
第10讲 | 如何保证集合是线程安全的? ConcurrentHashMap如
何实现高效地线程安全？
2018-05-26 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:46 大小 4.93M

我在之前两讲介绍了 Java 集合框架的典型容器类，它们绝大部分都不是线程安全的，仅有

的线程安全实现，比如 Vector、Stack，在性能方面也远不尽如人意。幸好 Java 语言提供

了并发包（java.util.concurrent），为高度并发需求提供了更加全面的工具支持。

今天我要问你的问题是，如何保证容器是线程安全的？ConcurrentHashMap 如何实现高

效地线程安全？

典型回答

Java 提供了不同层面的线程安全支持。在传统集合框架内部，除了 Hashtable 等同步容

器，还提供了所谓的同步包装器（Synchronized Wrapper），我们可以调用 Collections





 下载APP 

工具类提供的包装方法，来获取一个同步的包装容器（如

Collections.synchronizedMap），但是它们都是利用非常粗粒度的同步方式，在高并发情

况下，性能比较低下。

另外，更加普遍的选择是利用并发包提供的线程安全容器类，它提供了：

具体保证线程安全的方式，包括有从简单的 synchronize 方式，到基于更加精细化的，比

如基于分离锁实现的 ConcurrentHashMap 等并发实现等。具体选择要看开发的场景需

求，总体来说，并发包内提供的容器通用场景，远优于早期的简单同步实现。

考点分析

谈到线程安全和并发，可以说是 Java 面试中必考的考点，我上面给出的回答是一个相对宽

泛的总结，而且 ConcurrentHashMap 等并发容器实现也在不断演进，不能一概而论。

如果要深入思考并回答这个问题及其扩展方面，至少需要：

今天我主要是延续专栏之前两讲的内容，重点解读经常被同时考察的 HashMap 和

ConcurrentHashMap。今天这一讲并不是对并发方面的全面梳理，毕竟这也不是专栏一讲

可以介绍完整的，算是个开胃菜吧，类似 CAS 等更加底层的机制，后面会在 Java 进阶模

块中的并发主题有更加系统的介绍。

知识扩展

各种并发容器，比如 ConcurrentHashMap、CopyOnWriteArrayList。

各种线程安全队列（Queue/Deque），如 ArrayBlockingQueue、

SynchronousQueue。

各种有序容器的线程安全版本等。

理解基本的线程安全工具。

理解传统集合框架并发编程中 Map 存在的问题，清楚简单同步方式的不足。

梳理并发包内，尤其是 ConcurrentHashMap 采取了哪些方法来提高并发表现。

最好能够掌握 ConcurrentHashMap 自身的演进，目前的很多分析资料还是基于其早期

版本。

1. 为什么需要 ConcurrentHashMap？

Hashtable 本身比较低效，因为它的实现基本就是将 put、get、size 等各种方法加

上“synchronized”。简单来说，这就导致了所有并发操作都要竞争同一把锁，一个线程

在进行同步操作时，其他线程只能等待，大大降低了并发操作的效率。

前面已经提过 HashMap 不是线程安全的，并发情况会导致类似 CPU 占用 100% 等一些

问题，那么能不能利用 Collections 提供的同步包装器来解决问题呢？

看看下面的代码片段，我们发现同步包装器只是利用输入 Map 构造了另一个同步版本，所

有操作虽然不再声明成为 synchronized 方法，但是还是利用了“this”作为互斥的

mutex，没有真正意义上的改进！

所以，Hashtable 或者同步包装版本，都只是适合在非高度并发的场景下。

2.ConcurrentHashMap 分析

我们再来看看 ConcurrentHashMap 是如何设计实现的，为什么它能大大提高并发效率。

首先，我这里强调，ConcurrentHashMap 的设计实现其实一直在演化，比如在 Java 8

中就发生了非常大的变化（Java 7 其实也有不少更新），所以，我这里将比较分析结构、

实现机制等方面，对比不同版本的主要区别。

早期 ConcurrentHashMap，其实现是基于：

1

2

3

4

5

6

7

8

9

10

11

private static class SynchronizedMap<K,V>
 implements Map<K,V>, Serializable {
 private final Map<K,V> m; // Backing Map
 final Object mutex; // Object on which to synchronize
 // …
 public int size() {
 synchronized (mutex) {return m.size();}
 }
 // …
}

