
第18讲 | 什么情况下Java程序会产生死锁？如何定位、修复？
2018-06-16 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 09:37 大小 4.41M

今天，我会介绍一些日常开发中类似线程死锁等问题的排查经验，并选择一两个我自己修复

过或者诊断过的核心类库死锁问题作为例子，希望不仅能在面试时，包括在日常工作中也能

对你有所帮助。

今天我要问你的问题是，什么情况下 Java 程序会产生死锁？如何定位、修复？

典型回答

死锁是一种特定的程序状态，在实体之间，由于循环依赖导致彼此一直处于等待之中，没有

任何个体可以继续前进。死锁不仅仅是在线程之间会发生，存在资源独占的进程之间同样也

可能出现死锁。通常来说，我们大多是聚焦在多线程场景中的死锁，指两个或多个线程之

间，由于互相持有对方需要的锁，而永久处于阻塞的状态。





 下载APP 

你可以利用下面的示例图理解基本的死锁问题：

定位死锁最常见的方式就是利用 jstack 等工具获取线程栈，然后定位互相之间的依赖关

系，进而找到死锁。如果是比较明显的死锁，往往 jstack 等就能直接定位，类似 JConsole

甚至可以在图形界面进行有限的死锁检测。

如果程序运行时发生了死锁，绝大多数情况下都是无法在线解决的，只能重启、修正程序本

身问题。所以，代码开发阶段互相审查，或者利用工具进行预防性排查，往往也是很重要

的。

考点分析

今天的问题偏向于实用场景，大部分死锁本身并不难定位，掌握基本思路和工具使用，理解

线程相关的基本概念，比如各种线程状态和同步、锁、Latch 等并发工具，就已经足够解决

大多数问题了。

针对死锁，面试官可以深入考察：

抛开字面上的概念，让面试者写一个可能死锁的程序，顺便也考察下基本的线程编程。

诊断死锁有哪些工具，如果是分布式环境，可能更关心能否用 API 实现吗？

后期诊断死锁还是挺痛苦的，经常加班，如何在编程中尽量避免一些典型场景的死锁，有

其他工具辅助吗？

知识扩展

在分析开始之前，先以一个基本的死锁程序为例，我在这里只用了两个嵌套的

synchronized 去获取锁，具体如下：

这个程序编译执行后，几乎每次都可以重现死锁，请看下面截取的输出。另外，这里有个比

较有意思的地方，为什么我先调用 Thread1 的 start，但是 Thread2 却先打印出来了呢？

这就是因为线程调度依赖于（操作系统）调度器，虽然你可以通过优先级之类进行影响，但

是具体情况是不确定的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

public class DeadLockSample extends Thread {
 private String first;
 private String second;
 public DeadLockSample(String name, String first, String second) {
 super(name);
 this.first = first;
 this.second = second;
 }

 public void run() {
 synchronized (first) {
 System.out.println(this.getName() + " obtained: " + first);
 try {
 Thread.sleep(1000L);
 synchronized (second) {
 System.out.println(this.getName() + " obtained: " + second);
 }
 } catch (InterruptedException e) {
 // Do nothing
 }
 }
 }
 public static void main(String[] args) throws InterruptedException {
 String lockA = "lockA";
 String lockB = "lockB";
 DeadLockSample t1 = new DeadLockSample("Thread1", lockA, lockB);
 DeadLockSample t2 = new DeadLockSample("Thread2", lockB, lockA);
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 }
}

