：类初始化时创建单例例，线程安全，适⽤用于单例例占内存⼩小的场景，否则推荐使⽤用懒汉式延迟加载；

1 public class Singleton{
2 private static Singleton instance = new Singleton();
3 private Singleton(){}
4 public static Singleton newInstance(){
5 return instance;
6 }
7 }

 2、懒汉式：需要创建单例例实例例的时候再创建，需要考虑线程安全(性能不不太好)：

1 public class Singleton{
2 private static Singleton instance = null;
3 private Singleton(){}
4 public static synchronized Singleton newInstance(){
5 if(null == instance){
6 instance = new Singleton();
7 }
8 return instance;
9 }
10 }

 3、双重检验锁：效率⾼高；(解决问题：假如两个线程A、B，A执⾏行行了了if (instance == null)语句句，它会认为单例例对象没有创建，此时线程切到B也

执⾏行行了了同样的语句句，B也认为单例例对象没有创建，然后两个线程依次执⾏行行同步代码块，并分别创建了了⼀一个单例例对象。)

1 public class Singleton {
2 private static volatile Singleton instance = null;//volatile的⼀一个语义是禁⽌止指令重排序优化
3 private Singleton(){}
4 public static Singleton getInstance() {
5 if (instance == null) {
6 synchronized (Singleton.class) {
7 if (instance == null) {//2
8 instance = new Singleton();
9 }
10 }
11 }
12 return instance;
13 }
14 }

 4、静态内部类⽅方式：可以同时保证延迟加载和线程安全。

1 public class Singleton{
2 private static class SingletonHolder{
3 public static Singleton instance = new Singleton();
4 }
5 private Singleton(){}
6 public static Singleton newInstance(){
7 return SingletonHolder.instance;
8 }
9 }

 5、枚举：使⽤用枚举除了了线程安全和防⽌止反射调⽤用构造器器之外，还提供了了⾃自动序列列化机制，防⽌止反序列列化的时候创建新的对象。

1 public enum Singleton{
2 instance;
3 public void whateverMethod(){}
4 }

 4、原型模式(对⼀一个原型对象进⾏行行复制、克隆隆产⽣生类似新对象)：将⼀一个对象作为原型，对其进⾏行行复制、克隆隆，产⽣生⼀一个和元对象类似的新对

象；

 1、核⼼心：它的核⼼心是原型类Prototype，需要实现Cloneable接⼝口，和重写Object类中的clone⽅方法；

 2、作⽤用：使⽤用原型模式创建对象⽐比直接new⼀一个对象在性能上要好的多，因为Object类的clone⽅方法是⼀一个本地⽅方法，它直接操作内存

中的⼆二进制流，特别是复制⼤大对象时，性能的差别⾮非常明显。

 5、适配器器模式(接⼝口兼容)：将某个类的接⼝口转换成客户端期望的另⼀一个接⼝口表示，⽬目的是消除由于接⼝口不不匹配所造成的类的兼容性问题。

 1、类的适配器器模式：

 2、对象的适配器器模式：

 3、接⼝口的适配器器模式：

 4、使⽤用场景：

 1、类的适配器器模式：当希望将⼀一个类转换成满⾜足另⼀一个新接⼝口的类时，可以使⽤用类的适配器器模式，创建⼀一个新类，继承原有的类，

实现新的接⼝口即可。

 2、对象的适配器器模式：当希望将⼀一个对象转换成满⾜足另⼀一个新接⼝口的对象时，可以创建⼀一个Wrapper类，持有原类的⼀一个实例例，在

Wrapper类的⽅方法中，调⽤用实例例的⽅方法就⾏行行。

 3、接⼝口的适配器器模式：当不不希望实现⼀一个接⼝口中所有的⽅方法时，可以创建⼀一个抽象类Wrapper，实现所有⽅方法，我们写别的类的时

候，继承抽象类即可。

 6、装饰模式(给对象动态增加新功能，需持有对象实例例)：装饰模式就是给⼀一个对象增加⼀一些新的功能，⽽而且是动态的，要求装饰对象和被装

饰对象实现同⼀一个接⼝口，装饰对象持有被装饰对象的实例例：

 1、示例例：

 2、使⽤用场景：

 1、需要扩展⼀一个类的功能。

 2、动态的为⼀一个对象增加功能，⽽而且还能动态撤销。（继承不不能做到这⼀一点，继承的功能是静态的，不不能动态增删。）

 7、代理理模式(持有被代理理类的实例例，进⾏行行操作前后控制)：采⽤用⼀一个代理理类调⽤用原有的⽅方法，且对产⽣生的结果进⾏行行控制。

 8、外观模式(集合所有操作到⼀一个类)：外观模式是为了了解决类与类之间的依赖关系的，像spring⼀一样，可以将类和类之间的关系配置到配置

⽂文件中，⽽而外观模式就是将他们的关系放在⼀一个Facade类中，降低了了类类之间的耦合度。

 9、桥接模式(数据库驱动桥接)：桥接模式就是把事物和其具体实现分开，使他们可以各⾃自独⽴立的变化。桥接的⽤用意是：将抽象化与实现化解

耦，使得⼆二者可以独⽴立变化，像我们常⽤用的JDBC桥DriverManager⼀一样，JDBC进⾏行行连接数据库的时候，在各个数据库之间进⾏行行切换，基本不不需要