复制代码

你可以参考下面这个早期 ConcurrentHashMap 内部结构的示意图，其核心是利用分段设

计，在进行并发操作的时候，只需要锁定相应段，这样就有效避免了类似 Hashtable 整体

同步的问题，大大提高了性能。

在构造的时候，Segment 的数量由所谓的 concurrentcyLevel 决定，默认是 16，也可以

在相应构造函数直接指定。注意，Java 需要它是 2 的幂数值，如果输入是类似 15 这种非

幂值，会被自动调整到 16 之类 2 的幂数值。

具体情况，我们一起看看一些 Map 基本操作的源码，这是 JDK 7 比较新的 get 代码。针

对具体的优化部分，为方便理解，我直接注释在代码段里，get 操作需要保证的是可见性，

所以并没有什么同步逻辑。

分离锁，也就是将内部进行分段（Segment），里面则是 HashEntry 的数组，和

HashMap 类似，哈希相同的条目也是以链表形式存放。

HashEntry 内部使用 volatile 的 value 字段来保证可见性，也利用了不可变对象的机制

以改进利用 Unsafe 提供的底层能力，比如 volatile access，去直接完成部分操作，以最

优化性能，毕竟 Unsafe 中的很多操作都是 JVM intrinsic 优化过的。

http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/concurrent/ConcurrentHashMap.java

而对于 put 操作，首先是通过二次哈希避免哈希冲突，然后以 Unsafe 调用方式，直接获

取相应的 Segment，然后进行线程安全的 put 操作：

其核心逻辑实现在下面的内部方法中：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public V get(Object key) {
 Segment<K,V> s; // manually integrate access methods to reduce overhead
 HashEntry<K,V>[] tab;
 int h = hash(key.hashCode());
 // 利用位操作替换普通数学运算

 long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
 // 以 Segment 为单位，进行定位

 // 利用 Unsafe 直接进行 volatile access
 if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
 (tab = s.table) != null) {
 // 省略

 }
 return null;
 }

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

 public V put(K key, V value) {
 Segment<K,V> s;
 if (value == null)
 throw new NullPointerException();
 // 二次哈希，以保证数据的分散性，避免哈希冲突

 int hash = hash(key.hashCode());
 int j = (hash >>> segmentShift) & segmentMask;
 if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
 (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
 s = ensureSegment(j);
 return s.put(key, hash, value, false);
 }

复制代码

1

2

3

4

5

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 // scanAndLockForPut 会去查找是否有 key 相同 Node
 // 无论如何，确保获取锁

 HashEntry<K,V> node = tryLock() ? null :
 scanAndLockForPut(key, hash, value);

复制代码

所以，从上面的源码清晰的看出，在进行并发写操作时：

另外一个 Map 的 size 方法同样需要关注，它的实现涉及分离锁的一个副作用。

试想，如果不进行同步，简单的计算所有 Segment 的总值，可能会因为并发 put，导致结

果不准确，但是直接锁定所有 Segment 进行计算，就会变得非常昂贵。其实，分离锁也限

制了 Map 的初始化等操作。

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 V oldValue;
 try {
 HashEntry<K,V>[] tab = table;
 int index = (tab.length - 1) & hash;
 HashEntry<K,V> first = entryAt(tab, index);
 for (HashEntry<K,V> e = first;;) {
 if (e != null) {
 K k;
 // 更新已有 value...
 }
 else {
 // 放置 HashEntry 到特定位置，如果超过阈值，进行 rehash
 // ...
 }
 }
 } finally {
 unlock();
 }
 return oldValue;
 }