复制代码

下面来模拟问题定位，我就选取最常见的 jstack，其他一些类似 JConsole 等图形化的工

具，请自行查找。

首先，可以使用 jps 或者系统的 ps 命令、任务管理器等工具，确定进程 ID。

其次，调用 jstack 获取线程栈：

然后，分析得到的输出，具体片段如下：

最后，结合代码分析线程栈信息。上面这个输出非常明显，找到处于 BLOCKED 状态的线

程，按照试图获取（waiting）的锁 ID（请看我标记为相同颜色的数字）查找，很快就定位

问题。 jstack 本身也会把类似的简单死锁抽取出来，直接打印出来。

在实际应用中，类死锁情况未必有如此清晰的输出，但是总体上可以理解为：

区分线程状态 -> 查看等待目标 -> 对比 Monitor 等持有状态

1 ${JAVA_HOME}\bin\jstack your_pid

复制代码

所以，理解线程基本状态和并发相关元素是定位问题的关键，然后配合程序调用栈结构，基

本就可以定位到具体的问题代码。

如果我们是开发自己的管理工具，需要用更加程序化的方式扫描服务进程、定位死锁，可以

考虑使用 Java 提供的标准管理 API，ThreadMXBean，其直接就提供了

findDeadlockedThreads () 方法用于定位。为方便说明，我修改了 DeadLockSample，请

看下面的代码片段。

重新编译执行，你就能看到死锁被定位到的输出。在实际应用中，就可以据此收集进一步的

信息，然后进行预警等后续处理。但是要注意的是，对线程进行快照本身是一个相对重量级

的操作，还是要慎重选择频度和时机。

如何在编程中尽量预防死锁呢？

首先，我们来总结一下前面例子中死锁的产生包含哪些基本元素。基本上死锁的发生是因

为：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public static void main(String[] args) throws InterruptedException {

 ThreadMXBean mbean = ManagementFactory.getThreadMXBean();
 Runnable dlCheck = new Runnable() {

 @Override
 public void run() {
 long[] threadIds = mbean.findDeadlockedThreads();
 if (threadIds != null) {
 ThreadInfo[] threadInfos = mbean.getThreadInfo(threadIds);
 System.out.println("Detected deadlock threads:");
 for (ThreadInfo threadInfo : threadInfos) {
 System.out.println(threadInfo.getThreadName());
 }
 }
 }
 };

 ScheduledExecutorService scheduler =Executors.newScheduledThreadPool(1);
 // 稍等 5 秒，然后每 10 秒进行一次死锁扫描

 scheduler.scheduleAtFixedRate(dlCheck, 5L, 10L, TimeUnit.SECONDS);
// 死锁样例代码…
}

复制代码

https://docs.oracle.com/javase/9/docs/api/java/lang/management/ThreadMXBean.html#findDeadlockedThreads--

所以，我们可以据此分析可能的避免死锁的思路和方法。

第一种方法

如果可能的话，尽量避免使用多个锁，并且只有需要时才持有锁。否则，即使是非常精通并

发编程的工程师，也难免会掉进坑里，嵌套的 synchronized 或者 lock 非常容易出问题。

我举个例子， Java NIO 的实现代码向来以锁多著称，一个原因是，其本身模型就非常复

杂，某种程度上是不得不如此；另外是在设计时，考虑到既要支持阻塞模式，又要支持非阻

塞模式。直接结果就是，一些基本操作如 connect，需要操作三个锁以上，在最近的一个

JDK 改进中，就发生了死锁现象。

我将其简化为下面的伪代码，问题是暴露在 HTTP/2 客户端中，这是个非常现代的反应式

风格的 API，非常推荐学习使用。

在 close 发生时， HttpClient-6-SelectorManager 线程持有 readLock/writeLock，试图

获得 closeLock；与此同时，另一个 HttpClient-6-Worker-2 线程，持有 closeLock，试

图获得 readLock，这就不可避免地进入了死锁。

这里比较难懂的地方在于，closeLock 的持有状态（就是我标记为绿色的部分）并没有在线

程栈中显示出来，请参考我在下图中标记的部分。

互斥条件，类似 Java 中 Monitor 都是独占的，要么是我用，要么是你用。

互斥条件是长期持有的，在使用结束之前，自己不会释放，也不能被其他线程抢占。

循环依赖关系，两个或者多个个体之间出现了锁的链条环。

1

2

3

4

5

6

7

8

/// Thread HttpClient-6-SelectorManager:
readLock.lock();
writeLock.lock();
// 持有 readLock/writeLock，调用 close（）需要获得 closeLock
close();
// Thread HttpClient-6-Worker-2 持有 closeLock
implCloseSelectableChannel (); // 想获得 readLock

