
第8讲 | 对比Vector、ArrayList、LinkedList有何区别？
2018-05-22 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 12:45 大小 5.84M

我们在日常的工作中，能够高效地管理和操作数据是非常重要的。由于每个编程语言支持的

数据结构不尽相同，比如我最早学习的 C 语言，需要自己实现很多基础数据结构，管理和

操作会比较麻烦。相比之下，Java 则要方便的多，针对通用场景的需求，Java 提供了强大

的集合框架，大大提高了开发者的生产力。

今天我要问你的是有关集合框架方面的问题，对比 Vector、ArrayList、LinkedList 有何区

别？

典型回答

这三者都是实现集合框架中的 List，也就是所谓的有序集合，因此具体功能也比较近似，比

如都提供按照位置进行定位、添加或者删除的操作，都提供迭代器以遍历其内容等。但因为





 下载APP 

具体的设计区别，在行为、性能、线程安全等方面，表现又有很大不同。

Vector 是 Java 早期提供的线程安全的动态数组，如果不需要线程安全，并不建议选择，

毕竟同步是有额外开销的。Vector 内部是使用对象数组来保存数据，可以根据需要自动的

增加容量，当数组已满时，会创建新的数组，并拷贝原有数组数据。

ArrayList 是应用更加广泛的动态数组实现，它本身不是线程安全的，所以性能要好很多。

与 Vector 近似，ArrayList 也是可以根据需要调整容量，不过两者的调整逻辑有所区别，

Vector 在扩容时会提高 1 倍，而 ArrayList 则是增加 50%。

LinkedList 顾名思义是 Java 提供的双向链表，所以它不需要像上面两种那样调整容量，它

也不是线程安全的。

考点分析

似乎从我接触 Java 开始，这个问题就一直是经典的面试题，前面我的回答覆盖了三者的一

些基本的设计和实现。

一般来说，也可以补充一下不同容器类型适合的场景：

所以，在应用开发中，如果事先可以估计到，应用操作是偏向于插入、删除，还是随机访问

较多，就可以针对性的进行选择。这也是面试最常见的一个考察角度，给定一个场景，选择

适合的数据结构，所以对于这种典型选择一定要掌握清楚。

考察 Java 集合框架，我觉得有很多方面需要掌握：

Vector 和 ArrayList 作为动态数组，其内部元素以数组形式顺序存储的，所以非常适合

随机访问的场合。除了尾部插入和删除元素，往往性能会相对较差，比如我们在中间位置

插入一个元素，需要移动后续所有元素。

而 LinkedList 进行节点插入、删除却要高效得多，但是随机访问性能则要比动态数组

慢。

Java 集合框架的设计结构，至少要有一个整体印象。

Java 提供的主要容器（集合和 Map）类型，了解或掌握对应的数据结构、算法，思考具

体技术选择。

作为 Java 专栏，我会在尽量围绕 Java 相关进行扩展，否则光是罗列集合部分涉及的数据

结构就要占用很大篇幅。这并不代表那些不重要，数据结构和算法是基本功，往往也是必考

的点，有些公司甚至以考察这些方面而非常知名（甚至是“臭名昭著”）。我这里以需要掌

握典型排序算法为例，你至少需要熟知：

考察算法不仅仅是如何简单实现，面试官往往会刨根问底，比如哪些是排序是不稳定的呢

（快排、堆排），或者思考稳定意味着什么；对不同数据集，各种排序的最好或最差情况；

从某个角度如何进一步优化（比如空间占用，假设业务场景需要最小辅助空间，这个角度堆

排序就比归并优异）等，从简单的了解，到进一步的思考，面试官通常还会观察面试者处理

问题和沟通时的思路。

以上只是一个方面的例子，建议学习相关书籍，如《算法导论》《编程珠玑》等，或相关教

程。对于特定领域，比如推荐系统，建议咨询领域专家。单纯从面试的角度，很多朋友推荐

使用一些算法网站如 LeetCode 等，帮助复习和准备面试，但坦白说我并没有刷过这些算

法题，这也是仁者见仁智者见智的事情，招聘时我更倾向于考察面试者自身最擅长的东西，

免得招到纯面试高手。

知识扩展

我们先一起来理解集合框架的整体设计，为了有个直观的印象，我画了一个简要的类图。注