ConcurrentHashMap 会获取再入锁，以保证数据一致性，Segment 本身就是基于

ReentrantLock 的扩展实现，所以，在并发修改期间，相应 Segment 是被锁定的。

在最初阶段，进行重复性的扫描，以确定相应 key 值是否已经在数组里面，进而决定是

更新还是放置操作，你可以在代码里看到相应的注释。重复扫描、检测冲突是

ConcurrentHashMap 的常见技巧。

我在专栏上一讲介绍 HashMap 时，提到了可能发生的扩容问题，在

ConcurrentHashMap 中同样存在。不过有一个明显区别，就是它进行的不是整体的扩

容，而是单独对 Segment 进行扩容，细节就不介绍了。

所以，ConcurrentHashMap 的实现是通过重试机制（RETRIES_BEFORE_LOCK，指定重

试次数 2），来试图获得可靠值。如果没有监控到发生变化（通过对比

Segment.modCount），就直接返回，否则获取锁进行操作。

下面我来对比一下，在 Java 8 和之后的版本中，ConcurrentHashMap 发生了哪些变化

呢？

先看看现在的数据存储内部实现，我们可以发现 Key 是 final 的，因为在生命周期中，一个

条目的 Key 发生变化是不可能的；与此同时 val，则声明为 volatile，以保证可见性。

我这里就不再介绍 get 方法和构造函数了，相对比较简单，直接看并发的 put 是如何实现

的。

总体结构上，它的内部存储变得和我在专栏上一讲介绍的 HashMap 结构非常相似，同

样是大的桶（bucket）数组，然后内部也是一个个所谓的链表结构（bin），同步的粒度

要更细致一些。

其内部仍然有 Segment 定义，但仅仅是为了保证序列化时的兼容性而已，不再有任何结

构上的用处。

因为不再使用 Segment，初始化操作大大简化，修改为 lazy-load 形式，这样可以有效

避免初始开销，解决了老版本很多人抱怨的这一点。

数据存储利用 volatile 来保证可见性。

使用 CAS 等操作，在特定场景进行无锁并发操作。

使用 Unsafe、LongAdder 之类底层手段，进行极端情况的优化。

1

2

3

4

5

6

7

 static class Node<K,V> implements Map.Entry<K,V> {
 final int hash;
 final K key;
 volatile V val;
 volatile Node<K,V> next;
 // …
 }

复制代码

复制代码

初始化操作实现在 initTable 里面，这是一个典型的 CAS 使用场景，利用 volatile 的

sizeCtl 作为互斥手段：如果发现竞争性的初始化，就 spin 在那里，等待条件恢复；否则利

用 CAS 设置排他标志。如果成功则进行初始化；否则重试。

请参考下面代码：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null
 int hash = spread(key.hashCode());
 int binCount = 0;
 for (Node<K,V>[] tab = table;;) {
 Node<K,V> f; int n, i, fh; K fk; V fv;
 if (tab == null || (n = tab.length) == 0)
 tab = initTable();
 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
 // 利用 CAS 去进行无锁线程安全操作，如果 bin 是空的

 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
 break;
 }
 else if ((fh = f.hash) == MOVED)
 tab = helpTransfer(tab, f);
 else if (onlyIfAbsent // 不加锁，进行检查

 && fh == hash
 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
 && (fv = f.val) != null)
 return fv;
 else {
 V oldVal = null;
 synchronized (f) {
 // 细粒度的同步修改操作...
 }
 }
 // Bin 超过阈值，进行树化

 if (binCount != 0) {
 if (binCount >= TREEIFY_THRESHOLD)
 treeifyBin(tab, i);
 if (oldVal != null)
 return oldVal;
 break;
 }
 }
 }
 addCount(1L, binCount);
 return null;
}

当 bin 为空时，同样是没有必要锁定，也是以 CAS 操作去放置。

你有没有注意到，在同步逻辑上，它使用的是 synchronized，而不是通常建议的

ReentrantLock 之类，这是为什么呢？现代 JDK 中，synchronized 已经被不断优化，可

以不再过分担心性能差异，另外，相比于 ReentrantLock，它可以减少内存消耗，这是个

非常大的优势。

与此同时，更多细节实现通过使用 Unsafe 进行了优化，例如 tabAt 就是直接利用

getObjectAcquire，避免间接调用的开销。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

private final Node<K,V>[] initTable() {
 Node<K,V>[] tab; int sc;
 while ((tab = table) == null || tab.length == 0) {
 // 如果发现冲突，进行 spin 等待

 if ((sc = sizeCtl) < 0)
 Thread.yield();
 // CAS 成功返回 true，则进入真正的初始化逻辑

 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
 try {
 if ((tab = table) == null || tab.length == 0) {
 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
 @SuppressWarnings("unchecked")
 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
 table = tab = nt;
 sc = n - (n >>> 2);
 }
 } finally {
 sizeCtl = sc;
 }
 break;
 }
 }
 return tab;
}

