1, I &SR (FIALZR—1Z ORI RRISEH))
BTN EN: BT %, W TE—FON—LRHTIAIRBIE;

1 public class SendFactory {

2

3 public Sender produce(String type) {
4 if ("mail".equals(type)) {

5 return new MailSender();

6 } else if ("sms".equals(type)) {
7 return new SmsSender();

8 1 else {

9 System.out.println("iEMAEMRAZER");
10 return null;

11 }

12 }

13 }

2. BT HEEN: BREDT AE. DABENR;

1 public class SendFactory {
2

3 public Sender produceMail(){
4 return new MailSender();
5 }

6

7 public Sender produceSms(){

8 return new SmsSender();

9 }

10 }

5 i mE A Y S FH1TOl FEN =R
H, ﬂ‘ﬁﬂ%ﬁ%)\ﬂﬁ?ﬁ%ﬁlﬁ Tﬁgﬂfﬁﬁﬁﬂ@ijg m_ﬂ’mij:f%_ﬂ’ Tm%:’:fﬂ’ﬂﬁlr* FiA, AZEERT, BOSRAE=M—5
?S\I JEE,
2, METI &KX (B1MI): pEESAT X, & YR, ARG EE—HNRIEN~RUEEERE—NI %
3, BHRR (RIENRRE—NEH) : FiEFE—1Povwd, ZHRAF—DLHIEFE;
1. ERE:
1, BLEEBIRLERINE, WF—LEABENNER, XE2—ERANALSFH,
2. BETnewiRER, BIRTREAFNERME, BEcCEN.
3. BERUNRGANZORF5IE, BHERGRE, MRIZETUSIEZINIE RET2EL T, (ECU—1ERERT Z1E)
LARNIEE, BESIE—H) , FAINRBERRAIER, 7RO ZIRSBIDIITHENRE,
2, fLR5:

1 public class Singleton {

2

3 /* BHETWERSEA), FHLEWSIR, ARERnLL, BNEIIERME */
4 private static Singleton instance = null;

6 /* FAEMERE, FRLEWSEGIL */
7 private Singleton() {
8 }

10 /* BSIRERE, SELAl *

11 public static Singleton getInstance() {
12 if (instance == null) {

13 instance = new Singleton();

14 1

15 return instance;

16 }

17
18 /* MRZNFEWAT I, TURIENSREFIICRIERIS—H */
19 public Object readResolve() {
20 return instance;
21 }
22 }
3. DE:

1. N EAtETRlESs], SiETe FRTHASRENIFS, BRI IE RN
1 public class Singleton{
2 private static Singleton instance = new Singleton();
3 private Singleton(){}
4 public static Singleton newInstance(){
5 return instance;
6 }
7}

2, N B

1 public class Singleton{

2 private static Singleton instance = null;

3 private Singleton(){}

4 public static synchronized Singleton newInstance(){
5 if(null == instance){

6 instance = new Singleton();

7 }

8 return instance;

9 }

10 }

3. WEREH: RS ERRET: BUFANEEA B, AHITTif (instance == null)iBE), ERIAASEINSEHENE, IATLIETHIst
B, IgieE R, AEANERIORNTEIS RGN, HHBBIET DR,)

1 public class Singleton {

2 private static volatile Singleton instance = null;//volatilefJ—MEXZEILIELEHFML
3 private Singleton(){}
4 public static Singleton getInstance() {
5 if (instance == null) {
6 synchronized (Singleton.class) {
7 if (instance == null) {//2
8 instance = new Singleton();
9 i
10 }
11 }
12 return instance;
13 }
14 }
4, BSAE .

1 public class Singleton{

2 private static class SingletonHolder{

3 public static Singleton instance = new Singleton();
4 }

5 private Singleton(){}

6 public static Singleton newInstance(){

7 return SingletonHolder.instance;

8 }

9 }

1 public enum Singleton{

2 instance;
3 public void whateverMethod(){}
4}
4, RERR H— 1 RENRHTEN. REFERNUFNSR) - B ONRERRR, NEHTEH. 7T, =4 DT REMGHT
%

1. Bl ERRZOEREIEPrototype, BEXICloneablet, MEEobjectFEHMcloneFiE;
2, 1A ERREEXIENREEEnew— PN REMEE L EIFNZ, ENobjectEMcloneHiER— A E, EEERIEAT
R TR, 1R EEIAN R, HAENERIERRE.
5. ERERER EORD) : BEDENBEOERREFHHRENS—MEORT, BNSERHETEORCREMERNENFESIE0R,
1. EHERRER:

