
第14讲 | 谈谈你知道的设计模式？
2018-06-05 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 08:23 大小 3.84M

设计模式是人们为软件开发中相同表征的问题，抽象出的可重复利用的解决方案。在某种程

度上，设计模式已经代表了一些特定情况的最佳实践，同时也起到了软件工程师之间沟通

的“行话”的作用。理解和掌握典型的设计模式，有利于我们提高沟通、设计的效率和质

量。

今天我要问你的问题是，谈谈你知道的设计模式？请手动实现单例模式，Spring 等框架中

使用了哪些模式？

典型回答

大致按照模式的应用目标分类，设计模式可以分为创建型模式、结构型模式和行为型模式。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

考点分析

这个问题主要是考察你对设计模式的了解和掌握程度，更多相关内容你可以参考：

https://en.wikipedia.org/wiki/Design_Patterns。

我建议可以在回答时适当地举些例子，更加清晰地说明典型模式到底是什么样子，典型使用

场景是怎样的。这里举个 Java 基础类库中的例子供你参考。

首先，专栏第 11 讲刚介绍过 IO 框架，我们知道 InputStream 是一个抽象类，标准类库中

提供了 FileInputStream、ByteArrayInputStream 等各种不同的子类，分别从不同角度对

InputStream 进行了功能扩展，这是典型的装饰器模式应用案例。

识别装饰器模式，可以通过识别类设计特征来进行判断，也就是其类构造函数以相同的抽象

类或者接口为输入参数。

因为装饰器模式本质上是包装同类型实例，我们对目标对象的调用，往往会通过包装类覆盖

过的方法，迂回调用被包装的实例，这就可以很自然地实现增加额外逻辑的目的，也就是所

谓的“装饰”。

例如，BufferedInputStream 经过包装，为输入流过程增加缓存，类似这种装饰器还可以

多次嵌套，不断地增加不同层次的功能。

创建型模式，是对对象创建过程的各种问题和解决方案的总结，包括各种工厂模式

（Factory、Abstract Factory）、单例模式（Singleton）、构建器模式（Builder）、

原型模式（ProtoType）。

结构型模式，是针对软件设计结构的总结，关注于类、对象继承、组合方式的实践经验。

常见的结构型模式，包括桥接模式（Bridge）、适配器模式（Adapter）、装饰者模式

（Decorator）、代理模式（Proxy）、组合模式（Composite）、外观模式

（Facade）、享元模式（Flyweight）等。

行为型模式，是从类或对象之间交互、职责划分等角度总结的模式。比较常见的行为型模

式有策略模式（Strategy）、解释器模式（Interpreter）、命令模式（Command）、

观察者模式（Observer）、迭代器模式（Iterator）、模板方法模式（Template

Method）、访问者模式（Visitor）。

复制代码

https://en.wikipedia.org/wiki/Design_Patterns
http://time.geekbang.org/column/article/8369

我在下面的类图里，简单总结了 InputStream 的装饰模式实践。

接下来再看第二个例子。创建型模式尤其是工厂模式，在我们的代码中随处可见，我举个相

对不同的 API 设计实践。比如，JDK 最新版本中 HTTP/2 Client API，下面这个创建

HttpRequest 的过程，就是典型的构建器模式（Builder），通常会被实现成fluent 风格的

API，也有人叫它方法链。

使用构建器模式，可以比较优雅地解决构建复杂对象的麻烦，这里的“复杂”是指类似需要

输入的参数组合较多，如果用构造函数，我们往往需要为每一种可能的输入参数组合实现相

1 public BufferedInputStream(InputStream in)

1

2

3

4

5

6

7

HttpRequest request = HttpRequest.newBuilder(new URI(uri))
 .header(headerAlice, valueAlice)
 .headers(headerBob, value1Bob,
 headerCarl, valueCarl,
 headerBob, value2Bob)
 .GET()
 .build();