复制代码

https://bugs.openjdk.java.net/browse/JDK-8198928

更加具体来说，请查看SocketChannelImpl的 663 行，对比

implCloseSelectableChannel() 方法实现和AbstractInterruptibleChannel.close()在 109

行的代码，这里就不展示代码了。

所以，从程序设计的角度反思，如果我们赋予一段程序太多的职责，出现“既要…又

要…”的情况时，可能就需要我们审视下设计思路或目的是否合理了。对于类库，因为其基

础、共享的定位，比应用开发往往更加令人苦恼，需要仔细斟酌之间的平衡。

第二种方法

如果必须使用多个锁，尽量设计好锁的获取顺序，这个说起来简单，做起来可不容易，你可

以参看著名的银行家算法。

一般的情况，我建议可以采取些简单的辅助手段，比如：

将对象（方法）和锁之间的关系，用图形化的方式表示分别抽取出来，以今天最初讲的死

锁为例，因为是调用了同一个线程所以更加简单。

http://hg.openjdk.java.net/jdk/jdk/file/ce06058197a4/src/java.base/share/classes/sun/nio/ch/SocketChannelImpl.java
http://hg.openjdk.java.net/jdk/jdk/file/ce06058197a4/src/java.base/share/classes/java/nio/channels/spi/AbstractInterruptibleChannel.java
https://en.wikipedia.org/wiki/Banker%27s_algorithm

然后根据对象之间组合、调用的关系对比和组合，考虑可能调用时序。

按照可能时序合并，发现可能死锁的场景。

第三种方法

使用带超时的方法，为程序带来更多可控性。

类似 Object.wait(…) 或者 CountDownLatch.await(…)，都支持所谓的 timed_wait，我们

完全可以就不假定该锁一定会获得，指定超时时间，并为无法得到锁时准备退出逻辑。

并发 Lock 实现，如 ReentrantLock 还支持非阻塞式的获取锁操作 tryLock()，这是一个插

队行为（barging），并不在乎等待的公平性，如果执行时对象恰好没有被独占，则直接获

取锁。有时，我们希望条件允许就尝试插队，不然就按照现有公平性规则等待，一般采用下

面的方法：

1

2

3

4

if (lock.tryLock() || lock.tryLock(timeout, unit)) {
 // ...
 }

复制代码

第四种方法

业界也有一些其他方面的尝试，比如通过静态代码分析（如 FindBugs）去查找固定的模

式，进而定位可能的死锁或者竞争情况。实践证明这种方法也有一定作用，请参考相关文

档。

除了典型应用中的死锁场景，其实还有一些更令人头疼的死锁，比如类加载过程发生的死

锁，尤其是在框架大量使用自定义类加载时，因为往往不是在应用本身的代码库中，jstack

等工具也不见得能够显示全部锁信息，所以处理起来比较棘手。对此，Java 有官方文档进

行了详细解释，并针对特定情况提供了相应 JVM 参数和基本原则。

今天，我从样例程序出发，介绍了死锁产生原因，并帮你熟悉了排查死锁基本工具的使用和

典型思路，最后结合实例介绍了实际场景中的死锁分析方法与预防措施，希望对你有所帮

助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是，有时候并不是阻塞导致的

死锁，只是某个线程进入了死循环，导致其他线程一直等待，这种问题如何诊断呢？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

https://plugins.jetbrains.com/plugin/3847-findbugs-idea
https://docs.oracle.com/javase/7/docs/technotes/guides/lang/cl-mt.html

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第17讲 | 一个线程两次调用start()方法会出现什么情况？

下一篇 第19讲 | Java并发包提供了哪些并发工具类？

石头狮子
2018-06-16

 66

1. 死锁的另一个好朋友就是饥饿。死锁和饥饿都是线程活跃性问题。
实践中死锁可以使用 jvm 自带的工具进行排查。
2. 课后题提出的死循环死锁可以认为是自旋锁死锁的一种，其他线程因为等待不到具体的
信号提示。导致线程一直饥饿。
这种情况下可以查看线程 cpu 使用情况，排查出使用 cpu 时间片最高的线程，再打出该…
展开

作者回复: 很好的总结

精选留言 (19)  写留言

I am a ...
2018-06-16

 20

当是死循环引起的其他线程阻塞，会导致cpu飙升，可以先看下cpu的使用率。

作者回复: 对，比如Linux上，可以使用top命令配合grep Java之类，找到忙的pid；然后，转换成

16进制，就是jstack输出中的格式；再定位代码

curlev3
2018-06-26

 10

回答老师的问题
可以通过linux下top命令查看cpu使用率较高的java进程，进而用top -Hp ➕pid查看该
java进程下cpu使用率较高的线程。再用jstack命令查看线程具体调用情况，排查问题。