ZOBAEFE: E—Sourcezt, ME—NAE, FiEE, BIEDR Targetable, EidAdapterst, §SourcefUINEEY B Targetable®, ELE3:

B 3
01. public class Source {
02.
03. public void methodl () {
04. System.out.println("this is original method!");
05. }
06. }
B 3
01. public interface Targetable {
02.
03. /* HRERFHITHEMA </
04. public void methodl ();
06. /* BRI </
07. public void method2 () ;
08. }
E 3
01. public class Adapter extends Source implements Targetable {
02.
03. @Override
04. public void method2() {
05. System.out.println("this is the targetable method!");
06. }
07. | }

2. REEE R

RBE(SeAdaptersEAYRIBEN T :

E 8
01. public class Wrapper implements Targetable {
02.
D5 private Source source;
04.
05. public Wrapper (Source source) {
06. super () ;
07. this.source = source;
08. }
09. @Override
10. public void method2() {
11. System.out.println("this is the targetable method!");
28 }
A8
14. @Override
15 public void methodl () {
16. source.methodl () ;
17/ }
18. }

3. BEOMEREER:

BRMRFER, EXFART, BNLERBIRMBEOTEXTRBNAE, UBTFANENE—LIMEFHTEBHE. ERB:

]]
01. public interface Sourceable {
02.
03. public void methodl();
04. public void method2 () ;
05. | 1
5% Wrapper2:
[}]
01. public abstract class Wrapper2 implements Sourceable{
02.
03. public void methodl() {}
04. public void method2 () {}
05. }
]]
01. | public class SourceSubl extends Wrapper2 {
02. public void methodl () {
03. System.out.println("the sourceable interface's first Subl!");
04. }
0s. | »
] [£]
01. | public class SourceSub2 extends Wrapper2 {
02. public void method2 () {
03. System.out.println("the sourceable interface's second Sub2!");
04. }
05. | 1

4. [FRIFHE:
1. #MERRER: SFEE—TERRAHEES—NNIEONEN, TUUERLNERBZEN, IB— ML, BRRENX,
A OENE,
2, WHROBEBFER: YFEEE—IWREBRRFRS—NIHEOMNN RS, TUEIE—Mwrapper®, SBREN—DIH, %
Wrapper £ ER, BRIHIKIS AT,
3. BOMNBEEREN: SAFEIU—MEORMENSER, TUEIBR—MaSREvrapper, SHRBRE, BS3IHIEA
1, HREGHSREAN],
6. KIMEN AXZAIEINIING, BHENKRIH)) : BIFEXMBL— D RIGN—LIHAITIEE, TEIEHSHN, BREMNRTESE
M SRR —MED, BN R R R R
1. il

SourceX 2 I, DecoratorEE— R, FILAKSource X ENSHIRIN—LEINEE, ABMT:

E O
01. public interface Sourceable {
02. public void method();
03. }
E O
01. public class Source implements Sourceable {
02.
03. @Override
04. public void method() {
05. System.out.println("the original method!");
06. }
07. }
E B
01. public class Decorator implements Sourceable {
02.
03. private Sourceable source;
04.
05. public Decorator (Sourceable source) {
06. super () ;
07. this.source = source;
08. }
09. @Override
10. public void method() {
11. System.out.println("before decorator!");
L7 source.method () ;
13. System.out.println("after decorator!");
14. }
15 }

2, ERGR:
1. BB R XIS,
2. BISHIR—TXNRIBININEE, MERBERNSEE, WEREMEIX—x, WEINEERESH, TEERhTIBH.,)
7. RERR FERAEENSIE, HTIRERERS) : RA—MERRRRENAE, BEXF-ENERBTE.,

01. public interface Sourceable {

02. public void method();
03, }
(R
01. public class Source implements Sourceable ({
02.
03 QOverride
04. public void method() {
05. System.out.println("the original method!
06. }
07. }
E &
01. public class Proxy implements Sourceable {
02
03, I private Source source; I
04. public Proxy () {
03, super () ;
06. this.source = new Source();
07. }
08. @Override
09. public void method() {
10. before() ;
11. source.method () ;
12. atfer();
13. }
14. private void atfer() ({
15. System.out.println ("after proxy!");
16. }
17. private void before() {
18. System.out.println ("before proxy!"):;
1595 }
20 !