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

https://en.wikipedia.org/wiki/Fluent_interface

应的构造函数，一系列复杂的构造函数会让代码阅读性和可维护性变得很差。

上面的分析也进一步反映了创建型模式的初衷，即，将对象创建过程单独抽象出来，从结构

上把对象使用逻辑和创建逻辑相互独立，隐藏对象实例的细节，进而为使用者实现了更加规

范、统一的逻辑。

更进一步进行设计模式考察，面试官可能会：

在面试时如果恰好问到你不熟悉的模式，你可以稍微引导一下，比如介绍你在产品中使用了

什么自己相对熟悉的模式，试图解决什么问题，它们的优点和缺点等。

下面，我会针对前面两点，结合代码实例进行分析。

知识扩展

我们来实现一个日常非常熟悉的单例设计模式。看起来似乎很简单，那么下面这个样例符合

基本需求吗？

是不是总感觉缺了点什么？原来，Java 会自动为没有明确声明构造函数的类，定义一个

public 的无参数的构造函数，所以上面的例子并不能保证额外的对象不被创建出来，别人

完全可以直接“new Singleton()”，那我们应该怎么处理呢？

希望你写一个典型的设计模式实现。这虽然看似简单，但即使是最简单的单例，也能够综

合考察代码基本功。

考察典型的设计模式使用，尤其是结合标准库或者主流开源框架，考察你对业界良好实践

的掌握程度。

1

2

3

4

5

6

 public class Singleton {
 private static Singleton instance = new Singleton();
 public static Singleton getInstance() {
 return instance;
 }
 }

复制代码

不错，可以为单例定义一个 private 的构造函数（也有建议声明为枚举，这是有争议的，我

个人不建议选择相对复杂的枚举，毕竟日常开发不是学术研究）。这样还有什么改进的余地

吗？

专栏第 10 讲介绍 ConcurrentHashMap 时，提到过标准类库中很多地方使用懒加载

（lazy-load），改善初始内存开销，单例同样适用，下面是修正后的改进版本。

这个实现在单线程环境不存在问题，但是如果处于并发场景，就需要考虑线程安全，最熟悉

的就莫过于“双检锁”，其要点在于：

1

2

3

4

5

6

7

8

9

10

11

public class Singleton {
 private static Singleton instance;
 private Singleton() {
 }
 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
 }

复制代码

这里的 volatile 能够提供可见性，以及保证 getInstance 返回的是初始化完全的对象。

在同步之前进行 null 检查，以尽量避免进入相对昂贵的同步块。

直接在 class 级别进行同步，保证线程安全的类方法调用。

1

2

3

4

5

6

7

8

9

10

11

12

public class Singleton {
 private static volatile Singleton singleton = null;
 private Singleton() {
 }

 public static Singleton getSingleton() {
 if (singleton == null) { // 尽量避免重复进入同步块

 synchronized (Singleton.class) { // 同步.class，意味着对同步类方法调用

 if (singleton == null) {
 singleton = new Singleton();
 }
 }

复制代码

http://time.geekbang.org/column/article/8137

在这段代码中，争论较多的是 volatile 修饰静态变量，当 Singleton 类本身有多个成员变

量时，需要保证初始化过程完成后，才能被 get 到。

在现代 Java 中，内存排序模型（JMM）已经非常完善，通过 volatile 的 write 或者

read，能保证所谓的 happen-before，也就是避免常被提到的指令重排。换句话说，构造

对象的 store 指令能够被保证一定在 volatile read 之前。

当然，也有一些人推荐利用内部类持有静态对象的方式实现，其理论依据是对象初始化过程

中隐含的初始化锁（有兴趣的话你可以参考jls-12.4.2 中对 LC 的说明），这种和前面的双

检锁实现都能保证线程安全，不过语法稍显晦涩，未必有特别的优势。

所以，可以看出，即使是看似最简单的单例模式，在增加各种高标准需求之后，同样需要非

常多的实现考量。

上面是比较学究的考察，其实实践中未必需要如此复杂，如果我们看 Java 核心类库自己的

单例实现，比如java.lang.Runtime，你会发现：

13

14

15

16

17

 }
 return singleton;
 }
}

1

2

3

4

5

6

7

8

9

10

public class Singleton {
 private Singleton(){}
 public static Singleton getSingleton(){
 return Holder.singleton;
 }

 private static class Holder {
 private static Singleton singleton = new Singleton();
 }
}