复制代码

1

2

3

4

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
}

复制代码

再看看，现在是如何实现 size 操作的。阅读代码你会发现，真正的逻辑是在 sumCount 方

法中， 那么 sumCount 做了什么呢？

我们发现，虽然思路仍然和以前类似，都是分而治之的进行计数，然后求和处理，但实现却

基于一个奇怪的 CounterCell。 难道它的数值，就更加准确吗？数据一致性是怎么保证

的？

其实，对于 CounterCell 的操作，是基于 java.util.concurrent.atomic.LongAdder 进行

的，是一种 JVM 利用空间换取更高效率的方法，利用了Striped64内部的复杂逻辑。这个

东西非常小众，大多数情况下，建议还是使用 AtomicLong，足以满足绝大部分应用的性

能需求。

今天我从线程安全问题开始，概念性的总结了基本容器工具，分析了早期同步容器的问题，

进而分析了 Java 7 和 Java 8 中 ConcurrentHashMap 是如何设计实现的，希望

ConcurrentHashMap 的并发技巧对你在日常开发可以有所帮助。

1

2

3

4

5

6

7

8

9

10

11

12

final long sumCount() {
 CounterCell[] as = counterCells; CounterCell a;
 long sum = baseCount;
 if (as != null) {
 for (int i = 0; i < as.length; ++i) {
 if ((a = as[i]) != null)
 sum += a.value;
 }
 }
 return sum;
}

复制代码

1

2

3

4

static final class CounterCell {
 volatile long value;
 CounterCell(long x) { value = x; }
}

复制代码

http://hg.openjdk.java.net/jdk/jdk/file/12fc7bf488ec/src/java.base/share/classes/java/util/concurrent/ConcurrentHashMap.java
http://hg.openjdk.java.net/jdk/jdk/file/12fc7bf488ec/src/java.base/share/classes/java/util/concurrent/atomic/Striped64.java

一课一练

关于今天我们讨论的题目你做到心中有数了吗？留一个道思考题给你，在产品代码中，有没

有典型的场景需要使用类似 ConcurrentHashMap 这样的并发容器呢？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习鼓

励金，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第9讲 | 对比Hashtable、HashMap、TreeMap有什么不同？

下一篇 第11讲 | Java提供了哪些IO方式？ NIO如何实现多路复用？

明翼
58

精选留言 (45)  写留言

2018-07-04


58

1.7
put加锁
通过分段加锁segment，一个hashmap里有若干个segment，每个segment里有若干个
桶，桶里存放K-V形式的链表，put数据时通过key哈希得到该元素要添加到的segment，
然后对segment进行加锁，然后在哈希，计算得到给元素要添加到的桶，然后遍历桶中…
展开

徐金铎
2018-05-26

 51

需要注意的一点是，1.8以后的锁的颗粒度，是加在链表头上的，这个是个思路上的突破。

作者回复: 是的

雷霹雳的爸...
2018-05-26

 22

今天这个纯粹知识盲点，纯赞，源码也得不停看

展开

Sean
2018-05-28

 18

最近用ConcurrentHashMap的场景是，由于系统是一个公共服务，全程异步处理。最后
一环节需要http rest主动响应接入系统，于是为了定制化需求，利用netty写了一版异步
http clinet。其在缓存tcp链接时用到了。
看到下面有一位朋友说起了自旋锁和偏向锁。
自旋锁个人理解的是cas的一种应用方式。并发包中的原子类是典型的应用。 …
展开

作者回复: 正确，互相交流

偏向锁，侧重是低竞争场景的优化，去掉可能不必要的同步

j.c.
2018-05-26

 18

期待unsafe和cas的文章

展开

t
2018-07-03

 11

对于我这种菜鸟来说，应该来一期讲讲volatile😭

展开

虞飞
2018-05-27

 6

老师在课程里讲到同步包装类比较低效，不太适合高并发的场景，那想请教一下老师，在
list接口的实现类中。在高并发的场景下，选择哪种实现类比较好？因为ArrayList是线程不
安全的，同步包装类又很低效，CopyonwriteArrayList又是以快照的形式来实现的，在频
繁写入数据的时候，其实也很低效，那这个类型该怎么选择比较好？

