
第5讲 | String、StringBuffer、StringBuilder有什么区别？
2018-05-15 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 11:59 大小 5.49M

今天我会聊聊日常使用的字符串，别看它似乎很简单，但其实字符串几乎在所有编程语言里

都是个特殊的存在，因为不管是数量还是体积，字符串都是大多数应用中的重要组成。

今天我要问你的问题是，理解 Java 的字符串，String、StringBuffer、StringBuilder 有什

么区别？

典型回答

String 是 Java 语言非常基础和重要的类，提供了构造和管理字符串的各种基本逻辑。它是

典型的 Immutable 类，被声明成为 final class，所有属性也都是 final 的。也由于它的不





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

可变性，类似拼接、裁剪字符串等动作，都会产生新的 String 对象。由于字符串操作的普

遍性，所以相关操作的效率往往对应用性能有明显影响。

StringBuffer 是为解决上面提到拼接产生太多中间对象的问题而提供的一个类，我们可以

用 append 或者 add 方法，把字符串添加到已有序列的末尾或者指定位置。StringBuffer

本质是一个线程安全的可修改字符序列，它保证了线程安全，也随之带来了额外的性能开

销，所以除非有线程安全的需要，不然还是推荐使用它的后继者，也就是 StringBuilder。

StringBuilder 是 Java 1.5 中新增的，在能力上和 StringBuffer 没有本质区别，但是它去

掉了线程安全的部分，有效减小了开销，是绝大部分情况下进行字符串拼接的首选。

考点分析

几乎所有的应用开发都离不开操作字符串，理解字符串的设计和实现以及相关工具如拼接类

的使用，对写出高质量代码是非常有帮助的。关于这个问题，我前面的回答是一个通常的概

要性回答，至少你要知道 String 是 Immutable 的，字符串操作不当可能会产生大量临时

字符串，以及线程安全方面的区别。

如果继续深入，面试官可以从各种不同的角度考察，比如可以：

针对上面这几方面，我会在知识扩展部分与你详细聊聊。

知识扩展

1. 字符串设计和实现考量

我在前面介绍过，String 是 Immutable 类的典型实现，原生的保证了基础线程安全，因为

你无法对它内部数据进行任何修改，这种便利甚至体现在拷贝构造函数中，由于不可变，

Immutable 对象在拷贝时不需要额外复制数据。

通过 String 和相关类，考察基本的线程安全设计与实现，各种基础编程实践。

考察 JVM 对象缓存机制的理解以及如何良好地使用。

考察 JVM 优化 Java 代码的一些技巧。

String 相关类的演进，比如 Java 9 中实现的巨大变化。

…

我们再来看看 StringBuffer 实现的一些细节，它的线程安全是通过把各种修改数据的方法

都加上 synchronized 关键字实现的，非常直白。其实，这种简单粗暴的实现方式，非常适

合我们常见的线程安全类实现，不必纠结于 synchronized 性能之类的，有人说“过早优化

是万恶之源”，考虑可靠性、正确性和代码可读性才是大多数应用开发最重要的因素。

为了实现修改字符序列的目的，StringBuffer 和 StringBuilder 底层都是利用可修改的

（char，JDK 9 以后是 byte）数组，二者都继承了 AbstractStringBuilder，里面包含了基

本操作，区别仅在于最终的方法是否加了 synchronized。

另外，这个内部数组应该创建成多大的呢？如果太小，拼接的时候可能要重新创建足够大的

数组；如果太大，又会浪费空间。目前的实现是，构建时初始字符串长度加 16（这意味

着，如果没有构建对象时输入最初的字符串，那么初始值就是 16）。我们如果确定拼接会

发生非常多次，而且大概是可预计的，那么就可以指定合适的大小，避免很多次扩容的开

销。扩容会产生多重开销，因为要抛弃原有数组，创建新的（可以简单认为是倍数）数组，

还要进行 arraycopy。

前面我讲的这些内容，在具体的代码书写中，应该如何选择呢？

在没有线程安全问题的情况下，全部拼接操作是应该都用 StringBuilder 实现吗？毕竟这样

书写的代码，还是要多敲很多字的，可读性也不理想，下面的对比非常明显。

其实，在通常情况下，没有必要过于担心，要相信 Java 还是非常智能的。

我们来做个实验，把下面一段代码，利用不同版本的 JDK 编译，然后再反编译，例如：

1

2

3

4

5

String strByBuilder = new
StringBuilder().append("aa").append("bb").append("cc").append
 ("dd").toString();