意，为了避免混淆，我这里没有把 java.util.concurrent 下面的线程安全容器添加进来；也

没有列出 Map 容器，虽然通常概念上我们也会把 Map 作为集合框架的一部分，但是它本

身并不是真正的集合（Collection）。

所以，我今天主要围绕狭义的集合框架，其他都会在专栏后面的内容进行讲解。

将问题扩展到性能、并发等领域。

集合框架的演进与发展。

内部排序，至少掌握基础算法如归并排序、交换排序（冒泡、快排）、选择排序、插入排

序等。

外部排序，掌握利用内存和外部存储处理超大数据集，至少要理解过程和思路。

https://www.coursera.org/learn/algorithms-part1

我们可以看到 Java 的集合框架，Collection 接口是所有集合的根，然后扩展开提供了三大

类集合，分别是：

每种集合的通用逻辑，都被抽象到相应的抽象类之中，比如 AbstractList 就集中了各种

List 操作的通用部分。这些集合不是完全孤立的，比如，LinkedList 本身，既是 List，也是

Deque 哦。

如果阅读过更多源码，你会发现，其实，TreeSet 代码里实际默认是利用 TreeMap 实现

的，Java 类库创建了一个 Dummy 对象“PRESENT”作为 value，然后所有插入的元素其

实是以键的形式放入了 TreeMap 里面；同理，HashSet 其实也是以 HashMap 为基础实

现的，原来他们只是 Map 类的马甲！

List，也就是我们前面介绍最多的有序集合，它提供了方便的访问、插入、删除等操作。

Set，Set 是不允许重复元素的，这是和 List 最明显的区别，也就是不存在两个对象

equals 返回 true。我们在日常开发中有很多需要保证元素唯一性的场合。

Queue/Deque，则是 Java 提供的标准队列结构的实现，除了集合的基本功能，它还支

持类似先入先出（FIFO， First-in-First-Out）或者后入先出（LIFO，Last-In-First-

Out）等特定行为。这里不包括 BlockingQueue，因为通常是并发编程场合，所以被放

置在并发包里。

http://hg.openjdk.java.net/jdk/jdk/file/bf9177eac58d/src/java.base/share/classes/java/util/TreeSet.java

就像前面提到过的，我们需要对各种具体集合实现，至少了解基本特征和典型使用场景，以

Set 的几个实现为例：

我今天介绍的这些集合类，都不是线程安全的，对于 java.util.concurrent 里面的线程安全

容器，我在专栏后面会去介绍。但是，并不代表这些集合完全不能支持并发编程的场景，在

Collections 工具类中，提供了一系列的 synchronized 方法，比如

我们完全可以利用类似方法来实现基本的线程安全集合：

它的实现，基本就是将每个基本方法，比如 get、set、add 之类，都通过 synchronizd 添

加基本的同步支持，非常简单粗暴，但也非常实用。注意这些方法创建的线程安全集合，都

符合迭代时 fail-fast 行为，当发生意外的并发修改时，尽早抛出

ConcurrentModificationException 异常，以避免不可预计的行为。

TreeSet 支持自然顺序访问，但是添加、删除、包含等操作要相对低效（log(n) 时

间）。

HashSet 则是利用哈希算法，理想情况下，如果哈希散列正常，可以提供常数时间的添

加、删除、包含等操作，但是它不保证有序。

LinkedHashSet，内部构建了一个记录插入顺序的双向链表，因此提供了按照插入顺序

遍历的能力，与此同时，也保证了常数时间的添加、删除、包含等操作，这些操作性能略

低于 HashSet，因为需要维护链表的开销。

在遍历元素时，HashSet 性能受自身容量影响，所以初始化时，除非有必要，不然不要

将其背后的 HashMap 容量设置过大。而对于 LinkedHashSet，由于其内部链表提供的

方便，遍历性能只和元素多少有关系。

1 static <T> List<T> synchronizedList(List<T> list)