展开

作者回复: 目前并发list好像就那一个，我觉得不必拘泥于list，不还有queue之类，看场景需要的

真是list吗

coder王
2018-05-28

 4

您说的synchronized被改进很多很多了，那么在我们平常使用中，就用这个synchronized
完成一些同步操作是不是OK？😁

展开

作者回复: 通常是的，前提是JDK版本需要新一点

约书亚
2018-05-26

 4

这期内容太难，分寸不好把握
看8的concurenthashmap源码感觉挺困难，网上的博文帮助也不大，尤其是扩容这部分
（似乎文章中没提）

求问杨大有没有什么窍门，或者有什么启发性的paper或文章？
可以泛化成，长期对lock free实现多个状态修改的问题比较困惑，希望得到启发

展开

作者回复: 本文尽量梳理了相对比较容易理解的部分；扩容细节我觉得是个加分项，不是每个人都

会在乎那么深入；窍门，可以考虑画图辅助理解，我是比较笨的类型，除了死磕，不会太多窍

门……

Answer
2018-07-03

 3

Unsafe？

展开

Kyle
2018-05-28

 3

之前用JavaFX做一个客户端IM工具的时候，我将拉来的未被读取的用户聊天信息用
ConcurrentHashMap存储（同时异步存储到Sqlite），Key存放用户id，Value放未读取
的聊天消息列表。因为我考虑到存消息和读消息是由两个线程并发处理的，这两个线程共
同操作一个ConcurrentHashMap。可能是我没处理好，最后直到我离职了还有消息重
复、乱序的问题。请问我这种应用场景有什么问题吗?

展开

mongo
2018-05-26

 3

请教老师：putVal方法中，什么情况下会进入else if ((fh=f.hash) == MOVED)分支？是
进行扩容的时候吗？nextTable是做什么用的？

展开

作者回复: 我理解是的，判断是个ForwardingNode，resize正在进行；

nexttable是扩容时的临时过渡

mongo
2018-05-26

 3

请教老师：putVal方法的第二个if分支，为什么要用tabAt？我的认识里直接数组下标寻址
tab[i=(n-1) & hash]也是一个原子操作，不是吗？tabAt里面的getObjectVolatle（）方
法跟直接用数组下标tab[i=(n-1) & hash]寻址有什么区别？

展开

作者回复: 这个有volatile load语义

shawn
2018-07-02

 2

老师，什么只有bin为空的时候才使用cas，其他地方用synchronized 呢？

Leiy
2018-05-29

 2

我感觉jdk8就相当于把segment分段锁更细粒度了，每个数组元素就是原来一个
segment，那并发度就由原来segment数变为数组长度？而且用到了cas乐观锁，所以能
支持更高的并发，不知道我这种理解对吗？如果对的话，我就在想，为什么并发大神之前
没想到这种，哈哈😄，恳请指正。谢谢

展开

作者回复: 基本正确，cas只用在部分场景；

事后看容易啊，说比做容易，😄

Hesher
2018-05-28

 2

并发包用的很少，这一节内容的前置知识比较多，对于使用经验少的人来说貌似是有点难
了。问题很好，正好可以见识一下各种使用场景，不过留言大部分是针对内容的难点提
问，而真正回答问题的还没有出现。

作者回复: 后面并发部分会详细分析

行者  2

2018-05-27

老师麻烦讲讲自旋锁，偏向锁的特点和区别吧，一直不太清楚。

作者回复: 好，后面有章节

bazindes
2018-06-26

 1

老师的内容讲的丰富 深入浅出 希望提高一下朗读人的要求吧 每节课都感觉有读错的 英文
读不准就不说了 互斥读成互拆听的实在是别扭

展开

作者回复: 哈，抱歉，我反馈一下，主播也辛苦，不一定是职业码农

Xg huang
2018-06-08

 1

这里有个地方想跟老师交流一下想法, 从文中"所以，ConcurrentHashMap 的实现是通过
重试机制（RETRIES_BEFORE_LOCK，指定重试次数 2），来试图获得可靠值。如果没有
监控到发生变化（通过对比 Segment.modCount），就直接返回，否则获取锁进行操
作。" 可以看出, 在高并发的情况下, "size()" 方法只是返回"近似值", 而我的问题是: 既然只
是一个近似值, 为啥要用这种"重试,分段锁" 的复杂做法去计算这个值? 直接在不加锁的情…
展开

作者回复: 这个是在代价可接受情况下，尽量准确，就像含金量90%和99.9%，99.999%，还是有

区别的，虽然不是百分百

Levy
2018-05-30

 1

老师你好，tabAt里面的getObjectVolatle（）方法跟直接用数组下标tab[i=(n-1) &
hash]寻址有什么区别，这个我也不懂，volitile不是已经保证内存可见性吗？

展开

作者回复: volatile保证的是数组，不是数组元素