String strByConcat = "aa" + "bb" + "cc" + "dd";

复制代码

1

2

3

public class StringConcat {
 public static String concat(String str) {
 return str + “aa” + “bb”;

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

先编译再反编译，比如使用不同版本的 JDK：

JDK 8 的输出片段是：

而在 JDK 9 中，反编译的结果就会有点特别了，片段是：

你可以看到，非静态的拼接逻辑在 JDK 8 中会自动被 javac 转换为 StringBuilder 操作；

而在 JDK 9 里面，则是体现了思路的变化。Java 9 利用 InvokeDynamic，将字符串拼接

4

5

 }
}

1

2

${JAVA_HOME}/bin/javac StringConcat.java
${JAVA_HOME}/bin/javap -v StringConcat.class

复制代码

1

2

3

4

5

6

7

8

9

10

 0: new #2 // class java/lang/StringBuilder
 3: dup
 4: invokespecial #3 // Method java/lang/StringBuilder."<init>
 7: aload_0
 8: invokevirtual #4 // Method java/lang/StringBuilder.append:
 11: ldc #5 // String aa
 13: invokevirtual #4 // Method java/lang/StringBuilder.append:
 16: ldc #6 // String bb
 18: invokevirtual #4 // Method java/lang/StringBuilder.append:
 21: invokevirtual #7 // Method java/lang/StringBuilder.toString

复制代码

1

2

3

4

5

6

 // concat method
 1: invokedynamic #2, 0 // InvokeDynamic #0:makeConcatWithConstant

