
第4讲 | 强引用、软引用、弱引用、幻象引用有什么区别？
2018-05-12 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:23 大小 4.76M

在 Java 语言中，除了原始数据类型的变量，其他所有都是所谓的引用类型，指向各种不同

的对象，理解引用对于掌握 Java 对象生命周期和 JVM 内部相关机制非常有帮助。

今天我要问你的问题是，强引用、软引用、弱引用、幻象引用有什么区别？具体使用场景是

什么？

典型回答

不同的引用类型，主要体现的是对象不同的可达性（reachable）状态和对垃圾收集的影

响。





 下载APP 

所谓强引用（“Strong” Reference），就是我们最常见的普通对象引用，只要还有强引

用指向一个对象，就能表明对象还“活着”，垃圾收集器不会碰这种对象。对于一个普通的

对象，如果没有其他的引用关系，只要超过了引用的作用域或者显式地将相应（强）引用赋

值为 null，就是可以被垃圾收集的了，当然具体回收时机还是要看垃圾收集策略。

软引用（SoftReference），是一种相对强引用弱化一些的引用，可以让对象豁免一些垃圾

收集，只有当 JVM 认为内存不足时，才会去试图回收软引用指向的对象。JVM 会确保在抛

出 OutOfMemoryError 之前，清理软引用指向的对象。软引用通常用来实现内存敏感的缓

存，如果还有空闲内存，就可以暂时保留缓存，当内存不足时清理掉，这样就保证了使用缓

存的同时，不会耗尽内存。

弱引用（WeakReference）并不能使对象豁免垃圾收集，仅仅是提供一种访问在弱引用状

态下对象的途径。这就可以用来构建一种没有特定约束的关系，比如，维护一种非强制性的

映射关系，如果试图获取时对象还在，就使用它，否则重现实例化。它同样是很多缓存实现

的选择。

对于幻象引用，有时候也翻译成虚引用，你不能通过它访问对象。幻象引用仅仅是提供了一

种确保对象被 finalize 以后，做某些事情的机制，比如，通常用来做所谓的 Post-Mortem

清理机制，我在专栏上一讲中介绍的 Java 平台自身 Cleaner 机制等，也有人利用幻象引用

监控对象的创建和销毁。

考点分析

这道面试题，属于既偏门又非常高频的一道题目。说它偏门，是因为在大多数应用开发中，

很少直接操作各种不同引用，虽然我们使用的类库、框架可能利用了其机制。它被频繁问

到，是因为这是一个综合性的题目，既考察了我们对基础概念的理解，也考察了对底层对象

生命周期、垃圾收集机制等的掌握。

充分理解这些引用，对于我们设计可靠的缓存等框架，或者诊断应用 OOM 等问题，会很

有帮助。比如，诊断 MySQL connector-j 驱动在特定模式下（useCompression=true）

的内存泄漏问题，就需要我们理解怎么排查幻象引用的堆积问题。

知识扩展

1. 对象可达性状态流转分析

首先，请你看下面流程图，我这里简单总结了对象生命周期和不同可达性状态，以及不同状

态可能的改变关系，可能未必 100% 严谨，来阐述下可达性的变化。

我来解释一下上图的具体状态，这是 Java 定义的不同可达性级别（reachability level），

具体如下：

强可达（Strongly Reachable），就是当一个对象可以有一个或多个线程可以不通过各

种引用访问到的情况。比如，我们新创建一个对象，那么创建它的线程对它就是强可达。

软可达（Softly Reachable），就是当我们只能通过软引用才能访问到对象的状态。

弱可达（Weakly Reachable），类似前面提到的，就是无法通过强引用或者软引用访

问，只能通过弱引用访问时的状态。这是十分临近 finalize 状态的时机，当弱引用被清除

的时候，就符合 finalize 的条件了。

判断对象可达性，是 JVM 垃圾收集器决定如何处理对象的一部分考虑。

所有引用类型，都是抽象类 java.lang.ref.Reference 的子类，你可能注意到它提供了 get()