8. HMMRR (REMBRER—1E) : IMEXRATRALSEZEIRBRAN, Kspring—H¥, ABEMEZ BNXARETRE
X, MR REMI IR RBIE— M Facade, BETEEZBNBEE,

public class Computer {
private CPU cpu;
private Memory memory;
private Disk disk;

public Computer () {
cpu = new CPU();
memory = new Memory () ;

disk = new Disk();

public void startup() {
System.out.println("start the computer!");
cpu.startup() ;
memory.startup() ;
disk.startup();
System.out.println("start computer finished!");

public void shutdown () {
System.out.println("begin to close the computer!");
cpu.shutdown () ;
memory.shutdown () ;
disk.shutdown () ;
System.out.println("computer closed!");

9. WHERI (MUBRERNE) © MEEXHMREBNNEERINMS T, EOMNTNSEMINER. FHENAER: BHRMS SR
B, EEZETMMIIENY, GEATEMMIDBCHiDriverManager—#¥, JDBCHHTEREUEENIMR, EEMEIBEZ BH#TIIR, EATHER
HAZHNE, EELETAE, REMRooeciRESR—EO, STHIRERESENIN, B—MIUMSEIEERDREFRIHEMTT .

10, AAEKRN (MO BAER) © BRGNS - BRI RN 100 B A LR .,

11, ExER (HEM, JEEEET) : SoEXNETEENEIUNRNAS, BHEE, SRAPHRSHNRT RO RFHFTHE,
BEST BX—2EM. S—TEFPRERN, T SENTLINFEFESEMERMINSR, URE, MREELFENNSR, WRLH,
MEZ— MR, NIRRT

12, REREN (SHEERR) - EREXENT—FIEE, HEEPEENERE, Ehile MEEER,
BENERP. BRI —MEO, A—RIITARERE—75E, SPOIIRTINZIEN:

1 ICalculator cal = new Plus(); //ICalculator24i—iE0, PLusEXLME(SZ D)
2 int result = cal.calculate(exp); //jvmiBiECINEREMIARTEZMENSE
13, WiIRAFERN GHRITEER B, BMBEILFRTH) : EX—MRMEFEANIESR, TS —LHBIERETFHF, FEFETTURH
TEENSMENA BB SOZEE PN LS TS B, ST AEMENISHEND B,

1 //BB: HEEHITED:
2 abstract class AbstractSort {

B /**

4 * BEBarray B/INRIKHER

5 * @param array

6 &

7 protected abstract void sort(int[] array);
8

9 public void showSortResult(int[] array){
10 System.out.print("HIFER: ”);//FTE
11 }

12 }

13 //HF

14 class ConcreteSort extends AbstractSort {

15

16 @0verride

17 protected void sort(int[] array){

18 for(int i=0; i<array.length-1; i++){
19 selectSort(array, i);

20 }

21 }

22

23 private void selectSort(int[] array, int index) {
24 / /RIS EE

25 }

26 }

7 //MR
28 public class Client {

[N)

29 public static int[] a = { 10, 32, 1, 9, 5, 7, 12, @, 4, 3 }; // FigIEHA
30 public static void main(String[] args){

31 AbstractSort s = new ConcreteSort();

32 s.showSortResult(a);

33 }

34 }

14, MBEER (RB-THER) : U IHETUN, ECEMZNSONSBAREIEN, 3 ABETH NR T EL— X SH%
Z. ENTFEMHTREIFRSSITH, HIRITHE TZNE, MRSEEEH, S MEHBHR.,

15, BRBER EHES) : RRBEXRRINFHIREFHER,

16, BEMER (SESHE—RE, BRELLER) : A2IHR, SONRPANT—DNRE3IA, SHBATN R, ERE
HEGEHER, ERE-MRATMDLER. (BELUERTERIRRATINRAMDLER, F, BEREXANTI, ERBE N

8
Ha3E

e HY Vo)

17, ®LEN CCHFERTNTHRER) © SORXNBENRRIEGSHREENNTE ZEFEHE, SMBERTTHFF, MBscrucshy
BEHRIZAE, strutsHIHR—FMFERNEMHS BHIEAR, HRNRERGSEIHIA!