复制代码

它并没使用复杂的双检锁之类。

拼课微
信：1

71614
3665

https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.2
http://hg.openjdk.java.net/jdk/jdk/file/18fba780c1d1/src/java.base/share/classes/java/lang/Runtime.java

前面说了不少代码实践，下面一起来简要看看主流开源框架，如 Spring 等如何在 API 设计

中使用设计模式。你至少要有个大体的印象，如：

今天，我与你回顾了设计模式的分类和主要类型，并从 Java 核心类库、开源框架等不同角

度分析了其采用的模式，并结合单例的不同实现，分析了如何实现符合线程安全等需求的单

例，希望可以对你的工程实践有所帮助。另外，我想最后补充的是，设计模式也不是银弹，

要避免滥用或者过度设计。

一课一练

关于设计模式你做到心中有数了吗？你可以思考下，在业务代码中，经常发现大量

XXFacade，外观模式是解决什么问题？适用于什么场景？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习鼓

励金，欢迎你与我一起讨论。

静态实例被声明为 final，这是被通常实践忽略的，一定程度保证了实例不被篡改（专栏

第 6 讲介绍过，反射之类可以绕过私有访问限制），也有有限的保证执行顺序的语义。

1

2

3

4

5

6

7

8

private static final Runtime currentRuntime = new Runtime();
private static Version version;
// …
public static Runtime getRuntime() {
 return currentRuntime;
}
/** Don't let anyone else instantiate this class */
private Runtime() {}

复制代码

BeanFactory和ApplicationContext应用了工厂模式。

在 Bean 的创建中，Spring 也为不同 scope 定义的对象，提供了单例和原型等模式实

现。

我在专栏第 6 讲介绍的 AOP 领域则是使用了代理模式、装饰器模式、适配器模式等。

各种事件监听器，是观察者模式的典型应用。

类似 JdbcTemplate 等则是应用了模板模式。

http://time.geekbang.org/column/article/7489
https://github.com/spring-projects/spring-framework/blob/master/spring-beans/src/main/java/org/springframework/beans/factory/BeanFactory.java
https://github.com/spring-projects/spring-framework/blob/master/spring-context/src/main/java/org/springframework/context/ApplicationContext.java
http://time.geekbang.org/column/article/7489

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第13讲 | 谈谈接口和抽象类有什么区别？

下一篇 第15讲 | synchronized和ReentrantLock有什么区别呢？

公号-代码...
2018-06-05

 28

门面模式形象上来讲就是在原系统之前放置了一个新的代理对象，只能通过该对象才能使
用该系统，不再允许其它方式访问该系统。该代理对象封装了访问原系统的所有规则和接
口方法，提供的API接口较之使用原系统会更加的简单。

举例:JUnitCore是JUnit类的 Facade模式的实现类，外部使用该代理对象与JUnit进行统…
展开

作者回复: 不错

精选留言 (29)  写留言

南北少卿
2018-06-05

 19

为什么我去查Runtime的源码，currentRuntime没有被final修饰呢？

作者回复: 什么版本？我这是最新的

云学
2018-06-09

 10

最开始迷恋设计模式，后来眼中没有模式，其实那本经典的设计模式的书的第一章就非常
明确的指出设计模式不是银弹，总感觉java语言写的程序比c++更重，很多代码都是无用
的装饰

sunlight00...
2018-06-05

 9

结合流行的开源框架，或者自己的项目学设计模式是很好的办法，生学很容易看不懂学不
下去，xxxfascade是门面模式，为复杂的逻辑提供简单的借口，设计模式学的时候还能明
白，但是用的时候就不知道该怎么用了，我们怎么在项目中使用设计模式呢？

展开

作者回复: 不必为了模式而用，优先解决开发、维护中的痛点

田维俊
2018-06-06

 7

公司项目是一个基于spingboot、mybatis开发的web后端管理项目。现在的问题是 不同
角色登录到系统看到的模块和模块里面的数据是不一样的，有时虽然看到的模块一样，但
是由于角色不一样，所以显示的数据是不一样，在这样的情况下，会经常在service层方法
里面判断角色然后改变mapper的数据操作条件或调用mapper的不同方法。由于在service
层频繁的判断角色感觉很不雅，新增角色就要加判断，哎，感觉可以用策略设计模式，…
展开

yearning
2018-06-05

 6

Facade（外观模式）
接口隔离模式。处理组件中外部客户程序和组件中各种复杂的子系统高耦合情况，定义一
个高层接口，为子系统中的一组接口提供一个一致（稳定）的界面，使得更简单的使用。
facade简化整个组件系统的接口，同时子系统的任何变化都不会影响到facade接口。
 …
展开