 // ...
 // 实际是利用了 MethodHandle, 统一了入口

 0: #15 REF_invokeStatic java/lang/invoke/StringConcatFactory.makeConcatWithCons

复制代码

的优化与 javac 生成的字节码解耦，假设未来 JVM 增强相关运行时实现，将不需要依赖

javac 的任何修改。

在日常编程中，保证程序的可读性、可维护性，往往比所谓的最优性能更重要，你可以根据

实际需求酌情选择具体的编码方式。

2. 字符串缓存

我们粗略统计过，把常见应用进行堆转储（Dump Heap），然后分析对象组成，会发现平

均 25% 的对象是字符串，并且其中约半数是重复的。如果能避免创建重复字符串，可以有

效降低内存消耗和对象创建开销。

String 在 Java 6 以后提供了 intern() 方法，目的是提示 JVM 把相应字符串缓存起来，以

备重复使用。在我们创建字符串对象并调用 intern() 方法的时候，如果已经有缓存的字符

串，就会返回缓存里的实例，否则将其缓存起来。一般来说，JVM 会将所有的类

似“abc”这样的文本字符串，或者字符串常量之类缓存起来。

看起来很不错是吧？但实际情况估计会让你大跌眼镜。一般使用 Java 6 这种历史版本，并

不推荐大量使用 intern，为什么呢？魔鬼存在于细节中，被缓存的字符串是存在所谓

PermGen 里的，也就是臭名昭著的“永久代”，这个空间是很有限的，也基本不会被

FullGC 之外的垃圾收集照顾到。所以，如果使用不当，OOM 就会光顾。

在后续版本中，这个缓存被放置在堆中，这样就极大避免了永久代占满的问题，甚至永久代

在 JDK 8 中被 MetaSpace（元数据区）替代了。而且，默认缓存大小也在不断地扩大中，

从最初的 1009，到 7u40 以后被修改为 60013。你可以使用下面的参数直接打印具体数

字，可以拿自己的 JDK 立刻试验一下。

你也可以使用下面的 JVM 参数手动调整大小，但是绝大部分情况下并不需要调整，除非你

确定它的大小已经影响了操作效率。

1 -XX:+PrintStringTableStatistics

复制代码

复制代码

Intern 是一种显式地排重机制，但是它也有一定的副作用，因为需要开发者写代码时明确

调用，一是不方便，每一个都显式调用是非常麻烦的；另外就是我们很难保证效率，应用开

发阶段很难清楚地预计字符串的重复情况，有人认为这是一种污染代码的实践。

幸好在 Oracle JDK 8u20 之后，推出了一个新的特性，也就是 G1 GC 下的字符串排重。

它是通过将相同数据的字符串指向同一份数据来做到的，是 JVM 底层的改变，并不需要

Java 类库做什么修改。

注意这个功能目前是默认关闭的，你需要使用下面参数开启，并且记得指定使用 G1 GC：

前面说到的几个方面，只是 Java 底层对字符串各种优化的一角，在运行时，字符串的一些

基础操作会直接利用 JVM 内部的 Intrinsic 机制，往往运行的就是特殊优化的本地代码，

而根本就不是 Java 代码生成的字节码。Intrinsic 可以简单理解为，是一种利用 native 方

式 hard-coded 的逻辑，算是一种特别的内联，很多优化还是需要直接使用特定的 CPU 指

令，具体可以看相关源码，搜索“string”以查找相关 Intrinsic 定义。当然，你也可以在

启动实验应用时，使用下面参数，了解 intrinsic 发生的状态。

可以看出，仅仅是字符串一个实现，就需要 Java 平台工程师和科学家付出如此大且默默无

闻的努力，我们得到的很多便利都是来源于此。

1 -XX:StringTableSize=N

1

2

-XX:+UseStringDeduplication

复制代码

1

2

3

4

5

6

-XX:+PrintCompilation -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining
 // 样例输出片段
 180 3 3 java.lang.String::charAt (25 bytes)
 @ 1 java.lang.String::isLatin1 (19 bytes)
 ...
 @ 7 java.lang.StringUTF16::getChar (60 bytes) intrinsi

复制代码

拼课微
信：1

71614
3665

http://hg.openjdk.java.net/jdk/jdk/file/44b64fc0baa3/src/hotspot/share/classfile/vmSymbols.hpp