方法：

除了幻象引用（因为 get 永远返回 null），如果对象还没有被销毁，都可以通过 get 方法

获取原有对象。这意味着，利用软引用和弱引用，我们可以将访问到的对象，重新指向强引

用，也就是人为的改变了对象的可达性状态！这也是为什么我在上面图里有些地方画了双向

箭头。

所以，对于软引用、弱引用之类，垃圾收集器可能会存在二次确认的问题，以保证处于弱引

用状态的对象，没有改变为强引用。

但是，你觉得这里有没有可能出现什么问题呢？

不错，如果我们错误的保持了强引用（比如，赋值给了 static 变量），那么对象可能就没

有机会变回类似弱引用的可达性状态了，就会产生内存泄漏。所以，检查弱引用指向对象是

否被垃圾收集，也是诊断是否有特定内存泄漏的一个思路，如果我们的框架使用到弱引用又

怀疑有内存泄漏，就可以从这个角度检查。

2. 引用队列（ReferenceQueue）使用

谈到各种引用的编程，就必然要提到引用队列。我们在创建各种引用并关联到响应对象时，

可以选择是否需要关联引用队列，JVM 会在特定时机将引用 enqueue 到队列里，我们可

以从队列里获取引用（remove 方法在这里实际是有获取的意思）进行相关后续逻辑。尤其

是幻象引用，get 方法只返回 null，如果再不指定引用队列，基本就没有意义了。看看下面

的示例代码。利用引用队列，我们可以在对象处于相应状态时（对于幻象引用，就是前面说

的被 finalize 了，处于幻象可达状态），执行后期处理逻辑。

幻象可达（Phantom Reachable），上面流程图已经很直观了，就是没有强、软、弱引

用关联，并且 finalize 过了，只有幻象引用指向这个对象的时候。

当然，还有一个最后的状态，就是不可达（unreachable），意味着对象可以被清除了。

3. 显式地影响软引用垃圾收集

前面泛泛提到了引用对垃圾收集的影响，尤其是软引用，到底 JVM 内部是怎么处理它的，

其实并不是非常明确。那么我们能不能使用什么方法来影响软引用的垃圾收集呢？

答案是有的。软引用通常会在最后一次引用后，还能保持一段时间，默认值是根据堆剩余空

间计算的（以 M bytes 为单位）。从 Java 1.3.1 开始，提供了 -

XX:SoftRefLRUPolicyMSPerMB 参数，我们可以以毫秒（milliseconds）为单位设置。比

如，下面这个示例就是设置为 3 秒（3000 毫秒）。

这个剩余空间，其实会受不同 JVM 模式影响，对于 Client 模式，比如通常的 Windows

32 bit JDK，剩余空间是计算当前堆里空闲的大小，所以更加倾向于回收；而对于 server

模式 JVM，则是根据 -Xmx 指定的最大值来计算。

本质上，这个行为还是个黑盒，取决于 JVM 实现，即使是上面提到的参数，在新版的 JDK

上也未必有效，另外 Client 模式的 JDK 已经逐步退出历史舞台。所以在我们应用时，可以

参考类似设置，但不要过于依赖它。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Object counter = new Object();
ReferenceQueue refQueue = new ReferenceQueue<>();
PhantomReference<Object> p = new PhantomReference<>(counter, refQueue);
counter = null;
System.gc();
try {
 // Remove 是一个阻塞方法，可以指定 timeout，或者选择一直阻塞

 Reference<Object> ref = refQueue.remove(1000L);
 if (ref != null) {
 // do something
 }
} catch (InterruptedException e) {
 // Handle it
}

复制代码

1 -XX:SoftRefLRUPolicyMSPerMB=3000

复制代码

4. 诊断 JVM 引用情况

如果你怀疑应用存在引用（或 finalize）导致的回收问题，可以有很多工具或者选项可供选

择，比如 HotSpot JVM 自身便提供了明确的选项（PrintReferenceGC）去获取相关信

息，我指定了下面选项去使用 JDK 8 运行一个样例应用：

这是 JDK 8 使用 ParrallelGC 收集的垃圾收集日志，各种引用数量非常清晰。

注意：JDK 9 对 JVM 和垃圾收集日志进行了广泛的重构，类似 PrintGCTimeStamps 和

PrintReferenceGC 已经不再存在，我在专栏后面的垃圾收集主题里会更加系统的阐述。

5.Reachability Fence

除了我前面介绍的几种基本引用类型，我们也可以通过底层 API 来达到强引用的效果，这

就是所谓的设置reachability fence。

为什么需要这种机制呢？考虑一下这样的场景，按照 Java 语言规范，如果一个对象没有指

向强引用，就符合垃圾收集的标准，有些时候，对象本身并没有强引用，但是也许它的部分

属性还在被使用，这样就导致诡异的问题，所以我们需要一个方法，在没有强引用情况下，

通知 JVM 对象是在被使用的。说起来有点绕，我们来看看 Java 9 中提供的案例。

1 -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintReferenceGC

复制代码

1 0.403: [GC (Allocation Failure) 0.871: [SoftReference, 0 refs, 0.0000393 secs]0.871: [We

复制代码

1

2

3

4

5

6

class Resource {
 private static ExternalResource[] externalResourceArray = ...
 int myIndex; Resource(...) {
 myIndex = ...
 externalResourceArray[myIndex] = ...;
 ...