展开

作者回复: 非常不错

黑子
2018-06-16

 6

任务线程规范命名，详细记录逻辑运行日志。jstack查看线程状态。

作者回复: 不错

tracer
2018-06-27

 4

看了下jconsole检测死锁功能的源码，果然也是用ThreadMXBean获取死锁线程并分组，
然后打印相关线程信息的。

展开

jacy
2018-06-22

 2

尽然可以用ThreadMXBean来抓线程死锁信息，受教了。

循环死锁，会导致cpu某线程的cpu时间片占用率相当高，可以结合操作系统工具分析出线
程号，然后用jstack分析线程

展开

作者回复: 不错

残阳
2018-06-17

 2

以前做排查的时候看thread dump, 一般都会直接按一些关键字搜索。比如wait，lock之
类，然后再找重复的内存地址。看完这遍文章之后感觉对死锁的理解更深刻。

作者回复: 谢谢，地址也很重要

肖一林
2018-06-16

 2

初学nio的时候确实动不动就发生死锁。现在好像也没有特别好的教程，都是一些java.io的
教程。很多教程跟不上技术的迭代。也可能是因为直接io编程在项目实践中偏少。

另外，这个小程序的图片不能放大看，不知道是微信的原因还是小程序的原因。老师看到
了帮忙反馈一下。

展开

作者回复: nio确实教程少，书籍也不好找 Java IO，NIO，NIO2好像也没引进；如果想系统学

习，我建议买本 《netty实战》，Java自己的nio定位偏重于基础性API，与终端应用需求有点鸿沟

西鄉十六夜
2018-07-10

 1

老师，面试遇到过一个很刁钻的问题。如何在jvm不重启的情况下杀死一个线程，在stop
被移除后，如果线程存在死锁那是否意味着必须要修复代码再重启虚拟机呢？

作者回复: 不知道有什么好办法，也许用我例子哪个API去找到死锁线程，想办法把死锁条件打

开；但我觉得这东西不靠谱，假设真的解除死锁，你还能保证程序正确性吗，这不会是个通用解

决方案

另外，即使以前有stop方法，blocked状态的线程也是关不了的吧，它不响应你的请求的

肖一林
2018-06-16

 1

一课一练：
最典型的场景是nio的Selector类，这个类内部有三个集合，并且对这些集合做了同步。如
果多个线程同时操作一个Selector，就很容易发生死锁。它的select方法会一直拿着锁，并
且循环等待事件发生。如果有其他线程在修改它内部的集合数据，就死锁了。
 …
展开

作者回复: 不错，selected key 和 cancelled key的集合不是线程安全的，我记得标准文档就建议

QQ怪
2019-04-01



还有一种锁叫做活锁，可能两个线程一直在释放锁，抢占锁，互不相让，这种也是一种并
发问题

天使梦泪
2019-02-28



java8环境，连着多运行几次那个死锁实例代码才会出现blocked状态，前几次都是
RUNNABLE状态，而且用线程组打印的才是blocked，直接用线程的getState方法打印的
都是RUNNABLE。

苦行僧
2019-02-18



平常工作发生的死锁都发生在数据库层面，多线程并发修改同一条记录

leleba
2018-11-04



杨老师，mac电脑上，jdk1.8.0运行你的第一个例子怎么也不死锁

、
2018-07-29



因为Synchrinized 而BLOCKED的线程会消耗CPU吗。 多个线程争取锁是会消耗的吧

洗头用酱油
2018-07-22



杨老师，有点迷糊，所以说一个对象偏向一个线程后，这个线程就有工作了优先权吗？ 问
题我记得不特殊设置的话，JVM是随机执行线程的呀？

展开

作者回复: 不是一个概念，biased其实用这种方式避免了锁，和线程调度是两件事

coolboy
2018-06-25



杨老师，问个小白问题，java的线程状态有BLOCK、WAITING状态，使用java的内置关键
字sychronized时，会出现BLOCK状态。但如果用java的reentrantLock时，也会出现
BLOCK状态的吗，不应该只有WAITING状态的？

展开

作者回复: 是

Miaozhe
2018-06-22



杨老师，Sorry。接着上了问题，是我的进程PID搞错了，应该用Javax，我用成eclipse的
PID了。

Miaozhe
2018-06-21



杨老师，我Win7系统，Java 8上运行Dead Lock Simple例子，通过Jstack获取的Thread

1和Thread 2的线程状态，都是Runnable,但是Waiting on Condition[0x 000000000]。
但是，我通过Thread Group打印出来，两个线程状态都是Block。
晕乎了。。。。

展开

作者回复: 我不能重现，你是jdk8update多少？synchronized正常理解就是Blocked