复制代码

1 List list = Collections.synchronizedList(new ArrayList());

复制代码

另外一个经常会被考察到的问题，就是理解 Java 提供的默认排序算法，具体是什么排序方

式以及设计思路等。

这个问题本身就是有点陷阱的意味，因为需要区分是 Arrays.sort() 还是 Collections.sort()

（底层是调用 Arrays.sort()）；什么数据类型；多大的数据集（太小的数据集，复杂排序

是没必要的，Java 会直接进行二分插入排序）等。

另外，Java 8 引入了并行排序算法（直接使用 parallelSort 方法），这是为了充分利用现

代多核处理器的计算能力，底层实现基于 fork-join 框架（专栏后面会对 fork-join 进行相

对详细的介绍），当处理的数据集比较小的时候，差距不明显，甚至还表现差一点；但是，

当数据集增长到数万或百万以上时，提高就非常大了，具体还是取决于处理器和系统环境。

排序算法仍然在不断改进，最近双轴快速排序实现的作者提交了一个更进一步的改进，历时

多年的研究，目前正在审核和验证阶段。根据作者的性能测试对比，相比于基于归并排序的

实现，新改进可以提高随机数据排序速度提高 10%～20%，甚至在其他特征的数据集上也

有几倍的提高，有兴趣的话你可以参考具体代码和介绍：

http://mail.openjdk.java.net/pipermail/core-libs-dev/2018-January/051000.html 。

在 Java 8 之中，Java 平台支持了 Lambda 和 Stream，相应的 Java 集合框架也进行了大

范围的增强，以支持类似为集合创建相应 stream 或者 parallelStream 的方法实现，我们

可以非常方便的实现函数式代码。

阅读 Java 源代码，你会发现，这些 API 的设计和实现比较独特，它们并不是实现在抽象类

里面，而是以默认方法的形式实现在 Collection 这样的接口里！这是 Java 8 在语言层面的

新特性，允许接口实现默认方法，理论上来说，我们原来实现在类似 Collections 这种工具

类中的方法，大多可以转换到相应的接口上。针对这一点，我在面向对象主题，会专门梳理

Java 语言面向对象基本机制的演进。

对于原始数据类型，目前使用的是所谓双轴快速排序（Dual-Pivot QuickSort），是一

种改进的快速排序算法，早期版本是相对传统的快速排序，你可以阅读源码。

而对于对象数据类型，目前则是使用TimSort，思想上也是一种归并和二分插入排序

（binarySort）结合的优化排序算法。TimSort 并不是 Java 的独创，简单说它的思路是

查找数据集中已经排好序的分区（这里叫 run），然后合并这些分区来达到排序的目的。

http://mail.openjdk.java.net/pipermail/core-libs-dev/2018-January/051000.html
http://hg.openjdk.java.net/jdk/jdk/file/26ac622a4cab/src/java.base/share/classes/java/util/DualPivotQuicksort.java
http://hg.openjdk.java.net/jdk/jdk/file/26ac622a4cab/src/java.base/share/classes/java/util/TimSort.java