我会在专栏后面的 JVM 和性能等主题，详细介绍 JVM 内部优化的一些方法，如果你有兴

趣可以再深入学习。即使你不做 JVM 开发或者暂时还没有使用到特别的性能优化，这些知

识也能帮助你增加技术深度。

3.String 自身的演化

如果你仔细观察过 Java 的字符串，在历史版本中，它是使用 char 数组来存数据的，这样

非常直接。但是 Java 中的 char 是两个 bytes 大小，拉丁语系语言的字符，根本就不需要

太宽的 char，这样无区别的实现就造成了一定的浪费。密度是编程语言平台永恒的话题，

因为归根结底绝大部分任务是要来操作数据的。

其实在 Java 6 的时候，Oracle JDK 就提供了压缩字符串的特性，但是这个特性的实现并不

是开源的，而且在实践中也暴露出了一些问题，所以在最新的 JDK 版本中已经将它移除

了。

在 Java 9 中，我们引入了 Compact Strings 的设计，对字符串进行了大刀阔斧的改进。

将数据存储方式从 char 数组，改变为一个 byte 数组加上一个标识编码的所谓 coder，并

且将相关字符串操作类都进行了修改。另外，所有相关的 Intrinsic 之类也都进行了重写，

以保证没有任何性能损失。

虽然底层实现发生了这么大的改变，但是 Java 字符串的行为并没有任何大的变化，所以这

个特性对于绝大部分应用来说是透明的，绝大部分情况不需要修改已有代码。

当然，在极端情况下，字符串也出现了一些能力退化，比如最大字符串的大小。你可以思考

下，原来 char 数组的实现，字符串的最大长度就是数组本身的长度限制，但是替换成

byte 数组，同样数组长度下，存储能力是退化了一倍的！还好这是存在于理论中的极限，

还没有发现现实应用受此影响。

在通用的性能测试和产品实验中，我们能非常明显地看到紧凑字符串带来的优势，即更小的

内存占用、更快的操作速度。

今天我从 String、StringBuffer 和 StringBuilder 的主要设计和实现特点开始，分析了字符

串缓存的 intern 机制、非代码侵入性的虚拟机层面排重、Java 9 中紧凑字符的改进，并且

初步接触了 JVM 的底层优化机制 intrinsic。从实践的角度，不管是 Compact Strings 还

是底层 intrinsic 优化，都说明了使用 Java 基础类库的优势，它们往往能够得到最大程度、

最高质量的优化，而且只要升级 JDK 版本，就能零成本地享受这些益处。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？限于篇幅有限，还有很多字符相关的问题没

有来得及讨论，比如编码相关的问题。可以思考一下，很多字符串操作，比如

getBytes()/String (byte[] bytes) 等都是隐含着使用平台默认编码，这是一种好的实践吗？

是否有利于避免乱码？

请你在留言区写写你对这个问题的思考，或者分享一下你在操作字符串时掉过的坑，我会选

出经过认真思考的留言，送给你一份学习鼓励金，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第4讲 | 强引用、软引用、弱引用、幻象引用有什么区别？

下一篇 第6讲 | 动态代理是基于什么原理？

https://docs.oracle.com/javase/9/docs/api/java/lang/String.html#String-byte:A-

Bin 置顶

2018-05-16
 26

jdk1.8中，string是标准的不可变类，但其hash值没有用final修饰，其hash值计算是在第
一次调用hashcode方法时计算，但方法没有加锁，变量也没用volatile关键字修饰就无法
保证其可见性。当有多个线程调用的时候，hash值可能会被计算多次，虽然结果是一样
的，但jdk的作者为什么不将其优化一下呢？

展开

作者回复: 这些“优化”在通用场景可能变成持续的成本，volatile read是有明显开销的；

如果冲突并不多见，read才是更普遍的，简单的cache是更高效的

公号-代码...
2018-05-15

 285

今日String/StringBuffer/StringBuilder心得:

1 String
 …
展开

作者回复: 很到位

Hidden
2018-05-16

 136

公司没有技术氛围，项目也只是 功能实现就好，不涉及优化，技术也只是传统技术，想离
职，但又怕裸辞后的各种压力

展开

sea季陪我...
2018-05-16

 53

精选留言 (98)  写留言

作者我有个疑问，String myStr = "aa" + "bb" + "cc" + "dd"; 应该编译的时候就确定
了，不会用到StringBuilder。理由是：
String myStr = "aa" + "bb" + "cc" + "dd";
String h =aabbccdd
Mystr ==h 上机实测返回的是true，如果按照你的说法，应该是返回false才对，因为你…
展开

Kongk0ng
2018-05-16

 30

编译器为什么不把
String myStr = "aa" + "bb" + "cc" + "dd";
默认优化成
String myStr = "aabbccdd";
这样不是更聪明嘛

展开

Jerry银银
2018-05-15

 29

要完全消化一篇文章的所有内容，真得不是一天就能搞定的，可能需要一个月，甚至好几
个月。就比如今天的字符串，我觉得这个话题覆盖的面太广：算法角度；易用角度；性能
角度；编码传输角度等

但是好在，我获得见识。接下来，花时间慢慢研究呗，连大师们都花了那么多时间研究…
展开

愉悦在花香...
2018-05-15

 27

getBytes和String相关的转换时根据业务需要建议指定编码方式，如果不指定则看看JVM
参数里有没有指定file.encoding参数，如果JVM没有指定，那使用的默认编码就是运行的
操作系统环境的编码了，那这个编码就变得不确定了。常见的编码iso8859-1是单字节编
码，UTF-8是变长的编码。

展开

作者回复: 不错，莫依赖于不确定因素

明翼
2018-06-25

 23

回答一下上面一个人的问题，问题是“”String s3 = new String("12") + new
String("34");
s3.intern();
String s4 = "1234";
System.out.println(s3 == s4);//true …
展开