复制代码

方法 action 的执行，依赖于对象的部分属性，所以被特定保护了起来。否则，如果我们在

代码中像下面这样调用，那么就可能会出现困扰，因为没有强引用指向我们创建出来的

Resource 对象，JVM 对它进行 finalize 操作是完全合法的。

类似的书写结构，在异步编程中似乎是很普遍的，因为异步编程中往往不会用传统的“执行

-> 返回 -> 使用”的结构。

在 Java 9 之前，实现类似功能相对比较繁琐，有的时候需要采取一些比较隐晦的小技巧。

幸好，java.lang.ref.Reference 给我们提供了新方法，它是 JEP 193: Variable Handles 的

一部分，将 Java 平台底层的一些能力暴露出来：

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 }
 protected void finalize() {
 externalResourceArray[myIndex] = null;
 ...
 }
 public void action() {
 try {
 // 需要被保护的代码

 int i = myIndex;
 Resource.update(externalResourceArray[i]);
 } finally {
 // 调用 reachbilityFence，明确保障对象 strongly reachable
 Reference.reachabilityFence(this);
 }
 }
 private static void update(ExternalResource ext) {
 ext.status = ...;
 }
}

1 new Resource().action()

复制代码

1 static void reachabilityFence(Object ref)

复制代码

在 JDK 源码中，reachabilityFence 大多使用在 Executors 或者类似新的 HTTP/2 客户端

代码中，大部分都是异步调用的情况。编程中，可以按照上面这个例子，将需要

reachability 保障的代码段利用 try-finally 包围起来，在 finally 里明确声明对象强可达。

今天，我总结了 Java 语言提供的几种引用类型、相应可达状态以及对于 JVM 工作的意

义，并分析了引用队列使用的一些实际情况，最后介绍了在新的编程模式下，如何利用 API

去保障对象不被意外回收，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？给你留一道练习题，你能从自己的产品或者

第三方类库中找到使用各种引用的案例吗？它们都试图解决什么问题？

请你在留言区写写你的答案，我会选出经过认真思考的留言，送给你一份学习鼓励金，欢迎

你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享出去，或许你能

帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第3讲 | 谈谈final、finally、 finalize有什么不同？

下一篇 第5讲 | String、StringBuffer、StringBuilder有什么区别？

Miaozhe 置顶

2018-05-18
 13

接着上个问题：
老师，问个问题:我自己定义一个类，重写finalize方法后，创建一个对象，被幻想引用，同
时该幻想对象使用ReferenceQueue。
当我这个对象指向null，被GC回收后，ReferenceQueue中没有改对象，不知道是什么原
因？如果我把类中的finalize方法移除，ReferenceQueue就能获取被释放的对象。 …
展开

作者回复: 空的Finalize实现，不会起作用的；

Finalizer是懒家伙，试试system.runfinalization；

杨晓峰 置顶

2018-10-14
 11

这里提供一个真是有关reachability的例子，也是reachabilityFence的一个使用
http://mail.openjdk.java.net/pipermail/jdk-dev/2018-October/002067.html

清楚说明对方法的调用并不能保证对象存活

展开

公号-代码...
2018-05-12

 480

在Java语言中，除了基本数据类型外，其他的都是指向各类对象的对象引用；Java中根据
其生命周期的长短，将引用分为4类。

1 强引用
 …
展开

精选留言 (114)  写留言

作者回复: 高手

海怪哥哥
2018-05-13

 253

我的理解，java的这种抽象很有意思。
强引用就像大老婆，关系很稳固。
软引用就像二老婆，随时有失宠的可能，但也有扶正的可能。
弱引用就像情人，关系不稳定，可能跟别人跑了。
幻像引用就是梦中情人，只在梦里出现过。

展开

作者回复: 牛

肖一林
2018-05-14

 141

这篇文章只描述了强引用，软引用，弱引用，幻想引用的特征。没有讲他们的概念，更没
有讲怎么用…gc roots也没提到。希望能补充完来龙去脉，让没有太多基础的人也能看懂