李志博
2018-06-05

 5

Spring 内部的asm 模块 用到了访问者模式

展开

Walter
2018-06-07

 3

外观模式（Facade Pattern）隐藏系统的复杂性，并向客户端提供了一个客户端可以访问
系统的接口。它向现有的系统添加一个接口，来隐藏系统的复杂性。
这种模式涉及到一个单一的类，该类提供了客户端请求的简化方法和对现有系统类方法的
委托调用。
 …
展开

作者回复: 不错，业务系统多见

润兹
2018-06-05

 3

在没用facade之前，为了完成某个功能需要调用各子系统的各方法进行组合才能完成，用
了facade之后相当于把多个方法调用聚合成了一个方法，方便用户调用。

展开

星空
2018-06-05

 2

外观模式为子系统中一组接口提供一个统一访问的接口，降低了客户端与子系统之间的耦

合，简化了系统复杂度。缺点是违反了开闭原则。适用于为一系列复杂的子系统提供一个
友好简单的入口，将子系统与客户端解偶。公司基础paas平台用到了外观模式，具体是定
义一个ServiceFacade，然后通过继承众多xxService,对外提供子xxService的服务。

展开

作者回复: 业务开发很普遍

Sin0
2018-06-05

 2

有一点理解不太一致，单例模式double check中synchronized就已经可以提供可见性，
volatile的作用主要体现在禁指令重排！

展开

作者回复: 不冲突，sync也不是必然走到

君莫惜
2019-01-08

 1

外观模式是定义一个高层接口来更方便的去调用低层接口，比如mvc，service的接口就是
高层接口，而dao中就是低层接口

展开

作者回复: 是的

So Leung
2018-08-29

 1

屏蔽掉复杂的系统，提供一个对外的简单的接口供别人调用，比如某个人想开一家商店可
能要去很多的部门审批手续，比如税务、公司、卫生等等。但是有一天这些部门提供了一
个统一的窗口，大家通过这个窗口可以办完所以的流程。这就是外观模式的一个现实抽
象。

展开

作者回复: 很形象

clz134152...
2018-08-05

 1

facade门面模式，为了减少对子线实现的依赖，将子类实现统一封装。实现调用封装类。
达到所谓的“封装交互，简化调用”

展开

Miaozhe
2018-06-08

 1

我理解Facada模式，微服务应用场景，如：Nginx对系统子服务进行管理和IP反向代理，
提供统一的服务，就是屏蔽外部系统对内部服务的具体实现，以及各微服务的部署虚拟机
和URL。
再者，容器Docker技术，我认为这是Facada模式，通过镜像把应用相关的组件和配置都预
置好，发布这个服务时，直接启动容器，用户不用关心里面的任何细节。 …
展开

softpower2...
2018-06-05

 1

通过封装的方式，对外屏蔽内部复杂业务逻辑，实现使用方与具体实现的分离。门面模式

Geek_028e7...
2018-06-05

 1

facade模式 主要屏蔽系统内部细节实现，通过facade模式封装统一的接口 提供给外部调
用着.有一个优势 ，当内部系统做变更 优化时，这对外部调用者来说是透明的，一定程度
上降低了系统间耦合性...个人理解

送普选
2019-04-12



查Runtime的源码，JDK 1.7.0_79, 1.8.0_161中, currentRuntime 都没有被final修饰。
public class Runtime {
 private static Runtime currentRuntime = new Runtime();
......

展开

天使梦泪
2019-02-22



老师，可以给讲解下@Bean注解是怎么实现把一个类成为Spring管理的bean？

godtrue
2018-12-15



设计模式-经验的复用，需要根据具体场景来选择已被普遍认可的最佳实践。
门面模式-各种日志框架的选择使用就比较经典。
如果峰哥能分析一下各种设计模式的具体使用场景就更好了，不过23种设计模式也可以后
补一下。

展开