18, FERRN (REIREXNRRT) : TEZANERFINRHEDRTS, MEESLNNRRENR,

19, RSB (HERSHENRZRTRH) © SWNROPASHER, BENREETH, KEEXHFHR: 1. TUBERERSHKRETRE
HTTR. 2. IREGF REERIASEENRAVEN

/**
*ORSEATIHE 2012-12-1

* @author erqging
*

*/
public class Context {

private State state;

public Context (State state) {
this.state = state;
}

public State getState() {
return state;
}

public void setState(State state) {
this.state = state;

}

public void method() {
if (state.getValue() .equals("statel")) {
state.methodl () ;
} else if (state.getValue().equals("state2")) {
state.method2 () ;
}

20, HEEFER (BBEORE, EEESE) HRSENCHESHAERTEN LNRERBS, EERESSTIENEHEN,
BREFENERTHREMENREEENSBHUNAR. FABREFENEEEERELNRERS. HOERAME—MOBNREEEMS1T
RFE, BEXMSE, AN MRIFRENSRINFIREMTEMEENBRNRR,

21, PNEER: INEEXLEARBRELZENEEN, UREAFNEER, REXOFMediatorEMIXR, BELEZENXR
KiAERAMediatorfifT, XB AfKRspringBESHER,

22, fERRER IF—LEFECANE—MEEG) FOMRER, WIENFRIAR) : BRBSEXARMEMSHENERE, NENRAXEN
TS .

23, BEEEN CIREANR) : I XEARMUNIZUEBENEMNER, MBEEEAN2ESHSEFERHTER, ARIEEEYN
R, FMBEENSMEEENLEBTENENE

24, RIHERAI KR :

1. FFHAEN (open Close Principle)

FHARMNMBIRNT BRI, SHERKH, ERFEEHTHRNINE, TREEBHNRBENNGE, TIM—MREROHR.
FIN—EiERIER R N TERENT BRI, STHIPHIAR, BERIXHEORER, BNEEEAZOMNMRE, EENER
IR EINSRENX S,

2. BERAIEN (Liskov Substitution Principle)

BRMAIREN (Liskov Substitution Principle LSP) HENWRIRITEARRNZ—. BERAIRNAE, FEEE
AIAEERAM TS, FE—ERIMEI. LsPRUFRERNER, RELUMTERTUBRIGESE, RGP AINIIERZEIZINAT,
BEATREHEIERER, MOTERMEESERELNEN DIBMHTNITH. BRARENENS - REMWEEN e, ST FF-FH RN
HXBESEMEMRN, MELS FENBEXRMEMRAMNEMRII, AR CABRENZX TIHRECAIE RS RN
S8, — From Baidu B}

3. K#EEERN (Dependence Inversion Principle)
ETEFARMGEM, BARS: BEXEORE, KBTHSmAKRET R,
4, EOMRBERN (Interface Segregation Principle)
XTRENNERR: FAZTMRENED, ERRMEOET. TE2—TRAEXZENBEENER, MXILEIEL,

25,
. BpR:

26,

27,

H
PN
(=
EN

EREFEN (FRDEIEREM) (Demeter Principle)

HETRHEAME— NIRRT RS, MARRGRBEER, ATHRMOEFSE. X EXXHZREI: BEEKE, TR

A AMRDEERN, MR — TN HREDNSEMSAZBRERERR, EERAANAEERENIRIL,

6. BRERREN (cComposite Reuse Principle)
FUNRREFEAEN/ RENHN, MARERME
JdkFRYIRIHE :

®» java.lang.Runtime#getRuntime ()
» java.awt.Desktop#getDesktop ()

= java.lang.System#getSecurityManager ()

. ERRR:

= java.util.logging.Logger#log ()

= javax.servlet.Filter#doFilter ()

. MEERA:

" java.util.Observer/ java.util.Observable (REIISEHERPER)
s fEELPjava.util.EventListener (FEUILEFREEHAISwing)

= javax.servlet.http.HttpSessionBindingListener

= javax.servlet.http.HttpSessionAttributelListener

= javax.faces.event.PhaseListener

springfiRITHE:

a. B8 : springd#yBeanFactoryfl 2 B8R T RIMAIL, RIBEN—TH—AIRIRRIKGbean R, B

SHECIEEREANSHAIBIEX N ERERRIERRE.
b. BHIHES: Spring FEAIARIbeanty A singleton,

REREEN

c REEN: HEMYRBEH—FMREBELUIEHINX DN RAFE),. MEH EREMDecoratortEz{ 1, {BProxy2izHl, B
=— IS INEERIPRSI, MMDecorator@tEMNERZT., springfIProxyiE X fFEaopE I, LEaNJdkDynamicAopProxy#l

Cglib2AopProxy,

d. MRERX: EXHREH—P—GZHERBRIR, S—TURERSRELEZN, FAERBTENTRBSIBNHEE

ENEF., springd Observert& = & YIS ElistenerfISLI, WMApplicationListener,