在 Java 9 中，Java 标准类库提供了一系列的静态工厂方法，比如，List.of()、Set.of()，大

大简化了构建小的容器实例的代码量。根据业界实践经验，我们发现相当一部分集合实例都

是容量非常有限的，而且在生命周期中并不会进行修改。但是，在原有的 Java 类库中，我

们可能不得不写成：

而利用新的容器静态工厂方法，一句代码就够了，并且保证了不可变性。

更进一步，通过各种 of 静态工厂方法创建的实例，还应用了一些我们所谓的最佳实践，比

如，它是不可变的，符合我们对线程安全的需求；它因为不需要考虑扩容，所以空间上更加

紧凑等。

如果我们去看 of 方法的源码，你还会发现一个特别有意思的地方：我们知道 Java 已经支

持所谓的可变参数（varargs），但是官方类库还是提供了一系列特定参数长度的方法，看

起来似乎非常不优雅，为什么呢？这其实是为了最优的性能，JVM 在处理变长参数的时候

会有明显的额外开销，如果你需要实现性能敏感的 API，也可以进行参考。

今天我从 Verctor、ArrayList、LinkedList 开始，逐步分析其设计实现区别、适合的应用

场景等，并进一步对集合框架进行了简单的归纳，介绍了集合框架从基础算法到 API 设计

实现的各种改进，希望能对你的日常开发和 API 设计能够有帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？留一道思考题给你，先思考一个应用场景，

比如你需要实现一个云计算任务调度系统，希望可以保证 VIP 客户的任务被优先处理，你

1

2

3

ArrayList<String> list = new ArrayList<>();
list.add("Hello");
list.add("World");

复制代码

1 List<String> simpleList = List.of("Hello","world");

复制代码

可以利用哪些数据结构或者标准的集合类型呢？更进一步讲，类似场景大多是基于什么数据

结构呢？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习鼓

励金，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第7讲 | int和Integer有什么区别？

下一篇 第9讲 | 对比Hashtable、HashMap、TreeMap有什么不同？

雷霹雳的爸... 置顶

2018-05-22
 52

精选留言 (46)  写留言

在这个题目下，自然就会想到优先级队列了，但还需要额外考虑vip再分级，即同等级vip
的平权的问题，所以应该考虑除了直接的和vip等级相关的优先级队列优先级规则问题，还
得考虑同等级多个客户互相不被单一客户大量任务阻塞的问题，数据结构确实是基础，即
便这个思考题考虑的这个场景，待调度数据估计会放在redis里面吧

展开

作者回复: 赞

孙晓刚 置顶

2018-05-22
 15

精选第一个对于读写效率问题，我觉得表述有问欠缺，或者说不能那么绝对。
1、并不是所有的增删都会开辟新内存，没有开辟新内存的尾部增，效率也是杠杠的。
2、尾部删除也不需要开辟新内存，只是移出最后一个对象。
之前我也是接收了ArrayList的特性随机访问快，增删效率差。直到看到源码才知道，没那
么绝对。 …
展开

作者回复: 嗯，我文中特意强调了不包括尾部

L.B.Q.Y 置顶

2018-05-23
 4

请教老师个问题，Collection接口的声明是带范型的，其中定义的Object[] toArray()方法
为什么不是范型方式的？有什么原因吗？

展开

作者回复: 按照javadoc，我觉得这个方法设计目的，就是让调用者精确控制类型；里面声明了，

toArray(new Object[0])等同于toArray()

公号-代码...
2018-05-22

 106

Vector、ArrayList、LinkedList均为线型的数据结构，但是从实现方式与应用场景中又存
在差别。

1 底层实现方式
ArrayList内部用数组来实现；LinkedList内部采用双向链表实现；Vector内部用数组实…
展开

约书亚
2018-05-22

 37

既然是Java的主题，那就用PriorityBlockingQueue吧。
如果是真实场景肯定会考虑高可用能持久化的方案。
其实我觉得应该参考银行窗口，同时三个窗口，就是三个队列，银台就是消费者线程，某
一个窗口vip优先，没有vip时也为普通客户服务。要实现，要么有个dispatcher，要么保
持vip通道不许普通进入，vip柜台闲时从其他队列偷