王万云
2018-05-20

 17

看大神的文章真的提高太多了，而且还要看评论，评论区也都是高手云集

Jerry银银
2018-05-15

 17

特别喜欢这句话：“仅仅是字符串一个实现，就需要 Java 平台工程师和科学家付出如此大
且默默无闻的努力，我们得到的很多便利都是来源于此。”

我想说，同学们，写代码的时候记得感恩哦😄
 …
展开

作者回复: 非常感谢

Van
2018-09-19

 15

String myStr = "aa" +"bb" + "cc" +"dd";反编译后并不会用到StringBuilder，老师反编
译结果中出现StringBuilder是因为输出中拼接了字符串System.out.println("My String:"
+ myStr);

作者回复: 嗯，文中的例子有歧义，确实欠考虑

肖一林  12

2018-05-15

这篇文章写的不错，由浅入深，把来龙去脉写清楚了

展开

作者回复: 谢谢认可

DoctorDeng
2018-09-21

 11

 String s = new String("1");
 s.intern();
 String s2 = "1";
 System.out.println(s == s2);
 …
展开

作者回复: 思路比结论更有价值

毛荣荣
2018-10-25

 9

首先要明白，Object obj = new Object();
obj是对象的引用，它位于栈中， new Object() 才是对象，它位于堆中
举例：String str1 = "abc"; //通过直接量赋值方式，放入字符串常量池
String str2 = new String(“abc”);//通过new方式赋值方式，不放入字符串常量池
String str1 = new String("abc"); …
展开

a man is...
2018-10-10

 9

1.通过字面量赋值创建字符串（如：String str=”twm”）时，会先在常量池中查找是否
存在相同的字符串，若存在，则将栈中的引用直接指向该字符串；若不存在，则在常量池
中生成一个字符串，再将栈中的引用指向该字符串。
2.JDK 1.7后，intern方法还是会先去查询常量池中是否有已经存在，如果存在，则返回常
量池中的引用，这一点与1.7之前没有区别，区别在于，如果在常量池找不到对应的字符…
展开

jamie
2018-06-14

 9

编译器为什么不把
String myStr = "aa" + "bb" + "cc" + "dd";
默认优化成
String myStr = "aabbccdd"; …
展开

фщэьш...
2018-08-25

 8

回答上面的问题，问题如下：
作者我有个疑问，String myStr = "aa" + "bb" + "cc" + "dd"; 应该编译的时候就确定
了，不会用到StringBuilder。理由是：
String myStr = "aa" + "bb" + "cc" + "dd";
String h =aabbccdd …
展开

echo
2018-05-16

 8

String是immutable，在security, Cache，Thread Safe等方面都有很好的体现。
Security: 传参的时候我们很多地方使用String参数，可以保证参数不会被改变，比如数据
库连接参数url等，从而保证数据库连接安全。
Cache: 因为创建String前先去Constant Pool里面查看是否已经存在此字符串，如果已经
存在，就把该字符串的地址引用赋给字符变量；如果没有，则在Constant Pool创建字符…
展开

薛好运
2018-05-15

 8

老师，可以讲解这一句话的具体含义吗，谢谢！
你可以思考下，原来 char 数组的实现，字符串的最大长度就是数组本身的长度限制，但是
替换成 byte 数组，同样数组长度下，存储能力是退化了一倍的！还好这是存在于理论中的
极限，还没有发现现实应用受此影响。

展开

作者回复: 已回复，一个char两个byte，注意下各个类型宽度

轩尼诗。
2018-05-31

 5

String s = new String(“abc”) 创建了几个对象？
答案1：在字符串常量池中查找有没有“abc”，有则作为参数，就是创建了一个对象；没
有则在常量池中创建，然后返回引用，那就是创建了两个对象。
答案2：直接在堆中创建一个新的对象。不检查字符串常量池，也不会把对象放入池中。
网上正确答案貌似是两个，求指教到底是哪个！ …
展开