动太多的代码，甚⾄至丝毫不不⽤用动，原因就是JDBC提供统⼀一接⼝口，每个数据库提供各⾃自的实现，⽤用⼀一个叫做数据库驱动的程序来桥接就⾏行行了了。

 10、组合模式(部分整体模式)：组合模式有时⼜又叫部分-整体模式在处理理类似树形结构的问题时⽐比较⽅方便便。

 11、享元模式(共享池、数据库连接池)：享元模式的主要⽬目的是实现对象的共享，即共享池，当系统中对象多的时候可以减少内存的开销，

通常与⼯工⼚厂模式⼀一起使⽤用。当⼀一个客户端请求时，⼯工⼚厂需要检查当前对象池中是否有符合条件的对象，如果有，就返回已经存在的对象，如果没有，

则创建⼀一个新对象，如数据库连接池；

 12、策略略模式(多种算法封装)：策略略模式定义了了⼀一系列列算法，并将每个算法封装起来，使他们可以相互替换，且算法的变化不不会影响到使⽤用

算法的客户。需要设计⼀一个接⼝口，为⼀一系列列实现类提供统⼀一的⽅方法，多个实现类实现该接⼝口：

1 ICalculator cal = new Plus(); //ICalculator是统⼀一接⼝口，Plus是实现类(多个)
2 int result = cal.calculate(exp); //jvm根据实现类不不同⽽而调⽤用不不同实现类的⽅方法

 13、模板⽅方法模式(抽象⽅方法作为⻣骨架，具体逻辑让⼦子类实现)：定义⼀一个操作中算法的框架，⽽而将⼀一些步骤延迟到⼦子类中，使得⼦子类可以不不改

变算法的结构即可重定义该算法中的某些特定步骤。完成公共动作和特殊动作的分离。

1 //题⽬目：排序并打印：
2 abstract class AbstractSort {
3 /**
4 * 将数组array由⼩小到⼤大排序
5 * @param array
6 */
7 protected abstract void sort(int[] array);
8
9 public void showSortResult(int[] array){
10 System.out.print("排序结果：”);//打印
11 }
12 }
13 //排序
14 class ConcreteSort extends AbstractSort {
15
16 @Override
17 protected void sort(int[] array){
18 for(int i=0; i<array.length-1; i++){
19 selectSort(array, i);
20 }
21 }
22
23 private void selectSort(int[] array, int index) {
24 //排序的实现逻辑
25 }
26 }
27 //测试
28 public class Client {
29 public static int[] a = { 10, 32, 1, 9, 5, 7, 12, 0, 4, 3 }; // 预设数据数组
30 public static void main(String[] args){
31 AbstractSort s = new ConcreteSort();
32 s.showSortResult(a);
33 }
34 }