展开

作者回复: 有道理

linco_66
2019-01-07

 7

由于要处理的任务有前后顺序关系，所以首先想到使用优先队列。使用 PriorityQueue，
将VIP用户的优先级设置为最高，优先处理。借鉴操作系统中的调度算法，对于其他用户，
我们还可以设计各种公平的优先级选择算法（基于排队先后顺序，基于调度任务所需的时
间长短（操作系统中的短作业优先算法）排序、高响应比（（所用时间+等待时间）/等待
时间）优先进行排序），与 PriorityQueue 结合使用。 …
展开

作者回复: 非常不错的总结

zjh
2018-05-26

 7

比较片面的说，java集合类底层基本上就是基于数组或者链表来实现的，数组的地址连续
性决定了其随机存取速度较快，但是涉及到扩容则比较耗时，而链表则不存在扩容的性能
消耗，但随机访问需要遍历地址因此相对数组要慢，所以判断一个集合的特点可以先判断
是基于数组还是链表。

展开

jackyz
2018-11-20

 6

集合：就像是一种容器。用于存储、获取、操作对象的容器。

1. 数组的弊端
①数组的长度不可变 ②数组没有提供可以查看有效元素个数的方法
 …
展开

我奋斗去了
2018-05-22

 3

可以使用priority queue ，维护两个队列 一个VIP队列 一个普通用户队列 。当VIP队列有
人的情况优先处理

作者回复: 为什么用两个队列，PriorityQueue不是有优先级了

王宁
2018-05-22

 3

面试的重点HashMap,实现原理，扩展什么的，1.7和1.8的区别。还有和hashtable的异
同。还有juc下面集合的熟悉程度。

展开

作者回复: 下两篇就是

Miaozhe
2018-05-28

 2

今天看了一下PriorityQueue的源码，发现其是使用最小堆结构(二叉堆)，存放在数组中(数
组索引对应树的从上到下，从左到右)。采用上面最小，每插入一个数据，就先与根节点比
较，如果小于根节，依次换位置；大于根节点，就放在最后一个位置。

展开

Miaozhe
2018-05-26

 2

杨老师，问个问题，Collection接口下面已细化了List,Set和Queue子接口，未什么又定义
了AbstractCollection这个抽象类？具体是什么考虑？以为我发现3个接口的子类都是集成
这个抽象类。

作者回复: 三个都是Collection，总还是有共同行为的

郑泽洲
2019-04-17

 1

杨老师，请教2个一直困扰我的问题：
1.ArrayList是继承了AbstractArrayList，其中AbstractArrayList已经实现了List接口，
ArrayList自然隐含实现了List接口。可是为什么ArrayList还显式声明实现了List接口？
2. Arrays.asList返回的是List类型，其内部是Arrays.ArrayList为什么不直接用
java.util.ArrayList

展开

Miaozhe
2018-05-28

 1

杨老师，有个问题，TreeSet为什么不支持正序，只支持倒序(DescendingIteractor)？
Tree本身支持正序列.

呵呵
2018-05-23

 1

阅读速度太快了

展开

Leo
2018-05-22

 1

使用优先级队列实现堆，可以根据优先级进行操作

展开

王磊
2018-05-22

 1

使用优先级队列，按照任务按照优先级排好序，这样优先级高的任务被优先处理。

Hesher
2018-05-22

 1

我觉得使用queue来实现VIP业务就行了，检查这个队列深度，大于0时就优先先处理。分
布式环境下用MQ实现。

展开

王宁
2018-05-22

 1

面试重点HashMap，1.7和1.8然后还有hashtable,还有juc下面的集合

PoL
2019-05-08



集合 LinkedList 基于双链表实现的，Vector Arraylist 基于数组，
Vector是线程安全，会有性能开销
Arraylist 可以转换成线程安全Cellections.synchronizedList（）
Linkedlist add delete 较快，查询效率低点， ArrayList 查询较快，非尾部增删效率低

展开