Jerry银银
2018-05-12

 139

1. 强引用：项目中到处都是。

2. 软引用：图片缓存框架中，“内存缓存”中的图片是以这种引用来保存，使得JVM在发
生OOM之前，可以回收这部分缓存
 …
展开

作者回复: 非常不错，高手；

你可以参考jdk内部cleaner使用，一个方面就贴太多，有凑字数嫌疑了

龙猫猫猫猫
46

2018-05-18


46

热评第一讲得比这文章还好

展开

Jane
2018-05-16

 44

引用出现的根源是由于GC内存回收的基本原理—GC回收内存本质上是回首对象，而目前
比较流行的回收算法是可达性分析算法，从GC Roots开始按照一定的逻辑判断一个对象是
否可达，不可达的话就说明这个对象已死（除此之外另外一种常见的算法就是引用计数
法，但是这种算法有个问题就是不能解决相互引用的问题）。基于此Java向用户提供了四
种可用的引用：即我们本章讲解到的几种，同时还提供了一种不可被使用的引用—…
展开

feitian
2018-05-15

 41

我觉得录音和文字可以不一样，不要兼顾这两者，录音内容应该远多于文字，就像PPT一
样，讲述的人表述的会远多于文字体现出来的东西。所以不用为了录音方便考虑文字内容
多少，文字尽量能不靠录音也是完整的，录音的内容会更丰富，但有些不好描述的部分，
比如代码要配合文字一起看。

展开

作者回复: 好建议，回头和极客反馈下

探索无止境
2018-05-14

 36

希望可以配合一些实际的例子来讲解各种引用会更好，不会仅停留在理论理解层面，实际
例子更有助于理解！

作者回复: 谢谢反馈，我会平衡一下，主要是贴太多代码很容易字数就满了，也不利于录音频

石头狮子
2018-05-12

 28

对各种引用的理解，可以理解为对象对 jvm 堆内存的占用时长。对于对象可达性垃圾回收

算法，可达性可以认为回收内存的标志。
1，强引用，只要对象引用可达，对象使用的内存就一直被占用。
2，软引用，对象使用的内存一直占用，直到 jvm 认为有必要回收内存。
3，弱引用，对象使用的内存一直占用，直到下一次 gc。 …
展开

爱吃面的蝎...
2018-05-16

 21

希望作者照顾层次化的读者，讲名词概念要有具体解释，并能举例一二帮助理解，不然看
完依旧似懂非懂一知半解。

展开

作者回复: 谢谢反馈，回头把必要概念加个链接或解释

kyq叶鑫
2018-06-09

 18

看到第四讲了，每一讲都看到留言有朋友说看完之后还是懵懵的希望作者多提供实际例
子，因为大家都是理工思维，不喜虚的，喜欢直接上干货，建议作者可以从读者背景方面
改善文章内容，软硬兼并。

kursk.ye
2018-05-24

 17

于是我google到了这篇文章,http://www.kdgregory.com/index.php?page=java.refobj
，花了几天（真的是几天，不是几小时）才基本读完，基本理解这几个reference的概念和
作用，从这个角度来讲非常感谢作者，如果不是本文的介绍，我还以为GC还是按照
reference counter的原理处理，原来思路早变了。话说回来，《Java Reference
Objects》真值得大家好好琢磨，相信可以回答很多人的问题，比如strong reference ,…
展开

作者回复: 非常感谢反馈；

关于引用计数，也有优势，我记得某个国外一线互联网公司调优python，就是只用引用计数，关

闭gc

kugool
2018-05-12

 16

感觉自己的基础还很差 除了强引用 其它几个都不是很明白

程序猿的小...
2018-05-15

 13

我觉得可以在github上托管事例代码，说到关键代码的时候，直接链接过去就好。这样就
能丰富内容了。

男人，7分...
2018-05-14

 9

留言区，个个都是人才

展开

wangbo
2018-05-12

 8

除了强引用，其它的都不懂

展开

coder王
2018-05-13

 7

Android 中的Glide 图片加载框架的内存缓存就使用到了弱引用缓存机制😁

作者回复: 图片相当比较大，所以图片缓存是典型场景

有渔@蔡
2018-05-12

 6

好文章，就需要这样深的。有个留言问ThreadLocal中，entry的key为软引用，value为实
际object.当key被回收后，object会产生内存泄露问题。同请具体解答。谢谢

作者回复: 已回复，如果有其他情况可以介绍一下细节，马上飞机去美国，有段时间不能回复，抱

歉