 14、观察者模式(发布-订阅模式)：当⼀一个对象变化时，其它依赖该对象的对象都会收到通知，并且随着变化！对象之间是⼀一种⼀一对多的关

系。类似于邮件订阅和RSS订阅，当你订阅了了该⽂文章，如果后续有更更新，会及时通知你。

 15、迭代器器模式(遍历集合)：迭代器器模式就是顺序访问聚集中的对象。

 16、责任链模式(多任务形成⼀一条链，请求在链上传递)：有多个对象，每个对象持有对下⼀一个对象的引⽤用，这样就会形成⼀一条链，请求在

这条链上传递，直到某⼀一对象决定处理理该请求。但是发出者并不不清楚到底最终那个对象会处理理该请求，所以，责任链模式可以实现，在隐瞒客户端的

情况下，对系统进⾏行行动态的调整。

 17、命令模式(实现请求和执⾏行行的解耦)：命令模式的⽬目的就是达到命令的发出者和执⾏行行者之间解耦，实现请求和执⾏行行分开，熟悉Struts的

同学应该知道，Struts其实就是⼀一种将请求和呈现分离的技术，其中必然涉及命令模式的思想！

 18、备忘录模式(保存和恢复对象状态)：主要⽬目的是保存⼀一个对象的某个状态，以便便在适当的时候恢复对象。

 19、状态模式(对象状态改变时改变其⾏行行为)：当对象的状态改变时，同时改变其⾏行行为。状态模式就两点：1、可以通过改变状态来获得不不同

的⾏行行为。2、你的好友能同时看到你的变化。

 20、访问者模式(数据接⼝口稳定，但算法易易变)：访问者模式把数据结构和作⽤用于结构上的操作解耦合，使得操作集合可相对⾃自由地演化。

访问者模式适⽤用于数据结构相对稳定算法⼜又易易变化的系统。因为访问者模式使得算法操作增加变得容易易。访问者模式就是⼀一种分离对象数据结构与⾏行行

为的⽅方法，通过这种分离，可达到为⼀一个被访问者动态添加新的操作⽽而⽆无需做其它的修改的效果。

 21、中介者模式：中介者模式也是⽤用来降低类类之间的耦合的。如果使⽤用中介者模式，只需关⼼心和Mediator类的关系，具体类类之间的关系

及调度交给Mediator就⾏行行，这有点像spring容器器的作⽤用。

 22、解释器器模式(对于⼀一些固定⽂文法构建⼀一个解释句句⼦子的解释器器，如正则表达式)：解释器器模式⽤用来做各种各样的解释器器，如正则表达式等的

解释器器。

 23、建造者模式(创建复合对象)：⼯工⼚厂类模式提供的是创建单个类的模式，⽽而建造者模式则是将各种产品集中起来进⾏行行管理理，⽤用来创建复合对

象，所谓复合对象就是指某个类具有不不同的属性

24、设计模式的六⼤大原则：

1、开闭原则（Open Close Principle）

开闭原则就是说对扩展开放，对修改关闭。在程序需要进⾏行行拓拓展的时候，不不能去修改原有的代码，实现⼀一个热插拔的效果。

所以⼀一句句话概括就是：为了了使程序的扩展性好，易易于维护和升级。想要达到这样的效果，我们需要使⽤用接⼝口和抽象类，后⾯面的具

体设计中我们会提到这点。

2、⾥里里⽒氏代换原则（Liskov Substitution Principle）

⾥里里⽒氏代换原则(Liskov Substitution Principle LSP)⾯面向对象设计的基本原则之⼀一。 ⾥里里⽒氏代换原则中说，任何基类

可以出现的地⽅方，⼦子类⼀一定可以出现。 LSP是继承复⽤用的基⽯石，只有当衍⽣生类可以替换掉基类，软件单位的功能不不受到影响时，

基类才能真正被复⽤用，⽽而衍⽣生类也能够在基类的基础上增加新的⾏行行为。⾥里里⽒氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则

的关键步骤就是抽象化。⽽而基类与⼦子类的继承关系就是抽象化的具体实现，所以⾥里里⽒氏代换原则是对实现抽象化的具体步骤的规

范。—— From Baidu 百科

3、依赖倒转原则（Dependence Inversion Principle）

这个是开闭原则的基础，具体内容：真对接⼝口编程，依赖于抽象⽽而不不依赖于具体。

4、接⼝口隔离原则（Interface Segregation Principle）

这个原则的意思是：使⽤用多个隔离的接⼝口，⽐比使⽤用单个接⼝口要好。还是⼀一个降低类之间的耦合度的意思，从这⼉儿我们看出，

其实设计模式就是⼀一个软件的设计思想，从⼤大型软件架构出发，为了了升级和维护⽅方便便。所以上⽂文中多次出现：降低依赖，降低耦

合。

5、迪⽶米特法则（最少知道原则）（Demeter Principle）

为什什么叫最少知道原则，就是说：⼀一个实体应当尽量量少的与其他实体之间发⽣生相互作⽤用，使得系统功能模块相对独⽴立。

6、合成复⽤用原则（Composite Reuse Principle）

原则是尽量量使⽤用合成/聚合的⽅方式，⽽而不不是使⽤用继承

25、jdk中的设计模式：

1. 单例例模式：

java.lang.Runtime#getRuntime()

java.awt.Desktop#getDesktop()

java.lang.System#getSecurityManager()

2. 责任链模式：

java.util.logging.Logger#log()

javax.servlet.Filter#doFilter()

3. 观察者模式：

java.util.Observer/ java.util.Observable（很少在现实世界中使⽤用）

所有实现java.util.EventListener（因此实际上各地的Swing）

javax.servlet.http.HttpSessionBindingListener

javax.servlet.http.HttpSessionAttributeListener

javax.faces.event.PhaseListener

26、spring中的设计模式：

a. 简单⼯工⼚厂：spring中的BeanFactory就是简单⼯工⼚厂模式的体现，根据传⼊入⼀一个唯⼀一的标识来获得bean对象，但是否是在传⼊入
参数后创建还是传⼊入参数前创建这个要根据具体情况来定。

b. 单例例模式：Spring下默认的bean均为singleton。
c. 代理理模式：为其他对象提供⼀一种代理理以控制对这个对象的访问。 从结构上来看和Decorator模式类似，但Proxy是控制，更更像
是⼀一种对功能的限制，⽽而Decorator是增加职责。 spring的Proxy模式在aop中有体现，⽐比如JdkDynamicAopProxy和
Cglib2AopProxy。
d. 观察者模式：定义对象间的⼀一种⼀一对多的依赖关系，当⼀一个对象的状态发⽣生改变时，所有依赖于它的对象都得到通知并被⾃自

动更更新。spring中Observer模式常⽤用的地⽅方是listener的实现。如ApplicationListener。
27、

